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Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor immune escape because of its remarkable immuno-
suppressive effect. However, the mechanism ofMDSCsmigrated into tumor microenvironment remains unclear. In this study, we
demonstrated the recruitment of MDSCs can be promoted by exosomes derived from prostate cancer cells, which could
upregulate chemokine (CXC motif ) receptor 4 (CXCR4) via the TLR2/NF-κB signalling pathway. Flow cytometry detected that
the percentage of MDSCs in the mice spleen and tumor tissue was significantly increased after injection with exosomes via mouse
tail vein. Transwell chemotaxis assay showed the recruitment ofMDSCs toward the lower chamber was enhanced after stimulation
with exosomes, and the migration ability could be inhibited by AMD3100 (a CXCR4 specific inhibitor) both in vivo and in vitro.
Additionally, Western blot and flow cytometry verified a remarkably increase of CXCR4 in MDSCs after incubation with
exosomes; meanwhile, the protein level of TLR2 and activation of NF-κB were also strengthened obviously. Nevertheless, after
blocking TLR2 by C29 (a TLR2-specific inhibitor), the expression of p-p65 and CXCR4, which were hypothesized as the
downstream target of TLR2, was prominently reduced. In conclusion, prostate cancer-derived exosomes could reinforce CXCR4
expression in MDSCs through the TLR2/NF-κB signalling pathway, eventually promoting migration of MDSCs into tumor
microenvironment in a CXCR4-CXCL12 axis-dependent manner.

1. Introduction

As one of the most prevalent cancers worldwide [1], prostate
cancer (PCa) in the early stage does not emerge obvious
symptoms, consequently evolving into castration-resistant
PCa (CRPC) along with local or distant metastasis [2]. Many
studies have shown that tumor-associated immune cells are
important in the development of prostate cancer [3, 4];
however, the mechanisms by which immunosuppression
cells migrated to tumor microenvironment are still unclear.

As a microparticle immune carrier, exosomes have been
found to be involved in distant organs and are important in
antitumor immunity. -ey can transmit bioactive compo-
nents from plenty of cells such as cancer cells, immune cells,

and fibroblast cells, as well as mesenchymal cells [5] into the
recipient cells. -ese diameters among 40–100 nm vesicles
have been widely reported in promoting cancer development
in respects of cell proliferation, migration, metastasis, an-
giogenesis, and chemoresistance [5, 6]. In view of their dis-
tinguished efficacy in various cancer, they were also
considered as vehicles of potential biomarkers in cancer di-
agnosis [7, 8]. Recently, how exosomes are released by cancer
cells in the tumormicroenvironment and uptaken by different
immune cell types, thereby, accelerating immune evasion and
affecting tumor development [9] is probed in depth.

Myeloid-derived suppressor cells (MDSCs) contained
highly heterogeneous cells derived from bone marrow im-
mature myeloid progenitors. -ey are generally identified to
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be Gr-1+CD11b+ in mice and CD11b+CD33+ in human. In
normal mice, MDSCs range usually 20–30% in the bone
marrow (BM) and 2–4% in the spleen [10]. Two main types
of MDSCs have been identified as granulocytic (G-MDSC)
represented by CD11b+Gr-1hiLy-6G+Ly-6Clow and mono-
cytic (M-MDSC) represented by CD11b+Gr-1hiLy-6G-Ly-
6Chi [11–13]. In many studies, MDSCs have different im-
munosuppressive pathways to facilitate tumor development
such as suppressing effector T (Teff cells) cells and inducing
regulatory T (Treg) cells or regulatory B cells under certain
conditions [10, 12], and some tumor-derived factors such as
CSF-1, IL-6, IL-10, VEGF, and GM-CSF could influence
recruitment of the MSCs at tumor site [14]. Another study
has shown that T cell dysfunction could be inducted by
MDSC through producing TGF-β, ROS, L-arginine meta-
bolism, and peroxynitrites [15]. Moreover, MDSCs con-
tribute to tumor development and vascularization through
enhancingMMP9 and differentiating into tumor endothelial
cells [16].

