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Aims. Lung adenocarcinoma (LUAD) cells could escape from the monitoring of immune cells and metastasize rapidly
through immune escape. -erefore, we aimed to develop a method to predict the prognosis of LUAD patients based on
immune checkpoints and their associated genes, thus providing guidance for LUAD treatment. Methods. Gene sequencing
data were downloaded from the Cancer Genome Atlas (TCGA) and analyzed by R software and R Bioconductor software
package. Based on immune checkpoint genes, kmdist clustering in ConsensusClusterPlus R software package was utilized to
classify LUAD. CIBERSORT was used to quantify the abundance of immune cells in LUAD samples. LM22 signature was
performed to distinguish 22 phenotypes of human infiltrating immune cells. Gene set variation analysis (GSVA) was
performed on immune checkpoint cluster and immune checkpoint score using GSVA R software package.-e risk score was
calculated by LASSO regression coefficient. Gene Ontology (GO), Hallmark, and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analysis were performed. PROC was performed to generate the ROC curve and calculate the area under the
curve (AUC). Results. According to the immune checkpoint, LUAD was classified into clusters 1 and 2. Survival rate,
immune infiltration patterns, TMB, and immune score were significantly different between the two clusters. Functional
prediction showed that the functions of cluster 1 focused on apoptosis, JAK/STAT signaling pathway, TNF-α/NFκB
signaling pathway, and STAT5 signaling pathway. -e risk score model was constructed based on nine genes associated with
immune checkpoints. Survival analysis and ROC analysis showed that patients with high-risk score had poor prognosis. -e
risk score was significantly correlated with cancer status (with tumor), male proportion, status, tobacco intake, and cancer
stage. With the increase of the risk score, the enrichment of 22 biological functions increased, such as p53 signaling pathway.
-e signature was verified in IMvigor immunotherapy dataset with excellent diagnostic accuracy. Conclusion. We
established a nine-gene signature based on immune checkpoints, which may contribute to the diagnosis, prognosis, and
clinical treatment of LUAD.
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1. Background

Lung adenocarcinoma (LUAD) accounts for 40% of lung
cancer patients and is one of the main subtypes of lung
cancer [1]. LUAD is characterized by diffuse metastasis and
poor prognosis. -e survival rate of patients is less than five
years [2]. Because of the high resistance of LUAD to ra-
diotherapy and chemotherapy [3], it is urgent to look for
treatment from other directions.

Recently, immunotherapy has become an emerging
strategy for cancer treatment [4]. Immune system is involved
in the growth and metastasis of cancer cells. For example,
cancer cell antigens are recognized by dendritic cells and
other antigen presenting cells, which promote the matu-
ration of the corresponding cytotoxic CD8+ T lymphocytes
[5, 6]. However, any mistakes in this process might lead to
the failure of antigen presenting cells to present antigen
normally. It is well known that the complex tumor mi-
croenvironment is an important reason for the failure of
immunotherapy. As T cells failure to reach the tumor area,
the immune system was unable to recognize and remove
cancer cells [7]. Wu et al. developed a scoring system based
on the expression of genes related to tumor metabolism in
LUAD that is suitable not only for predicting prognosis in
patients with LUAD but also for predicting LUAD response
to checkpoint immunotherapy [8]. Currently, based on the
blockade of immune checkpoint, tumor immunotherapy has
made a breakthrough progress.

Immune checkpoints were defined as ligand receptor
pairs that inhibit or stimulate immune responses [9]. Tumor
cells evaded the attack of immune cells by activating immune
checkpoints [10]. Currently, some drugs have been devel-
oped to block the immune checkpoint. -e combination of
ipilimumab and placebo can prevent CTLA-4 from binding
to its ligand, thus blocking the immune checkpoint [11].
High expression of PD-1 could inhibit the function of Tcells
and promote the immune escape of tumor cells [12, 13].
Nivolumab is an antibody against PD-1, which could play an
antitumor role in clinical trials. However, patients have side
effects of loss of appetite and diarrhea [14]. -erefore, to
develop better targeted drugs, we need to find more rep-
resentative immune checkpoints.

TCGA database is often utilized to predict reliable
biomarkers [15]. Based on the analysis of TCGA dataset, we
classified LUAD according to immune checkpoint genes and
detected the clinical characteristics of patients after classi-
fication. Simultaneously, based on immune checkpoint-re-
lated genes, we established a risk score model and analyzed
its correlation with the clinical characteristics and signaling
pathways of LUAD samples.

