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Our study examined the transcriptional and survival data of HOXBs in patients with clear cell renal cell carcinoma (ccRCC) from
the ONCOMINE database, Human Protein Atlas, and STRING website. We discovered that the expression levels of HOXB3/5/6/
8/9 were significantly lower in ccRCC than in normal nephritic tissues. In ccRCC, patients with a high expression of HOXB2/5/6/
7/8/9 mRNA have a higher overall survival (OS) than patients with low expression. Further analysis by the GSCALite website
revealed that the methylation of HOXB3/5/6/8 in ccRCCwas significantly negatively correlated to gene expression, while HOXB5/
9 was positively correlated to the CCT036477 drug target. As DNA abnormal methylation is one of the mechanisms of tu-
morigenesis, we hypothesized that HOXB5/6/8/9 are potential therapeutic targets for patients with ccRCC. We analyzed the
function of enrichment data of HOXBs in patients with ccRCC from the Kyoto Encyclopedia of Genes and Genomes pathway
enrichment and the PANTHER pathway.6e results of the analysis show that the function of HOXBsmight be associated with the
Wnt pathway and that HOXB5/6/8/9 was coexpressed with multiple Wnt pathway classical genes and proteins, such as MYC,
CTNNB, Cyclin D1 (CCND1), and tumor protein P53 (TP53), which further confirms that HOXBs inhibit the growth of renal
carcinoma cells through the Wnt signaling pathway. In conclusion, our analysis of the family of HOXBs and their molecular
mechanism may provide a theoretical basis for further research.

1. Introduction

Morbidity due to renal carcinoma is the third most
common among urinary tumors [1] and increases annually.
It is higher in males than in females [2]. 6e onset of renal
carcinoma is unremarkable, with no specific symptoms and
signs in the early stage, thus making an early diagnosis
difficult. Moreover, metastases occur in approximately
20–30% of patients at the time of diagnosis. Conventional
treatment methods for metastatic renal carcinoma have
reportedly poor outcomes [3, 4]. Recently, a number of new
methods have been introduced, such as targeted therapy
and immunotherapy. Despite their effectiveness, these still
have limitations. 6e administration of drugs gradually

increases clinical drug resistance [2, 3]. 6erefore, new
indicators for clinical diagnosis and prognosis and thera-
peutic targets for renal cell carcinoma are urgently needed.
On the etiology and pathogenesis of tumors, Reya and
Clevers [5] concluded that tumors may result from ab-
normal organogenesis as DNA methylation could regulate
the opening and closing of gene expression, which is as-
sociated with many diseases and physiological processes
such as tumorigenesis and embryonic development. More
interestingly, the protein encoded by HOXB acts as a
nuclear transcription factor in vertebrate embryonic de-
velopment, which codes for limb formation, regulates the
genitourinary system, and specifies species diversity in the
anterior and posterior axes of fetal bodies [6].
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At present, it is well established that the composition of
the HOXB cluster is highly conserved among all vertebrates,
and the HOXB cluster is composed of B1–B9 and B13.
HOXB genes all contain homeoboxes, with 70%–80% ho-
mology between genes. 6ey have the ability to bind DNA
and thus participate in the regulation of gene expression.
However, HOXB has different effects on each tumor species.
For example, in lung cancer, HOXB9, as a classicalWnt/TCF
signaling pathway target, can significantly improve the in-
vasion and metastatic potential of tumor cells and directly
mediate the brain metastasis of lung adenocarcinoma [7].
HOXB2 can promote the metastasis of NSCLC by regulating
the metastasis-related genes and serve as an index when
judging the prognosis of stage I lung cancer. In gastroin-
testinal cancer, there is a stage differential HOXB13 ex-
pression in esophageal cancer. 6e expression of HOXB13 is
increased in the submucosa or muscular layer, until the
cancer tissue infiltrates into the adventitia [8]. HOXB9 has a
low expression trend in gastric carcinoma.6emore inferior
expression, the lesser the differentiated degree of cancer
tissue, the earlier the lymph node metastasis, and the shorter
the OS of patients. 6erefore, the low expression of HOXB9
may be an independent risk factor for poor prognosis of
gastric carcinoma [9]. HOXB3/8/9 significantly induce co-
lorectal carcinoma of the ascending colon. In breast cancer,
HOXB7/9 could transform human mammary epithelial cells
MCF10A and induce epithelial-mesenchymal transition
(EMT).

