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Background. Epithelial ovarian cancer (EOC) is an extremely lethal gynecological malignancy and has the potential to benefit from
the immune checkpoint blockade (ICB) therapy, whose efficacy highly depends on the complex tumor microenvironment (TME).
Method and Result. We comprehensively analyze the landscape of TME and its prognostic value through immune infiltration
analysis, somatic mutation analysis, and survival analysis. +e results showed that high infiltration of immune cells predicts
favorable clinical outcomes in EOC. +en, the detailed TME landscape of the EOC had been investigated through “xCell”
algorithm, Gene set variation analysis (GSVA), cytokines expression analysis, and correlation analysis. It is observed that EOC
patients with high infiltrating immune cells have an antitumor phenotype and are highly correlated with immune checkpoints. We
further found that dendritic cells (DCs) may play a dominant role in promoting the infiltration of immune cells into TME and
forming an antitumor immune phenotype. Finally, we conducted machine-learning Lasso regression, support vector machines
(SVMs), and random forest, identifying six DC-related prognostic genes (CXCL9,VSIG4,ALOX5AP, TGFBI,UBD, and CXCL11).
And DC-related risk stratify model had been well established and validated. Conclusion. High infiltration of immune cells
predicted a better outcome and an antitumor phenotype in EOC, and the DCs might play a dominant role in the initiation of
antitumor immune cells. +e well-established risk model can be used for prognostic prediction in EOC.

1. Introduction

Ovarian cancer is the second leading cause of cancer death in
adult women, and the epithelial ovarian cancer (EOC) is the
most common histological subtype characterized by com-
plex adjacent anatomical structures, high-degree malig-
nancy, and heterogeneity [1, 2]. +e surgical excision and
chemotherapy are effective for EOC patients, but a large
fraction of EOC patients will subsequently relapse and
develop to chemoresistance, which seriously shortens the
patients’ clinical survival [3].

Nowadays, the immune checkpoint blockades (ICBs)
have received wide attention and have emerged as efficient
agents for tumor therapy. It can specifically block the im-
mune checkpoints and retrieve the antitumor immunity [4].
Nevertheless, due to the lack of comprehensive analysis on
the tumor microenvironment (TME) and EOC, there is a
limited application of ICBs in EOC therapy.

+e TME not only plays a critical role in carcinogenesis but
also has various regulatory functions in tumor growth and
metastasis [5]. It has been proposed to be valuable in diagnosis
and prognosis in a wide range of tumors, but the utility on EOC
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has not been investigated in detail [6]. +e immune cells are a
master component in TME, composed of CD8+ cytotoxic
T lymphocytes (CTLs), B cells, plasma cells, macrophages, and
dendritic cells (DCs) [7–9]. +e class II major histocompati-
bility complex- (MHC-I-) restricted CTLs implicated as critical
components in antitumor immunity, contributing to tumor
killing [10]. And CD4+ T-helper (+) cells are an important
helper in the activation of CTLs. CTLs also can indirectly
mediate tumor killing by the secretion of lymphokines such as
gamma-interferon (IFN-c), lymphotoxin [11]. In addition,
DCs, a professional antigen presenting cells (APCs), are central
regulators in the T-cell-mediated antitumor immunity [12].
Conversely, tumor-intrinsic immune checkpoints’ ligand like
programmed death ligand-1 (PD-L1) can inhibit the activation
of CTLs via binding to its receptor PD-1, resulting in the tumor
immune evasion [8, 13].

In this study, we intended to investigate the potential
role and underlying mechanisms of TME in EOC. Immune
infiltration analysis has indicated that the EOC patients with
high-intensity infiltrating immune cells companied with
better clinical outcomes, higher TMB, CSMD3, and MUC16
mutation. In addition, immune score was significantly re-
lated to antitumor immunity and the efficacy of ICBs in
EOC. We emphasized that infiltrating dendritic cells plays a
leading role in this antitumor immunity. Furthermore, we
identified six DC-related prognostic genes for establishing
the DC-related risk model using machine-learning Lasso
regression, support vector machines (SVMs), and random
forest. +e well-established DC-related risk model in this
study can accurately stratify patients into subgroups with
different clinical survival.