CXC motif chemokine ligand 12 (CXCL12) is a che-
mokine produced constitutively by various types of tumor
cells and stromal cells [17, 18]. CXCL12/CXCR4 inflam-
matory signalling may affect the efficient chemotaxis
function of inflammatory cells such as
neutrophils, lymphocytes, and monocytes [19, 20]. Besides,
it also accumulated immunosuppression cells such as Treg
cells, dendritic cells, and MDSCs to tumor microenviron-
ment to exert their immunosuppression and finally promote
tumor development [21–23].

-e present study aimed at investigating the importance
of exosomes in upregulating CXCR4 expression to influence
the migration of MDSCs and confirming the underlying
mechanism. We observed a reinforcement of phosphory-
lation NF-κB and TLR2 in exosome-incubated MDSCs.
Notably, we demonstrated a latent mechanism that exo-
somes could heighten the activation of the TLR2/NF-κB
signalling pathway, resulting in the augment of CXCR4
expression and gathering of MDSCs into tumor
microenvironment.

2. Materials and Methods

2.1. Cell Culture. Cell line of mouse PCa, RM-1, was bought
from the Cell Bank of Chinese Academy of Sciences, and the
cells were cultured in RMPI 1640 medium (Gibco; -ermo
Fisher Scientific, Inc. Waltham, MA, USA) containing 10%
FBS (Gibco; -ermo Fisher Scientific, Inc.), 100U/ml
penicillin, and 100mg/ml streptomycin (Gibco; -ermo
Fisher Scientific, Inc.) at 37°C in a 5% CO2 condition.

2.2. Exosomes Isolation. -e supernatant of RM-1 cells was
collected after culture with exosomes-free FBS (the bovine
exosomes were depleted through centrifugation at
100,000× g at 4°C for 2 h) for 48 h. -e media was centri-
fuged at 300× g for 10min, 2,000× g for 20min, and
10,000× g for 30min (Ultracentrifuge-ermo Electron LED
GmbH, Germany). 100KDa molecular weight cutoff
(MWCO) centrifugal filter (EMD Millipore, Billerica, MA,

USA) was used to enrich exosomes by ultrafiltration at
1,000× g for 30mins; then, preenrichment of exosomes
media was ultracentrifuged at 100,000× g for 90min. (Ul-
tracentrifuge CP100WX; Hitachi Koki Himac, NuAire,
Tokyo, Japan). After resuspension, ultracentrifugation, and
resuspension, exosome solution passed through a 0.22 μm
filter and stored at −80°C. -e exosome concentration was
measured with the BCA protein assay kit (Beyotime Institute
of Biotechnology, Shanghai, China).

2.3. Electron Microscopy and Biomarkers Analysis.
Suspension of exosomes pellet was mounted onto cooper
grids coated with carbon through floating the droplet on the
grid for 5min. Excessive liquid was removed with a piece of
dry filter paper. -en, the cooper grid was washed 3 times in
PBS and stained with 2% phosphotungstic acid (Servicebio,
China) for 2min. Samples were visualized under a HT7700
electron microscopy (Hitachi, Japan) to observe the form of
exosomes. Biomarkers of exosomes included HSP70,
TSG101, and CD63 that were examined by Western blot.
20 µg of exosomes was fractionated by 10%–15% SDS-PAGE
and transferred to PVDF membranes (Millipore). -e
membranes were blocked with 5% skimmilk in TBS-T buffer
for 1 h at room temperature. Rabbit anti-mouse monoclonal
antibodies of HSP70, TSG101, and CD63 (Abcam, USA)
were diluted to 1 :1000 and incubated at 4°C overnight. -e
blots were incubated with the appropriate horseradish
peroxidase- (HRP) tagged goat anti-rabbit secondary anti-
bodies (Abcam, USA) (diluted with the ratio of 1 : 5,000) for
30min, and the labeled proteins were detected by an Od-
yssey Infrared System (LI-COR Bioscience, Lincoln, NE,
USA).