Moreover, the high expression of HOXB9 reduces the
disease-free survival rate of patients with breast cancer,
which may be useful as an independent prognostic factor
[10, 11]. In ovarian cancer, HOXB7 can enhance cell pro-
liferation by promoting ovarian cancer cells to secrete more
bFGF. HOXB7/13 can improve the invasion and metastatic
potential of tumor cells. HOXB13 can also resist tamoxifen-
induced apoptosis of cancer cells [12] and can inhibit the
growth of prostate cancer cells through the Wnt signal
pathway and androgen receptor signal pathway [13]. In
other tumors, the functional diversity of HOXB also shows
that HOXB7 could promote the progression and metastasis
of pancreatic cancer [14]; metastasis and poor prognosis of
bladder cancer are closely associated with the ectopic ex-
pression of HOXB13 in the cytoplasm [15].

In this study, we analyzed the expression and prognosis
of HOXBs, family member molecules of ccRCCs, using data
collected from the ONCOMINE database, Human Protein
Atlas, STRING, and GSCALite. We found that expression
levels of HOXB3/5/6/8/9 were significantly lower in ccRCC
than in normal nephritic tissues. Furthermore, the expres-
sion level of the mRNA factor of HOXB2/5/6/7/8/9 in
ccRCC was significantly associated with patient prognosis,
comparatively, while that of HOXB3/4 was not. We used the
STRING website to associate 40 genes with their closely
related HOXBs. After that, we used the GSCALite to analyze
the GO and the KEGG pathway analysis on 40 genes. In the
end, we discovered that HOXBs participated in the em-
bryonic development of living organisms.

2. Materials and Methods

2.1. ONCOMINE. ONCOMINE (https://www.oncomine.
org/resource/main.html) is by far the largest cancer data-
base, with the complete cancer mutation spectrum, gene
expression database, and related clinical information, which
is conducive for discovering new biomarkers and thera-
peutic targets. 6e ONCOMINE online database is used to
analyze the mRNA expression levels of HOXBs in different
tumor tissues.

2.2. GEPIA Dataset. GEPIA (http://gepia.cancer-pku.cn/) is
a web page that integrates cancer data from 6e Cancer
Genome Atlas (TCGA) and normal tissue data from the
Genotype-Tissue Expression (GTEx) [16]. In this database,
data can be collected more simply and quickly. We analyzed
the differential expression of HOXBs in tumors, normal
tissues, and different tumor stages. P< 0.05 and |log2FC|> 1
were considered statistically significant.

2.3. �e Human Protein Atlas. 6e Human Protein Atlas
(http://www.proteinatlas.org/) provides the distribution of
human protein in human tissues and cells, using immu-
nohistochemical technology to describe the distribution and
expression of each protein in the body [17–19]. 6rough this
database, we analyzed the OS of HOXBs in ccRCC and
calculated the hazard ratio and 95% confidence interval.
P< 0.05 was considered as statistically significant.

2.4. GSCALite Website. GSCALite (http://bioinfo.life.hust.
edu.cn/web/GSCALite/) is a cancer genome analysis plat-
form [20]. 6e report provided by GSCALite includes gene
differential expression, overall survival, single nucleotide
variation, copy number variation, methylation, pathway ac-
tivity, miRNA regulation, normal tissue expression, and drug
sensitivity.We used this online tool to explore the relationship
between HOXBs and cancer pathways and finally to inves-
tigate their sensitivity to multiple anticancer drugs. P< 0.05
was regarded as statistically significant.