2. Materials And Methods

2.1. Data. +e high-throughput sequencing FPKM data
(HTSeq-FPKM, N� 365) and corresponding clinicopatho-
logic data of EOC were obtained from +e Cancer Genome
Atlas (TCGA, https://www.cancer.gov/). +e HTSeq-FPKM
data received a logarithmic conversion. In addition, Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo) databases GSE63885 (GPL570) [14], GSE32062
(GPL6480) [15], GSE105437 (GPL570) [16], GSE4122
(GPL201), and GSE23554 (GPL96) [17] were also included
in our study, which were retrieved and downloaded by R
programming using package “GEOquery”. GSE32062,
GSE63885, and GSE23554 were measured in 260, 75, and 28
EOC patients, respectively; while the GSE105437 include 10
EOC tissues and five normal tissues; GSE4122 cohort was
measured in 32 normal/benign and 32 malignant ovarian
tissues.

2.2. Immune Infiltration Analysis. +e “ESTIMATE” (Esti-
mation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data) algorithm (R package “esti-
mate”) was carried out to calculate the immune score, which
refers to the infiltration level of total immune cells [18]. +e
populations of major types of infiltrating immune cells were
evaluated through “xCell” (R package “xCell”) [19].

2.3. Somatic Mutation Analysis. +e mutation MAF (minor
allele frequency) file of EOC was downloaded through R
package “TCGAbiolinks”. +e total number of somatic
mutations in each sample from TCGA was extracted
through R package “maftools”. In TCGA, GRCh38 is the
reference genome with a length of about 35Mb, and the
formula for calculating the tumormutation burden (TMB) is
as follows [20, 21]: TMB� Sn/35 (where Sn represents the
total number of somatic mutations). +e R package “maf-
tools” was also used to plotting.

2.4. Gene Set Variation Analysis. All gene sets in this study
for gene set variation analysis (GSVA) were obtained from
the molecular signatures database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb, Supplementary Table 1). +e
GSVA score of each gene set was calculated using R package
“GSVA” with ssGSEA (single-sample gene set enrichment
analysis) method [22, 23].

2.5. Differential Expression Analysis. EOC patients were
classified into high-DC and low-DC infiltration groups
based on the median level of infiltrating DCs. R package
“Limma” was conducted for differential expression analysis.
Absolute values of log2 fold change (log FC)> 1 and adjusted
p (adj.p) value< 0.05 were used as thresholds to identify
differentially expressed genes (DEGs) [24].

2.6. Construction of Immune Molecular Risk Model.
Univariable Cox survival analysis was performed to screen the
potential prognostic genes (adj.p< 0.05). Feature selection was
next applied by Lasso regularization (R packages “glmnet”),
SVM (R packages “e1071”), and random forest (R package
“randomForestSRC”, with variable relative importance> 0.4)
[25]. Finally, a DC-related risk model was established by
multivariable Cox analysis. +e risk score was calculated as
follows: risk score�CXCL9 ∗ (−0.112)+VSIG4 ∗ (0.173)+
ALOX5AP ∗ (0.105)+TGFBI ∗ (0.077) +UBD ∗ (−0.141) +
CXCL11 ∗ (−0.120).

2.7. Statistics. All statistics were performed in R program
(version 4.0.0). Student’s t-test or Wilcox test (according to
the Shapiro test and Bartlett test) was applied to calculate the
p value between two groups with continuous variables.
Kaplan–Meier analysis was used for survival analysis, and
the statistical significance was tested using the log-rank test.
+e correlation between two variables was assessed by the
spearman correlation analysis. p< 0.05 was considered
statistically significant.

3. Results

3.1. High Infiltration of Immune Cells Predicts Favorable
Clinical Outcomes in Epithelial Ovarian Cancer. To better
understand the role of the infiltrating immune cells in EOC
progression, the immune score based on the gene expression
profiles was calculated using the “ESTIMATE” algorithm. As
shown in results from GSE105437 and GSE4122, EOC
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patients had significantly higher immune score than normal
tissues (Figure 1(a) and 1(b)).+is result was consistent with
our previous findings that immune cells have been in-
creasingly infiltrated into tumor microenvironment [26]. In
GSE32062, the alive patients had higher immune score than
the dead (Figure 1(c), p< 0.001). In contrast, patients with
high grade (Grades 3 and 4) demonstrated significantly
higher immune score (Figure 1(d), p< 0.001), while the
immune score in patients with FIGO stage III and stage IV
did not differ significantly (Figure 1(e)).