2.4. MDSCs Isolation. Erythrocyte-free single cell suspen-
sions were obtained by grinding spleens on a 200 mesh
strainer and incubated with red blood cell lysis buffer
(Beyotime Institute of Biotechnology) at 4°C for 5min,
according to Xu et al. [24]. Cells were incubated with
magnetic beads (Miltenyi Biotec, Germany) and then loaded
onto a magnetic column to gain CD11b+Gr-1+ MDSCs
(including Gr-1+Ly-6G+ and Gr-1+Ly-6G- MDSCs), fol-
lowing the instruction of the manufacturer [S1].

2.5. Transwell Chemotaxis Assay. MDSCs were divided into
four treatment groups by coculturing with PBS, exosomes,
exosomes plus AMD 3100 (MedChemExpress, USA) of
10 μg/500 μl, and AMD 3100 for 24 h, respectively. -en,
MDSCs were harvested, adjusted to a concentration of
5×105/200 μl RPMI 1640, added into the upper chambers,
and divided into four different treatment groups: PBS,
exosomes, exosomes plus AMD3100, and AMD3100.
CXCL12 was added in the lower chamber and cocultured for
24 h. 500 μl RPMI 1640 with 100 ng CXCL12 (Abcam, USA)
was added into the lower chambers and then incubated at
37°C for 24 h, according to Liu et al. [25]. -e cells migrated
to the lower surface had been fixed with 4% paraformal-
dehyde for 15min and stained with 0.1% crystal violet for
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10min. Cells were counted and averaged through the se-
lection of 5 random fields/well under a light microscope
(Nikon, Japan).

2.6. Tumor Model. 2×106 RM-1 cells were resuspended in
200 μl PBS and injected subcutaneously in the right/left back
of male C57/B6 mice (6–8 weeks). Tumor size was detected
by the caliper every two days and calculated based on for-
mula V � π/6 × L × W2 (L� length; W�width). Two weeks
later, the mice were divided into four groups (6 mice in each
group), which were treated with PBS, exosomes, AMD 3100,
and AMD 3100 + exosomes, respectively. -en, mice were
injected via tail vein three times per week for one week. One
day after the final injection, overdose inhalation anesthesia
(2-3% isoflurane) was used before euthanasia with carbon
dioxide (CO2); then, tumor tissues were isolated for further
analysis. -e maximum diameter of the tumor did not
exceed 2 cm. -is study was approved by the Ethics Com-
mittee of ChongqingMedical University, Chongqing, China.

2.7. Flow Cytometry. Erythrocyte-free single cell suspen-
sions from the spleen and tumor were incubated with anti-
CD11b-APC (Biolegend, USA) and anti-Gr-1-PE (Biol-
egend, USA) antibodies at 4°C for 15min in dark. After
washed in buffer and centrifuged, the cell precipitation was
resuspended. -e percentage of CD11b+ Gr-1+ double-
positive MDSCs was analyzed by flow cytometry (Beckman
Coulter, Pasadena, CA, USA). To determine the CXCR4-
positive expression rate in the CD11b+ Gr-1+ MDSCs group,
normal mice were divided into two groups, which were
treated with exosomes and PBS, respectively. -e single cell
suspension from the bone marrow and spleen of two groups
were stained by anti-CD11b-FITC (Biolegend, USA), anti-
Gr-1-PE (Biolegend, USA), and anti-CD184-APC (Biol-
egend, USA) antibodies and then analyzed by flow
cytometry.