2.5. STRING Online Database. 6e STRING online database
(https//string-db.org/) was used to analyze the relationship
between HOXBs and screen genes that interact with HOXB
[21, 22].6roughDAVID (https//david.ncifcrf.gov/home.jsp),
we analyzed the GO, the KEGG pathway, and the PANTHER
pathway. P< 0.05 was considered for statistical significance.

2.6. cBioPortal Analysis. 6e cBioPortal for Cancer Geno-
mics (http://www.cbioportal.org/) provides molecular pro-
filing and clinical prognostic relevance for cancer genome
datasets. Using the cBioPortal online tool, we downloaded
ccRCC with 537 samples (TCGA, Provisional) and used the
CLUSTIVIS online tool for visualization. P< 0.05 was
considered statistically significant.
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3. Results

3.1. Transcriptional Levels of HOXB in Patients with RCC.
6e ONCOMINE database is a classic oncogene chip da-
tabase that integrates part of the data of the TCGA and GEO,
aids in the screening of valuable target molecules or pre-
dicting phenotypes, and provides various analysis tools. 6is
database allows visual display of analysis of cancer and
normal tissue differential expressions and coexpression
analysis and can be helpful in the analysis of drug sensitivity,
mutation, or methylation-induced changes in gene ex-
pression. In this study, we analyzed the mRNA levels of
HOXBs in tumors and normal tissue and found that the
mRNA levels of HOXB1/6/8/9 are significantly down-
regulated in renal cell carcinoma, while those of HOXB3/4/7
are upregulated in nearly all the tumors, including renal cell
carcinoma. In addition, HOXB2/7 have an obvious high
expression of mRNA in a variety of tumors (Figure 1).

3.2. Relationship between the mRNA Level of HOXBs and the
Clinicopathological Characteristics of Patients with RCC.
We used the GEPIA dataset to analyze the 10 genes of HOXB
in patients with kidney cancer. In comparison with normal
renal tissues, the expressions of HOXB3/5/6/8/9 in KRC,
HOXB5/8 in KICH, and HOXB6 in KIRP were significantly
downregulated (Figures 2(a)–2(k)). Because themorbidity of
ccRCC is as high as 75% in all types of nephritic carcinoma
[23] and HOXB shows a significant difference in ccRCC, we
decided to primarily investigate ccRCC and analyzed the
relationship between the expression of HOXBs and tumor
stage in ccRCC. Significant differences were observed in
HOXB5, HOXB6, HOXB7, and HOXB8 groups but not in
HOXB1, HOXB2, HOXB3, HOXB4, and HOXB9 groups
(Figures 3(a)–3(j)).

3.3. Difference of HOXBs Protein Levels between ccRCC and
Normal Kidney Tissues and�eir Relationship with Prognosis.
To investigate different protein levels of HOXBs in patients
with ccRCC and those with normal renal tissues, we used the
Human Protein Atlas to verify the differential expression of
HOXBs. We found that patients with a high mRNA level of
HOXB2/5/6/7/8/9 have a higher OS, but it was not signif-
icantly different from that of HOXB3/4 (Figures 4(a)–4(i)).

3.4. Interactions, Copy Number Variation, Methylation,
Cancer Potential Pathways, and Drug Sensitivity of Patients
with ccRCC. Using the STRING online database to analyze
the relationship between HOXBs, we found a close rela-
tionship between HOXB1-9 and the other genes and none
with HOXB13 (Figure 5(a)). 6e expression of HOXs in
tumor samples is significantly different from that of the
normal renal tissues [24], and there may be variations in
DNA fragments. Using the GSCALite to analyze the copy
number variation (CNV), cancer potential pathways, and
drug sensitivity, we found significant differences in the
expression of CNV among KIRC, KIRP, and KICH. In
KIRC, CNV amplification and deletion occur in a small