Regarding the most common mutation like TP53 and
BRCA1/2 in EOC [27], we plotted the distribution of the
immune score across other frequently mutated gene TTN,
CSMD3, and MUC16 in TCGA mutation data (Figure 1(f)).
Patients with high immune score had higher TMB, CSMD3,
and MUC16 mutation than in wild type (Figure 1(g)–1(i),
p< 0.05). However, there were no significant correlations
between immune score and mutations of TP53, TTN,
BRCA1/2 (Figure 1(i)–1(k), Supplementary Figure 1).

To evaluate the potential prognostic utility of the infil-
trating immune cells in EOC, the patients were initially
classified into high and low groups according to the median
immune score. In GSE32062 cohort, the median OS of the
high and low groups were 69 and 50 months (Figure 2(a),
p � 0.01). And the immune score also was an indicator of
longer progression-free survival (PFS) (Figure 2(b)).
Moreover, GSE63885 also confirmed that the high immune
score was correlated with better OS (Figure 2(c)). +e
prognostic accuracy of immune score to predict the OS in
GSE32062 and GSE63885 were assessed via receiver oper-
ating characteristic (ROC) curve curves, as shown in Sup-
plementary Figure 2, +e area under the curve (AUC) value
indicated that the immune score can be used to predict OS in
EOC patients (Supplementary Figure 2).

3.2.EOCPatientswithHigh Infiltrating ImmuneCellsHavean
Antitumor Phenotype. +e dynamic counterbalance be-
tween immunity and evasion in TME contributes to diverse
immune phenotype, which is affected by lots of factors,
including the infiltrating immune cells, cytokines, and im-
mune checkpoints [28]. “xCell” algorithm was applied to
quantify the different types of infiltrating immune cells. We
observed high density of antitumor immune cells in high-
immune-score group, including CD8+ T cells, B cells, DCs,
and macrophages M1 (Figure 2(d), all p< 0.001). Con-
versely, immunosuppressive cells Tregs and macrophages
M2 were more accumulated in the low group (Figure 2(e), all
p< 0.01). Besides, 16 immunostimulatory-related cytokines
were overexpressed in patients with high infiltrating im-
mune cells, which include chemokines and receptors
(CXCL10, CCL11, CXCL13, CXCL9, CXCL11, CXCR3,
CCL5, CCL4, CCR1, and CCL8), interferons and receptors
(IL2RB, IL32, IL2RG, and IL10RA), and other cytokines
(IDO1 and CSF1) (Figure 2(f ), |log FC|> 1, p< 0.05).
Moreover, the GSVA scores of innate immunity and
adaptive immunity were significantly correlated with infil-
trating immune cells (Figure 2(g), all p< 0.001). We defined
that EOC patients with high infiltrating immune cells trend

to form an antitumor phenotype with more antitumor
immune cells and immunostimulatory-related cytokines.

We next sought to investigate the correlation between
infiltrating immune cells and immune checkpoints TIGIT,
CD48, PDCD1 (PD-1), LAG3, CD274, HAVCR2, LAIR1,
and PDCD1LG2(PD-L2). +e result elucidated that infil-
trating immune cells were positively correlated with all
above immune checkpoints (Figure 2(h), cor> 0.6). Notably,
the correlation coefficients with CD48, HAVCR2, and
PDCD1LG2 were more than 0.8, suggesting that EOC pa-
tients with high infiltrating immune cells may be more
sensitive to ICBs therapy.

3.3. Dendritic Cells Shape the Immune Phenotype of EOC
Microenvironment. +e correlation between infiltrating
immune cells and different types of immune cell was
assessed by Spearman’s correlation analysis, and the results
showed that the DCs were strongly positively correlated with
immune score (Figure 3(a), cor� 0.896, p< 0.001). Mean-
while, the enrichment levels of DC-related biological pro-
cesses were high in patients with high immune score
(Figure 3(b)). It is worth mentioning that cytokines CCL4,
CXCL9, and CXCL10, which were highly expressed in the
high infiltrating immune cells group, can attract DCs
(Figure 2(f)). In addition, K-M survival analysis indicated
that the patients with high infiltrating DCs presented sig-
nificantly better clinical survival (Figure 3(c)).