2. Materials and Methods

2.1. LUAD Dataset and Preprocessing. -e Cancer Genome
Atlas (TCGA) dataset was downloaded from UCSC Xena
(https://xenabrowser.net/). RNA sequencing (RNA-seq)
data was downloaded from TCGA data portal. -en, the
fragments per kilobase million (FPKM) were converted to
transcripts per million (TPM). -e microarray dataset

GSE68465 was downloaded from Gene-Expression Omni-
bus (GEO; https://www.ncbi.nlm.nih.gov/geo/) as an ex-
ternal validation set. -e raw data from the microarray
dataset was generated by Affymetrix. -en, the RMA al-
gorithm in Affy package was applied to process the original
data from Affymetrix for quantile normalization and
background correction. All data were analyzed by R software
(version 3.6.1) and R Bioconductor software package.

2.2. Identification of Related Classification of LUAD Immune
Checkpoint. Sixty-five immune checkpoint genes were ob-
tained for subsequent clustering.-e filtering procedure was
performed. -e kmdist clustering method in Con-
sensuClusterPlus R software package was utilized to classify
LUAD by immune checkpoint genes [16], so as to determine
the patterns related to the immune checkpoint, and the
patients were grouped for further analysis.

2.3. Estimation of Immune Infiltration. CIBERSORT algo-
rithmwas used to quantify the abundance of immune cells in
LUAD samples using Leukocyte signature matrix (LM22) as
an eigenmatrix [17], since LM22 gene signature could
sensitively and specifically distinguish 22 phenotypes of
human infiltrated immune cells. -e algorithm was run with
an LM22 signature and 1000 permutations. Gene expression
profiles have been uploaded to CIBERSORT web portal
(http://cibersort.stanford.edu/).

2.4. Pathway Analysis. All gene sets were downloaded from
MSigDB database [18]. Gene Set Variation Analysis (GSVA)
R software package was utilized to analyze the GSVA of
immune checkpoint cluster and immune checkpoint score
[19], including Gene Ontology Biological Process (GO BP),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Hallmark gene sets. -e selection criteria of immune
checkpoint cluster related pathway was based on the cor-
rected p< 0.05. -e selection criteria of immune checkpoint
score related pathway was based on the correlation analysis
p< 0.05.

2.5. Establishment of Immune Checkpoint Score. Limma
package in R software was performed to identify differential
genes (DEG) associated with two immune checkpoint-re-
lated patterns [20].-e corrected p value <0.05 and | logFC |
< 1 were set as the significance criteria to determine DEG in
immune checkpoint subtypes. Univariate Cox regression
analysis was utilized to certificate the representative DEG,
and then, random forest in machine learning method of
caret package was used to reduce gene dimension. -e
TCGA dataset was randomly divided into two parts, each of
them containing 250 samples. One part of the data was
performed to train the model, and the other part and the
total data were used to verify the model. In the training set,
the dimensionality reduced genes were utilized for single-
factor Cox analysis to screen meaningful genes, and then, the
highest lambda value (“min” lambda) was selected through
1000 cross-validation in LASSO method. We obtained a
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group of prognostic genes and their LASSO regression
coefficients. Risk score was the sum of the expression value
of genes screened by LASSO regression coefficient.

Risk score� (−0.0044)∗
CCR7 (gene expression level) + 0.0323∗
CPS1 + (−0.1006)∗
LILRB1 + 0.1460∗
GOS2+ (−0.2027)∗
HLA-DOB+ (−0.2116)∗
CCR2+ (−0.1181)∗
CLEC7A+ 0.3002∗
BIRC3+ (−0.0286)∗
CD1E.

2.6. Survival Curve and ROC Analysis. -e pROC package
was used to generate receiver operating characteristic (ROC)
curve and calculate area under curve (AUC) [21].
Kaplan–Meier was utilized to generate and visualize survival
curves of subgroups. -e statistical significance of the dif-
ferences in each dataset was determined by log rank test. All
survival curves were generated by R package survminer. All
heatmaps were generated based on pheatmap. All statistical
analysis were analyzed in R (https://www.r-project.org/,
version 3.6.1).

2.7. Statistical Analysis. -e Shapiro–Wilk test was utilized
to assess the normality of variables. For normally distributed
variables, unpaired Student’s t-test was used to compare the
differences between the two groups. Wilcoxon test was
utilized to compare variables with nonnormal distribution.
For multiple groups, ANOVA was performed as the para-
metric method to compare the mean value, while Krus-
kal–Wallis test was used as the nonparametric method.
Pearson correlation and distance correlation analysis were
used to calculate the correlation coefficient. According to the
risk score of dichotomy, patients were divided into high- or
low-risk score of each dataset. Ggplot2 was used of visu-
alization in the R program. In the analysis of differentially
expressed genes, we utilized Benjamini-Hochberg, which
transformed p value into FDR to identify important genes.
All the tests were two-sided, and p values <0.05 were
considered statistically significant.