2.8. Cocultured andWestern Blot. In order to verify whether
exosomes could increase the expression of CXCR4 on the
surface of MDSCs through the TLR2/NF-κB signalling
pathway, MDSCs were incubated with exosomes (20 μg/ml)
or PBS, with or without TLR2-specific inhibitor C29 (50 μM,
HY-100461, MedChemExpress, USA), cultured in RPMI
1640 with GM-SF (10 ng/ml, Peprotech EC, USA) for 24 h,
and then, the cells were obtained. -e expression levels of
CXCR4, p65, p-p65, and TLR2 in MDSCs were detected by
Western blot as described before. -e antibodies CXCR4,
p65, p-p65, and TLR2 were purchased from Abcam, USA.

2.9. Statistics. All the experiments had been repeated for 3
times, and these data were analyzed by GraphPad 10. Stu-
dent’s t-test was carried out for comparison between two
groups, and comparison in three or more groups was
conducted by one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s multiple comparison tests. P< 0.05 was
considered as significant.

3. Results

3.1. Identification of Exosomes. Exosomes were isolated and
purified from the supernatants of RM-1 cells by ultrafil-
tration centrifugation. Western blot showed the expressions
of CD63, HSP70, and TSG101 were higher in the exosomes
group than the exosomes-depleted supernatants set as the
control group (Figure 1(a)). In addition, electron micros-
copy was applied on observing the pallet-like structure of
lipid bilayer vesicles with the similar size, and the average
diameter was among 30–80 nm (Figure 1(b)).

3.2.�e Percentages ofMDSCs in the Spleen and Tumor Tissue
Were Increased in Tumor-Bearing Mice with the Time.
-e tumor was formed subcutaneously 10 days after in-
jected; tumor size was tested by calipers every two days.
-en, mice were executed at the time points of 14 days, 21
days, and 28 days, respectively. -e percentage of MDSCs in
the spleen and tumor tissue was investigated by flow
cytometry. -e results showed that with the prolongation of
tumor-bearing time, the percentage of MDSCs accumulated
into the tumor tissue (Figures 2(a) and 2(c)) and spleen
(Figures 2(b) and 2(c)) increased following the tumor
growth, and the tumor growth curve has shown the positive
correlation with the increasing trend of MDSCs
(Figures 2(d)). Tumor size was detected by the caliper every
two days and calculated based on formula V � π/6 × L × W2

(L� length; W�width). Percentage of MDSCs in normal
mouse spleens was set as the control group. -is phe-
nomenon might suggest that the migration of MDSCs into
periphery and tumor microenvironment plays an important
role in the development of tumor.

3.3. Exosomes Could Induce MDSCs Expansion and Migra-
tion, and the Recruitment Could be Inhibited by CXCR4 In-
hibitor AMD3100 Both In Vivo and In Vitro. After injecting
exosomes to normal mice via the tail vein 3 times per week
for 2 weeks, the bone marrow cells and splenocytes were
obtained one day after the final injection. Flow cytometry
was applied on detecting the proportion of CD11b+ Gr-1+
MDSCs. -e result showed the proportion of MDSCs in BM
(Figures 3(a) and 3(b)) and spleen (Figures 3(c) and 3(d))
was stronger, increased in the exosome group than the PBS
group.

In tumor-bearing mice models, compared with the PBS
group, the exosome group showed obvious recruitment of
MDSCs in tumor site. Moreover, after injected with or
without AMD3100, the group of exosomes plus AMD3100
showed the percentage of MDSCs significantly decreased
more than the only exosomes group (Figures 3(e) and 3(f )).
It might suggest that the accumulation effect of MDSCs
induced by exosomes could be blocked by AMD3100 in vivo.

Transwell chemotaxis assay was executed to study
whether the chemotaxis effects of CXCL12 on exosome-
stimulated MDSCs can be enhanced in vitro. -e results
showed that the exosomes group could accumulate more
MDSCs into the lower chamber compared with the PBS
group, and exosomes plus the AMD3100 group showed the

Journal of Oncology 3



decreased migration effect of MDSCs than the only exo-
somes group (Figures 3(g) and 3(h)), which was consistent
with the in vivo experiment.