DCs are crucial participates in antigen presentation,
activating MHC-I-restricted CTL responses and MHC-II-
restricted CD4++1 responses, both ultimately contributes
to antitumor response. As shown in heatmap, almost all the
MHC-I molecules (HLA-A, HLA-B, TAP1, TAP2, and B2M)
and MHC-II molecules (HLA-DPA1, HLA-DPB1, HLA-
DQA1, HLA-DQA2, HLA-DQ81, HLA-DQB2, HLA-DRB1,
and HLA-DRB5) were overexpressed in high-immune-score
group (Figure 3(d)). Furthermore, high infiltrating group
ranked the higher score in T helper 1 type immune response
(Figure 3(e)). +ese suggest that DCs may play a dominant
role to promoting the infiltration of immune cells into tumor
microenvironment and forming an antitumor immune
phenotype.

3.4. Construction and Validation of Dendritic Cell-Related
Risk Model. As shown in volcano plot, a total of 120 genes
(including 119 upregulated and 1 downregulated genes)
were found to be differently expressed in high infiltrating DC
group (Figure 4(a), |log FC|> 1, p< 0.05). +en, 15 out of
120 DEGs were screened as the OS-related DEGs via uni-
variate Cox analysis (Figure 4(b)). Afterward, the machine-
learning Lasso regression, SVM, and random forest were
employed to identify the important factors (Figure 4(c)–
4(f )). Collectively, six DC-related prognostic genes CXCL9,
VSIG4, ALOX5AP, TGFBI, UBD, and CXCL11 were iden-
tified to establish a risk model for EOC (Figure 4(g)). +ree
of them (CXCL9, UBD, and CXCL11) were protective genes
with hazard ratio (HR)< 1, and others (VSIG4, ALOX5AP,
and TGFBI) were risky genes (Figure 4(b)).
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+e DC-related risk model had been applied to TCGA
cohort, which classified EOC patients into high- and low-
risk groups based on median risk score (Figure 5(a)).
Different OS was noticed between two subgroups
(Figure 5(b), Highmedian OS vs. Lowmedian OS: 1162 vs. 1680
days, p< 0.001). Moreover, the additional cohort
GSE23554 (Figure 5(b), Highmedian OS vs. Lowmedian OS:
760 vs. 3399 days, p � 0.012) and GSE32062 (Figure 5(c),
Highmedian OS vs. Lowmedian OS: 50 vs. 69 months,
p � 0.033). We also confirmed that the risk score was
significantly negatively correlated with infiltrating im-
mune cells and DCs but not related to tumor purity
(Figure 5(d)–5(f )).

3.5. Nomogram. To analyze the relationship between the
DC-related risk model and clinical parameters, the no-
mogram was developed based on clinical parameters

(FIGO stage and Age) integrated with the risk score. +e
result illustrated that the risk score we constructed was an
independent predictor in EOC (Figure 6(a)). Calibration
curve showed that the nomogram has a good reliability in
predicting 3- and 5-year survival (Figure 6(b)).

4. Discussion

ICB therapy has been a hot topic in tumor immunotherapy
and is expected to improve the outcomes of EOC patients
with relapse or chemoresistance [29–31]. However, ICB’s
clinical application in EOC is limited seriously because the
TME is complex and has not been well investigated in EOC.
+e work flow of this work is shown in Supplementary
Figure 3; we systematically analyzed the potential role and
underlying mechanisms of infiltrating lymphocytes within
EOC and dug the effective predictors for EOC prognosis and
ICB’s therapy.
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Figure 1: High infiltrating immune cells predict favorable clinical outcomes in epithelial ovarian cancer. (a) +e distribution of immune
score between EOC (N� 10) and normal tissues (N� 5) in GSE105437. Box plot shows that the immune score of EOC is significantly higher
than normal tissues (Wilcoxon test, p � 0.013). (b) In GSE4122 dataset, the immune score was higher in malignant ovarian tissues
(Wilcoxon test, p � 0.033). (c–e) Box plots of immune score in EOC patients from GSE32062, stratified by (c) vital status, (d) grade, and (e)
FIGO stage. (f ) Top four mutated genes in EOC from TCGA. (g–h) Box plots of immune score in EOC patients, stratified by TMB, CSMD3,
MUC16, TP53, and TTN. EOC: epithelial ovarian cancer; TMB: tumor mutation burden.
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Figure 2: Continued.
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In this study, we found that the immune cells were highly
infiltrated into TME in carcinogenesis and predict a better
clinical outcome in EOC, which are consistent with the study
by Hao et al. [32], that the immune score can be used as a
powerful predictive tool for both prognosis and chemo-
therapeutic sensitivity of EOC.