3. Results

3.1. Distribution of Immune Checkpoints after Gene
Clustering. We clustered LUAD by immune checkpoint.
-e results showed that the boundaries of LUAD clustering
into two categories were clear (Figure S1A), while the
boundaries of lung adenocarcinoma clustering into three or
four categories were fuzzy (Figures S1B and S1C). Consis-
tency cluster analysis (consensus CDF) was used for further
analysis, and the best classification was defined as the one
with the smallest slope of curve decline in the abscissa range
of 0.1–0.9. -e results showed that when LUAD was divided
into two categories, clusters 1 and 2, according to immune
checkpoints, the descending slope of curve was the smallest.
-e correlation between immune checkpoint-related gene

expression and clinical characteristics in the two clusters was
shown in Figure 1(a). Most genes were highly expressed in
cluster 1 and low expressed in cluster 2. We also found that
the expression of molecules related to antigen presentation
(HLA-C, HLA-B), ligands (CXCL5, CXCL10), receptors
(ADORA2A, BTLA), inhibitors (btn3a1, btn3a2), activators
(CD28, CD80), and cell adhesion (ICAM1, ITGB2) in cluster
1 was significantly higher than that in cluster 2. Other
proteins involved in immune regulation, such as IDO1,
GZMA, and PRF1, were also highly expressed in cluster 1
compared with cluster 2 (Figure S2). We used the survival
curve to analyze the survival difference between clusters 1
and 2. It was found that the survival rate of patients in cluster
2 decreased faster than that in cluster 1 over time. -is
indicated that the prognosis of patients in cluster 2 was
worse than that in cluster 1. PCA image showed that clusters
1 and 2 can be separated (Figure 1(c)), which proved that the
classification of LUAD was meaningful. Different types of
immune cells were distributed differently in the two clusters
(Figure 1(d)). For example, the distribution of B cells
memory, dendritic cells resting, macrophages M1 and M2,
T cells CD4 memory resting, and T cells CD8 in cluster 1
were more abundant than those in cluster 2. While the
distribution of plasma cells, dendritic cells activated, mac-
rophages M0, mast cells activated, and NK cells resting in
cluster 2 were contrary.

3.2. Functional Analysis of Checkpoints in Clusters 1 and 2.
We performed GO analysis, Hallmark, and KEGG pathway
to analyze the function of immune checkpoint-related genes
in clusters 1 and 2 (Figure 2(a)). GO analysis results showed
that mitochondrial RNA catabolic process was significantly
enriched in cluster 2. -e related genes of cluster 1 were
mainly involved in macrophage proliferation, positive reg-
ulation of inflammatory response to antigenic stimulus, CD8
positive alpha beta T cell activation, and microglial cell
activation. Hallmark results showed that cluster 2 genes were
involved in Myc targets V2, G2/M checkpoint, and DNA
repair. -e genes in cluster 1 were mainly involved in ap-
optosis, TNFa signaling via NFkB, and IL2 STAT5 signaling.
In addition, KEGG pathway showed that, compared with
cluster 2, genes in cluster 1 were mainly enriched in T and
B cell receptor signaling pathway, chemokine signaling
pathway, JAK/STAT signaling pathway, and toll-like re-
ceptor signaling pathway. -ese results indicated that im-
mune-related pathway scores were significantly higher in
cluster 1 than in cluster 2. -en, we examined the tumor
mutation burden (TMB) of clusters 1 and 2, and the results
showed that cluster 1 was higher than cluster 2 (Figure 2(b)).
Finally, we found that the ESTIMTE score, immune score,
and stromal score of cluster 1 were significantly higher than
those of cluster 2 (p< 2.22e − 16) (Figure 2(c)). -ese results
suggested that the survival and prognosis of cluster 1 pa-
tients were better than those of cluster 2 patients.