number of heterozygotes. CNV amplifications and deletions
occur in a large number of heterozygotes in KIRP and KICH,
respectively (Figures 5(b) and 5(d)). We also found that the
relevance between CNV andmRNA expression of HOXBs in
RCC was different. In KICH, HOXB3/4 and HOXB1 CNV
were negatively correlated to mRNA expression, while
HOXB5/7/9 CNV was positively correlated to the same
(Figure 5(c)). DNA methylation aberrance is the primary
transcriptional regulation mechanism of tumorigenesis
[25, 26].

In our study, the methylation of HOXB in KIRC and
KIRP was upregulated compared to that of normal renal
tissue. Also, in KIRC, KIRP, and KICH, the methylation of
HOXB3/5/6/8 was significantly negatively correlated to the
expression (Figures 5(e) and 5(g)). We found that the
expressions of HOXBs were different in three types of renal
cancers, but all showed an anticancer effect. Using the
GSCALite to analyze the cancer potential pathways of
HOXBs, we found that HOXB9 promotes DNA damage
response, HOXB9/13 promote cell apoptosis, HOXB6/7
suppress PI3K/AKTclassic cancer pathway, HOXB4/5/6/7/
9 suppress receptor tyrosine kinase (RTK) pathway,
HOXB3/5 promote hormone androgen receptor (AR),
HOXB3/4/5/9 suppress hormone estrogen receptor (ER),
HOXB2/6 suppress cell cycle, HOXB3/6/7/9 suppress
hormone ER, and HOXB7 suppresses RTK pathway. In-
terestingly, HOXB2/4/6 are also inducers of EMT
(Figures 5(f ) and 5(i)). In our analysis of the relationship
between HOXBs and a variety of traditional tumor drug
targets, we found that HOXB5/7/9/13 were positively
correlated to CCT036477 drug targets; HOXB7/8/9/13
were closely correlated to tretinoin, KW-2449, doxorubi-
cin, and SB-225002; and HOXB9 was positively correlated
to PX-12 drug activity. CCT036477 is a classical Wnt signal
inhibitor that inhibits the growth of various cancer cells
and the development of embryos and the expression ofWnt
target genes (Figure 5(h)).

We used diverse databases to comprehensively analyze
the expression of HOXBs and their relationship with OS.We
discovered that the mRNA levels of HOXB1/6/8/9 were
significantly downregulated in renal cell carcinoma, while
HOXB3/4/7 were upregulated in almost all tumors, in-
cluding RCC. Also, the high mRNA levels of HOXB2/5/6/7/
8/9 were predicted to have a higher OS in patients, and there
was no significant statistical difference in HOXB3/4.
6erefore, we considered that HOXB 5/6/8/9 could be used
as a potential target for ccRCC.

3.5. Coexpression of HOXBs in Patients with ccRCC. We
analyzed the HOXBs coexpression relation for ccRCC with
537 samples (TCGA, Provisional) through the cBioPortal
online tool; and we used CLUSTIVIS online tool for visu-
alization. We found a clear positive correlation between
HOXB1-9, among which HOXB5 and HOXB6 had the
strongest correlation (Figure 6(a)). 6e following showed
significant positive correlation: HOXB2 and HOXB4;
HOXB3 and HOXB4; HOXB5 and HOXB6; and HOXB6
and HOXB8 (Figure 6(b)).
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Figure 1: Comparison of the mRNA level of HOXBs in different tumor tissues by the ONCOMINE database. Among them, red represents
high expression and blue represents low expression.
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Figure 2: Continued.
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Figure 2: Expression of HOXBs in renal carcinoma (GEPIA). (a) 6e differential expression of HOXBs between normal kidney and KIRC,
KIRP, and KICH using the GEPIA database. (b–k) Scatterplot of the differential expression of HOXBs between normal kidney and KIRC
(kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), and KICH (kidney chromophobe) using the GEPIA
database (histogram). GEPIA, expression profile analysis.
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Figure 3: 6e differential expression of HOXBs in different stages of renal cell carcinoma using GEPIA database (a–j).
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Figure 4: Continued.
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3.6. Predicting theFunctionandPathways ofHOXBsand�eir
Adjacent Gene Alteration in Patients with ccRCC.
6rough the STRING website, we linked 40 genes that are
closely associated with HOXBs. Studying the genes’ inter-
action, we constructed a network of 10 HOXBs and 40 genes
with their frequently altered neighbor genes (Figure 7(a))
and then analyzed the enrichment of GO and KEGG and the
PANTHER pathway through DAVID websites; the data
were visualized through the R language.