Taken together, these results indicated that accumulation
of MDSCs could be induced by exosomes, and after blocking
the interaction of CXCL12 and CXCR4, the migration effect
of MDSCs induced by exosomes could be suppressed by
AMD3100 both in vivo and in vitro. It was believed that
exosomes can influence the recruitment of MDSCs, which
interfered by CXCR4.

3.4. Exosomes Upregulated the CXCR4 Expression of MDSCs
Both In Vivo and In Vitro, Which Mediated by TLR2/NF-κB
Signal Pathway. To confirm whether exosomes could upre-
gulate CXCR4 expression in MDSCs in vitro, MDSCs were
cocultured with exosomes or PBS for 24h. Western blot
showed that MDSCs cocultured with exosomes expressed
higher CXCR4 than the PBS group (Figures 4(a) and 4(b)).
Next, exosomes were injected into mice tail vein. Flow
cytometry showed that the expression of CXCR4 in the exo-
somes group was significantly increased than that of the PBS

group both in bone marrow (Figures 4(c) and 4(d)) and spleen
(Figures 4(c) and 4(e)). -ese data demonstrated that exo-
somes could upregulate the CXCR4 expression inMDSCs both
in vivo and in vitro.

Subsequently, after cocultured with exosomes for 24 h,
MDSCs were collected to detect the expression level of
TLR2, phosphorylation of NF-κB (p-p65), NF-κB (p65),
and CXCR4.-eWestern blot showed that the engagement
of TLR2 (Figures 4(f ) and 4(g)) in MDSCs was significantly
increased in the exosomes group compared with the PBS
group and remarkably decreased by its specific inhibitor
C29 (50 μM) blocked for 24 h, while the expression ten-
dency of p-p65 (Figure 4(i)) and CXCR4 (Figure 4(h))
exhibited similar results with TLR2. It confirmed that
exosomes could act as an agonist of TLR2 and enhanced the
expression of other two proteins; then, they were notably
reduced right after the decreasing TLR2 blocked by C29,
which might indicate that NF-κB and CXCR4 are the
downstream targets of TLR2 in the signalling pathway.
Taken together, it was speculated that the upregulation of
CXCR4 inMDSCs were mediated by exosomes through the
TLR2/NF-κB pathway.
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Figure 1: Identification of exosomes derived from RM-1. (a) Biomarkers CD63, HSP70, and TSG101 expression in exosomes detected by
Western blot. Exosomes-depleted supernatant was set as the control group. (b) Purified exosomes observed by electron microscopy after
ultrafiltration centrifugation; result showed exosomal pallet-like lipid bilayer vesicles and the average diameter was among 30–80 nm. -e
scale bar is 100 nm.
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Figure 3: Exosomes induced MDSCs expansion and migration. -e recruitment could be inhibited by AMD3100 both in vivo and in vitro.
After injecting exosomes to normal mice via the tail vein 3 times per week for 2 weeks, the percentage of MDSCs in the BM ((a), (b)) and
spleen ((c), (d)) was examined by flow cytometry. ((e), (f )) -e percentage of MDSCs in tumor tissue of PBS, exosomes, exosomes plus
AMD3100, and AMD3100 treatment groups measured by flow cytometry, respectively. ((g), (h)) In transwell chemotaxis assay, MDSCs
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microscope to detect the chemotaxis effect of CXCL12 to MDSCs. ∗P< 0.05 and ∗∗P< 0.01 compared with the PBS group.
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4. Discussion