3.3. Screening ofGenes inClusters 1 and2andEstablishment of
Prognosis Model. -e total number of genes differing be-
tween the two clusters was 552 (Figure 3(a)). Later, we
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Figure 1: Continued.
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screened 164 genes by univariate analysis in TCGA dataset
and further obtained 132 genes by random forest dimen-
sionality reduction (Figure 3(b)). -rough single factor
analysis of 132 genes in the modeling set, 77 genes were
obtained (Figure 3(c)), Subsequently, nine genes, including
BIRC3, G0S2, CCR7, CPS1, CLEC7A, LILRB1, CCR2, HLA-
DOB, and CD1E, were screened by LASSO method
(Figure 3(d)). -ese nine genes were divided into high-risk

group and low-risk group, to establish the risk score formula:
risk score� (−0.0044)∗

CCR7 (gene expression level) + 0.0323∗
CPS1 + (−0.1006)∗
LILRB1 + 0.1460∗
GOS2+ (−0.2027)∗
HLA-DOB+ (−0.2116)∗
CCR2+ (−0.1181)∗
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Figure 1: -e characteristics of clusters 1 and 2. (a) Correlation between immune checkpoint-related gene expression and clinical
characteristics in two clusters. (b) Survival analysis of clusters 1 and 2. (c) PCA analysis of clusters 1 and 2. (d) Comparison of the
distribution of immune cells in clusters 1 and 2.
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CLEC7A+ 0.3002∗
BIRC3+ (−0.0286)∗
CD1E. -en, we used the risk score model to analyze the

survival rate of patients with these nine genes in the training
set (Figure 4(a)), testing set (Figure 4(b)), overall TCGA set
(Figure 4(c)), and external validation set (Figure 4(d)).
Survival analysis showed that patients with high-risk score
had a poor prognosis (p< 0.05). Time-dependent ROC

analysis showed that the one-year AUC reached 0.755 in all
datasets. It suggested that the efficacy of the model was
satisfactory. To ensure the robustness of the model, we
verified the LUAD model with IMvigor immunotherapy
dataset, as shown in Figure S3. -e survival rate of the high-
risk group was lower than that of the low-risk group. It
demonstrated the accuracy of our model in predicting
prognosis.
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3.4. Analysis of the Relationship between Risk Score, Clinical
Characteristics, and Signaling Pathways. According to the
risk score of these nine genes, we detected the changes of

different clinical characteristics of the patients. -e results
showed that the TMB value of the low-risk score group was
higher than that of the high-risk score group (Figure 5(a)).
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Figure 4: Survival curve analysis and ROC analysis of the nine-gene signature. (a) Survival analysis of two risk groups and ROC analysis of
the nine-gene signature in training set. (b) Survival curve of two risk groups and ROC curve of the nine-gene signature in testing set. (c)
Survival status of two risk groups and ROC analysis of the nine-gene signature in overall TCGA set. (d) Survival analysis and ROC curve of
the nine-gene signature in the external validation set.
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-en, we evaluated the relationship between risk score and
clinical characteristics. -ere was no significant difference
between high-risk score and low-risk score in age (p � 0.11).

-e risk score exhibited statistical differences in cancer
status (tumor-free, with tumor), gender (female, male),
status (alive, dead), tobacco (current smoker, never smoke,
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Figure 5: Analysis of the relationship between risk score, clinical characteristics, and signaling pathways. (a) Comparison of TMB between
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tobacco, and stage. (c) Function prediction of GO, Hallmark, and KEGG pathways based on risk score model.
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nonsmoker: less than 15 years, and nonsmoker: more than
15 years, and stage (I, II, III, IV) (p< 0.05) (Figure 5(b)). We
also evaluated the relationship between the risk score and
biological function (Figure 5(c)). GO analysis showed that
the expression of cell cycle related pathways and DNA repair
increased as the risk score increased gradually, while the
expression of MHC type II protein decreased. Hallmark
results showed that the expression of E2F target, G2/M
checkpoint, and Myc target increased, and the expression of
KRAS signaling pathway decreased, when the risk score
gradually increased. KEGG pathway showed that seven
pathways, including base excision repair, cell cycle, and
DNA replication, were positively correlated with the risk
score. B cell receptor signaling pathway, chemokine sig-
naling pathway, and intestinal immune network for IgA
production were negatively correlated with the risk score.

4. Discussion

LUAD has the characteristics of poor prognosis and rapid
metastasis, which leads to high mortality. Many studies have
shown that tumor development is controlled by the patient’s
immune system, which has important implications for pa-
tient prognosis and response to drug therapy [22].-erefore,
we classified LUAD according to immune checkpoint. After
classification, we found that the expression of molecules
related to antigen presentation, ligands, receptors, inhibi-
tors, activators, and cell adhesion in cluster 1 was signifi-
cantly higher than that in cluster 2. Simultaneously, the
survival rate of patients in cluster 1 was higher than that in
cluster 2. -e results of immunocyte distribution showed
that there were more immunocytes in cluster 1, but the
dendritic cells were dormant. In cluster 2, the dendritic cells
were activated, but the cells with lethality were less. -us, we
suspect that there is something wrong with the antigen
presentation or immune checkpoint.