6rough GO analysis, we predicted, identified, and
validated the function of the target gene from bio-
informatics and expression system. We found that the
change of HOXB in ccRCC has a significant regulatory
effect on GO:0003002 (regionalization) (anterior/poste-
rior) (pattern formation) and GO:0048706 (embryonic
skeletal system development), which is beneficial to prove
that HOXBs are associated with the development of bio-
logical embryos. At the same time, we found that GO:

0043565 (sequence-specific DNA binding), GO:0030528
(transcription regulatory activity), GO:0003700 (tran-
scription factor activity), and GO:0003677 (DNA biding)
were also significantly controlled by HOXBs. Moreover, the
PANTHER pathway analysis was visualized using the R
language. We discovered that the overall genes were closely
associated with TP53 and MEIS1, but, interestingly,
HOXBs were also closely associated with c-JUN, PBX1, and
CCNP1 (Figures 7(b)–7(d)).

6e results analyzed by KEGG show that three pathways
were associated with the change of HOXB function in
ccRCC: Wnt signaling, colorectal cancer, and RNA degra-
dation (Figure 7(e)). In these pathways, the Wnt signaling
pathway is mainly responsible for the occurrence and de-
velopment of ccRCC (Figure 8). Simultaneously, it is also
confirmed that HOXBs are closely associated with cytokine
transcription (Figures 7(b)–7(d)). 6is finding is consistent
with Giampaolo A’s findings [27].
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Figure 4: Using Human Protein Atlas to investigate the relationship between the mRNA of HOXBs and the prognosis (a–i). 6e expression
of HOXB1 was too low to be analyzed.
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Figure 7: Continued.
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3.7. PotentialMechanisms and Signaling Pathways of HOXBs.
It is found that CCND1, CCNDBP1, MYCBP2, MYC,
CTNNB1, β-Catenin, and TP53 are the classical proteins and
genes of the Wnt pathway [28, 29]. We analyzed protein-
protein coexpression on the HOXBs and Wnt pathway.
Using the cBioPortal database, we discovered that HOXB5 is
negatively associated with CCNDBP1 and MYCBP2;
HOXB6 is negatively correlated with CCNDBP1 and
MYCBP2; HOXB8 is negatively correlated with CCNDBP1,
MYCBP2, and MYC; HOXB9 is negatively correlated with
CCNDBP1, MYCBP2, and CTNNB1 and positively corre-
lated with TP53 (Figures 9(a)–9(d)). In our study, HOXB5/
6/8/9 can be used as a potential treatment target for ccRCC.

4. Discussion

Although we have partly confirmed the effect of HOXBs in
the development and prognosis of various cancers [30, 31],
there has not been an in-depth study on HOXBs in ccRCC.
Studies have shown that bioinformatics analysis is a method
that can help us quickly find biomarkers in the development
of diseases [32–35]. Our study deeply investigates the ex-
pression and prognosis of multiple HOXBs in ccRCC. We
hope that our research will help discover the effect of
HOXBs, improving the treatment design and accuracy of
prediction for ccRCC.