As we all know, TME phenotype was determined by a
complex regulatory network involving antitumor immune
responses, tumor escape, and cellular and molecular

characteristics. In the current work, an antitumor phenotype
with more antitumor immune cells and immunostimulatory-
related cytokines was observed in high infiltrating lymphocytes
group. In addition, consistent withNishino et al. [4, 33], we also
observed a strong positive correlation between infiltrating
immune cells and immune checkpoints, such as CD48,
HAVCR2 and PDCD1LG2, which is an important intrinsic
immune surveillance escape mechanism; the PD-1, CTLA-4,
BTLA, HAVCR2, and Lag3 have been proved to be the potent
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immune checkpoints to mediate tumor immunosuppression
[34, 35]. Among which, predominately centered on PD-L1 that
overexpressed in tumor cells, leading to inhibition of CTLs’
proliferation [36]. Single-agent PD-1 blockade and PD-1/PD-
L1 dual-regimen therapy both exhibit longer PFS in persistent
and recurrent EOC [37]. HAVCR2 is significantly overex-
pressed in CD4＋and CD8＋Tcells and suppress the antitumor
immune responses in primary ovarian cancer, the blockade of
HAVCR2 leads to sustained antitumor reactions [38]. +is

study suggests that EOC patients with high infiltrating immune
cells may be able to achieve better efficacy in ICB’s therapy.

In addition, we observed that DCs might highly express
MHC-I and MHC-II molecules, then initiating MHC-I-
restricted CTLs responses and MHC-II-restricted CD4+ +1
responses, which enables T-cell immune response [39]. All
in all, DCs may play a dominant role in promoting the
infiltration of immune cells into TME and forming an
antitumor immune phenotype.+eMHC-I/II CTLs and+1
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immune responds were activated by DCs, both can further
enhance the antitumor immunity to kill the tumor cells.

Immunological epigenetic alterations have already become
innovative and precise cancer biomarkers in urologic, brain,
lung, breast, and colorectal cancers [40–42]. However, in EOC
with highly heterogeneous, the traditional tumor, node, and
metastasis (TNM) classification are not efficient for prognostic
assessment [43]. In this study, six DC-related prognostic
biomarkers (CXCL9, VSIG4, ALOX5AP, TGFBI, UBD, and
CXCL11) were identified to construct risk model, which could
accurately stratify the EOC patients into two subtypes with
different survival outcomes, providing an informative

prognostic assessment for EOC patients. We hypothesize these
molecules may play important regulatory role in EOC. CXCL9
and CXCL11 are known for their tumor suppressive properties
and are expressed on the DCs; CXCL9 and CXCL11 have been
described to enhance antitumor immunity by activating +1
[46]. UBD (ubiquitin D) also known as FAT10, is induced by
mature DCs and contributes to antigen presentation [47]. As
for risky genes, VSIG4 (V-set and Ig containing 4), a trans-
membrane receptor, was expressed specifically in DCs and
macrophages, which inhibited the T cells’ proliferation and
immune response [48, 49]. +e activation of ALOX5AP
(Arachidonate 5-lipoxygenase activating protein) correlates
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with the HER2 (human epidermal growth factor receptor 2)
and promotes the growth and migration of breast cancer [50].
TGFBI (transforming growth factor beta induced) has been
reported to be an oncogene in a variety of cancers including
prostate, ovarian, and breast cancer [51–53]. Fico and Santa-
maria-Mart́ınez found that TGFBI induced breast cancer
metastasis by regulating the TME and hypoxia [51]. +e
combination of interstitial TGFBI and intratumoral CD8+

T cells can be used as a predictor for PD-1/L1 blockade
nivolumab [54].

5. Conclusion

In summary, our results indicate that the heavily infiltrated
immune cells were positively related to a better outcome and
antitumor phenotype in EOC. ICBs therapy should be con-
sidered for EOCpatients with high infiltrating immune cells. In
addition, we provided the mechanistic insights in this study,
showing that the DCs may play an important role in the
initiation of antitumor immune. Finally, we verified that the
established DC-related risk model is able to accurately stratify
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patients into subgroups with different survival outcomes.
Nevertheless, further validation studies of these molecular
mechanisms are still warranted in the future.
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