In our study, the results of pathway prediction showed
that the expression of immune cell activation related
pathways in cluster 1 was significantly higher than that in
cluster 2.-erefore, we speculated that this may lead to more
immune cells in cluster 1 than in cluster 2. In addition, the
function of checkpoint in cluster 1 was also enriched in
apoptosis, JAK/STAT signaling pathway, TNF-α/NF κ B
signaling pathway, and STAT5 signaling pathway. -e
continuous activation of JAK/STAT signaling pathway was
closely related to many immune and inflammatory diseases,
which was closely related to the recognition of tumor cells by
immune cells and the immune escape process of tumor [23].
Taking NK cells as an example, the early maturation, de-
velopment, and functional activation of NK cells were
strictly regulated by cytokines of JAK/STAT pathway [24].
IL-2 and IL-15 promoted NK cell homeostasis, proliferation,
and function through STAT5 transduction [25] NFκB sig-
naling pathway was also involved in the regulation of JAK/
STAT pathway on immune cells [18].

We screened the immune checkpoint-related genes,
BIRC3, G0S2, CCR7, CPS1, CLEC7A, LILRB1, CCR2, HLA-
DOB, and CD1E, and detected the effect of these genes on
the survival rate of patients. When the risk index of these

genes increased, the survival rate of patients decreased. After
literature search, it was found that these genes can be used as
therapeutic targets for cancer. For example, birc3 was as-
sociated with chemoimmunotherapy resistance, and its
inactivation also affects tumor cells that depend on NFκB
pathway to survive [26]. Wang et al. found that hypoxia
could induce birc3 expression through HIF1 alpha signal
transduction mechanism in glioblastoma cells [27]. -e
sensitivity of G0/G1 transition gene 2 (G0S2) breast cancer
cells to tamoxifen was relatively increased, which makes
G0S2 an antitumor breast cancer target and biomarker of
recurrence and therapeutic response [28, 29]. CCR7 and
CD163 could be used as markers of macrophage polarization
in lung cancer microenvironment [30]. We speculated that
these genes may regulate the activity of immune cells in
tumor microenvironment. After that, we will further explore
the specific regulatory role of these genes on immune cells.
We verified the clinical changes and related pathway changes
of LUAD patients after the rise of the risk score of nine
genes. We found that the high-risk group showed lower
TMB. Ouyang et.al. showed that TMB was related to the
immunotherapy response of colon adenocarcinoma. In the
group with high TMB level, higher infiltration of CD8+
T cells, CD4+ T cells, and other immune cells could be
observed in the cancer tissue [31]. -is suggests that when
the risk score is increased, the distribution of immune cells
in the tumor may decrease correspondingly, leading to
immune escape of tumor cells. In our results, the risk score
was positively correlated with KARs pathway activation.
KARS gene was a proto oncogene. Smoking could cause
KARSmutation and carcinogenesis. Studies have shown that
curcumin can be used as a sensitizer to overcome the re-
sistance of NSCLC patients with wild-type EGFR and/or
KRASmutations [32]. However, it is worth noting that p53 is
a tumor suppressor protein, and gene therapy has been
found to increase the expression of p53 [33]. -e increased
expression of p53 pathway in our experiment still needs
further study.

Current radiotherapy and chemotherapy are difficult to
meet the needs of the treatment of LUAD. Currently, bio-
informatics technology has been used to screen biomarkers
of LUAD, which was more targeted for the treatment of the
disease. Song et al. established a gene model consisting of 30
immune-related genes to predict the prognosis of LUAD
[34]. In this study, we established a nine-gene prognostic
model for LUAD based on immune checkpoints. -e
IMvigor dataset verified its prognostic value. From the
perspective of clinical application, nine key genes associated
with immune checkpoints identified in this study may be
easier to be detected in clinical practice.

-ere are still some limitations in this study. First, our
data comes from a public database, and potential selection
bias cannot be ruled out. Second, the robustness of our
results needs to be further validated in prospective studies.
In addition, as there are not enough clinical samples, we have
not tested this model in clinical trials. -erefore, we will
clarify the biological function of the predicted genes on the
basis of the present work in combination with experimental
verification.
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5. Conclusion

In conclusion, we identified a nine-gene signature based on
immune checkpoints that may be used to aid prognostic
analysis in patients with LUAD. Our study may provide
several valuable molecular targets for immunotherapy of
LUAD.
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