In this study, we examined the transcriptional and
prognosis data of HOXBs in patients with ccRCC from the
ONCOMINE database, Human Protein Atlas, and STRING
website.We discovered that the expression levels of HOXB3/
5/6/8/9 were significantly lower in ccRCC than in normal
nephritic tissues. Furthermore, the expression level of
mRNA factor of HOXB2/5/6/7/8/9 in ccRCC was related
considerably to patient prognosis. A high level of the mRNA
factor had a better OS in patients, comparatively, while
HOXB3/4 did not. We studied the GSCALite website’s
analysis that the methylation of HOXB3/5/6/8 in ccRCC was
significantly negatively correlated with gene expression.

While HOXB5/9 were positively correlated with the
CCT036477 drug target, CCT036477 was the classical Wnt
signal inhibitor; and DNA abnormal methylation is one of
the mechanisms of tumorigenesis. 6erefore, our study
implied that HOXB5/6/8/9 are potential therapeutic targets
for patients with ccRCC. We examined the function of
enrichment data of HOXBs in patients with ccRCC from
KEGG enrichment and the PANTHER pathway. We also
found that the function of HOXBs might be associated with
the Wnt pathway. In coexpression analysis, we discovered
that HOXB5/6/8/9 were coexpressed with multiple Wnt
pathway classical genes and proteins, such asMYC, CTNNB,
CCND1, and TP53, which further confirms that HOXBs
inhibit the growth of renal carcinoma cells through the Wnt
signaling pathway.

In conclusion, our systematic analysis of all members of
HOXBs and their underlying molecular mechanisms may
provide a basis for future research. Wnt/β-Catenin signaling
pathway activated EMT [36] to promote the binding of
β-Catenin to the nucleus and T cell-specific transcription
factor/lymphoenhancer (TCF/LEF) to regulate the expres-
sion of E-cadherin, the characteristic factor of EMT, and
then affect the occurrence of EMT, which plays a blocking
role in the process of tumor invasion andmigration. In other
studies, it was found that HOXB5 protein could bind with its
cofactor PBX1 to induce apoptosis, thus delaying tumor
progression [37]. Our research found that HOXB5 inhibited
the key genes CCND1 and MYC in the Wnt/β-Catenin
signaling pathway, inhibited the tumor’s occurrence, and
inhibited the classical cancer pathway RTK pathway to
inhibit cancer and improve OS. However, the expression of
HOXB5 in different stages of RCC is significantly different,
which suggests that HOXB5 plays a positive role in the early
stage of RCC. We discovered that reducing the expression of
HOXB5 in the late stage of ccRCC is more conducive to
reducing the metastasis of RCC. 6is may be a direction for
further research. We discovered that HOXB5 and HOXB6
are most closely related in HOXBs, similar to the regulatory
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Figure 7: (a) Constructing a network of HOXB factors and their adjacent gene alteration through the STRING website. (b–d) Using the
Gene Ontology analysis by DAVID tools, we predicted the functions of HOXBs and genes associated with HOXBs alterations and then
visualized them through R language. (e)6rough the analysis of KEGG and PANTHER using DAVID tools, predict the functions of HOXBs
and genes associated with HOXB alterations and visualize them using the R language.
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Figure 9: Continued.
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mechanism of HOXB5. HOXB6 is negatively associated with
MYC and CCND1. MYC and CCND1 are the critical genes
in the Wnt signaling pathway and inhibit the RTK pathway,
thus inhibiting independent downstream signaling pathways
such as Ras/ERK or P13-K/Akt signaling pathway and thus
inhibiting cell cycle and proliferation [38].

Interestingly, HOXB6 inhibited Wnt/β-Catenin signal
pathway activation and enhanced EMT. It can be concluded
that HOXB6 can inhibit cell proliferation but cannot control
tumor invasion and migration. In this study, we found that
the expression of HOXB8 in normal kidney tissue was
significantly different from that in ccRCC. 6e low level of
HOXB8 reduced the OS of ccRCC; however, we found that
HOXB8 may also control tumor invasion by inhibiting
CCND1 and MYC in the Wnt signaling pathway. However,
there is no strong evidence.

We found that the expression of HOXB9 in renal car-
cinoma patients was lower than that in normal people.
Besides, based on the Human Protein Atlas analysis, we
discovered that the higher the expression of HOXB9 mRNA,
the higher the OS. At the same time, HOXB9 had a sig-
nificant negative correlation with MYC, CTNNB1, CCND1,

and their expression proteins in the Wnt signaling pathway.
We speculated that HOXB9 might block the Wnt signaling
pathway and inhibit tumor growth through MYC and
CTNNB1. 6rough the integration and transmission of
information inside and outside the cell and then through the
key genes of regulatory points, the cell decides whether to
continue to divide, differentiate, undergo apoptosis, or enter
the G0 stage to repair damaged DNA. 6ere are many
regulatory points of the cell cycle in the process from G1 to
S. We found that HOXB9 was negatively correlated with
CCND1. It may inhibit the cell cycle from the G1 phase to
the S phase, inhibit transcription, regulate cell mitosis, and
inhibit cell proliferation and immortalization by inhibiting
the CCND1 coding protein Cyclin D1 binding cyclin-de-
pendent kinase CDK4 [39]. At the same time, HOXB9
negatively regulates RTK, thus inhibiting the proliferation of
cancer cells. In addition to inhibiting cancer cell prolifer-
ation, HOXB9 can activate TP53, regulate expression,
promote cell apoptosis, inhibit growth, block the cell cycle,
promote cell differentiation and DNA repair, maintain cell
genome stability, and inhibit tumor angiogenesis [40]. Some
studies have shown that androgen receptors can promote the
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Figure 9: 6rough the cBioPortal website, we investigated the coexpression of the Wnt pathway classical protein with genes that have
significance in expression and survival (a–d).
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metastasis of renal cell carcinoma. At the same time, HOXB9
can reduce the androgen receptor and promote the ex-
pression of cycHIAT1 by regulating the expression of the
host (HIAT1) at the transcription level. As a result, regu-
lating the expression of miR-195-5p/29A-3P/29C-3P can
affect the migration and invasion of renal cell carcinoma
[41]. In this study, we found that the inhibition of HOXB9
may be associated with the above pathways, and the above
mechanisms will be verified in our future experiments.

6ere is no significant difference in expression of
HOXB1/2/3/4/7 between normal kidney tissue and renal
clear cell carcinoma in the current study. 6erefore, we need
to increase the sample size further or carry out experiments
to verify the above results. Our research shows that the level
of HOXB13 mRNA in ccRCC and renal tissue is almost no
expression. However, HOXB13 is associated with various
renal carcinoma targets involved in the Wnt pathway but
combined with the introduction of HOXB13 through the
Wnt signal pathway and the androgen receptor signal
pathway to inhibit the growth of prostate cancer cells. We
consider that although HOXB13 participates in the Wnt
pathway, it may be different from the receptor of renal
carcinoma. At the same time, HOXB13 is not significantly
associated with other genes in the HOXB genome, so we
speculate that HOXB13 may not be associated with renal
cells’ progress. At present, there are few studies onHOXBs in
kidney cancer. We systematically analyze all members of
HOXBs and their potential mechanisms. Our study may be
used as a foundation for future research.

5. Conclusions

In summary, we discovered that HOXB5/6/8/9 are potential
targets of precision therapy for patients with ccRCC. 6e
role of HOXB5/6/8/9 in ccRCC may be associated with the
Wnt pathway. However, our conclusion needs to be verified
by further experiments, as there are few studies on HOXBs
in kidney cancer at present. We have conducted a com-
prehensive analysis of all members of HOXBs and studied
their molecular mechanism, thereby laying a foundation for
future studies.
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