Recent studies have authenticated exosome as the carrier
that includes a plenty of active biology competents which
could achieve the crosstalk between tumor cells and immune
cells. Exosomes play a dual role in cancer progression. On
the one hand, they could modulate antigen presentation and
immune activation and provide an effective antitumor
immune response. For example, the exosomes enriched with
Hsp70 can stimulate -1-immune responses and elevate
production of IFN-α and IgG2 in murine models [26];
exosomes with more HSP70 and MHC-I can induce DC
maturation and strengthen the immune response [27]. On
the other hand, exosomes have recently gained attention in
promoting tumor development, especially in cancer immune
surveillance and tumor escape responses. Exosomes

facilitated angiogenesis [28], directly suppressed cytotoxic
T lymphocytes and NK cells’ antitumor responses, induced
activation of immune suppressor cell subsets, and led to loss
of tumor immune surveillance [29]. Moreover, another
study reported that murine TS/A and 4T-1 breast tumor cell-
derived exosomes induced MDSC morphology and activity
in bone marrow myeloid cells (BMMCs), which caused
tumor development and growth to increase concomitantly
[30]. Consistent with these studies, our results indicated that
treatment of mouse prostate cancer-derived exosomes no-
ticeably enhanced the expansion of MDSCs in the bone
marrow and recruitment to the spleen and tumor
microenvironment.

Chemokine factors secreted from tumor and mesen-
chymal cells could form the concentration gradient to recruit
white cells, andMDSCs are the important parts of them [31].
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Figure 4: CXCR4 expression was increased in MDSCs treated with exosomes both in vivo and vitro, which mediated by activating NF-κB
and engaging TLR2. (a), (b) MDSCs cocultured with exosomes for 24 h and the expression of CXCR4 in MDSCs detected by Western blot.
Exosomes and PBS 20 ug were injected into normal mice via the tail vein 3 times per week for 2 weeks, respectively; single cell suspensions
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Recent research has shown that the CXCL12 expression level
in prostate cancer was obviously higher than that in benign
prostatic hyperplasia tissue [32]. -erefore, CXCL12 in the
microenvironment of prostate cancer can recruit white
blood cells expressing the corresponding receptor. In ad-
dition, CXCR4 is expressed extensively with high levels in all
kinds of immune cells, including MDSCs, NK cells, and
T cells [33]. -us, it was supposed that, by affecting the
CXCL12-CXCR4 chemotactic pathway, MDSCs could
achieve the changes in migration capacity. Our data con-
formed to the previous work, indicating that compared with
the PBS group, the exosome group showed significantly
increased migration of MDSCs, and the MDSCs recruitment
caused by exosomes could be suppressed by AMD3100 both
in vivo and in vitro. In this article, it was demonstrated that
exosomes upregulated CXCR4 expression in MDSCs, in-
dicating the function of CXCL12-CXCR4 axis in promoting
the attraction and retention of MDSCs into the tumor
microenvironment. Additionally, the CXCL12-CXCR4
chemotactic pathway could also limit tumor growth through
reducing tumor angiogenesis [34, 35].

Recent reports showed that HSP70 uses both TLR2 and
TLR4 for transducing proinflammatory cytokine production
through the MyD88/NF-κB signal pathway [36]. Our study
also illustrated that Hsp70 was highly expressed in exosomes
as biomarkers on its outer surface. TLR2 can recognize
different types of deoxyadenosine, including HSP family
proteins, and another study recognize that NK cells
expressing TLR2 can receive the stimulation of exosomes in
multiple myeloma [37] that also confirmed this view.

Moreover, another finding indicated that Hsp72 located on
the tumor exosomes surface can engage TLR2 expressed on
MDSCs [38]. Our findings are similar with these results that
exosomes coincubated with MDSCs induced TLR2 ex-
pression, indicating that the internalization of exosomes by
MDSCs may be via the Hsp70 membrane-bound signal
pathway.

Many previous research studies demonstrated that NF-
κB is one of the main pathways triggered by TLRs, and it is a
transcription factor implicated in activation of several cy-
tokine genes [39]. It was reported that genetic ablation of
TLR2 in macrophages could abolish the NF-κB activation
effect stimulated by breast cancer-derived exosomes [40]. In
our study, the evidence that exosomes which could enhance
the activation of NF-κB in MDSCs was also provided,
whereas, preincubated with TLR2 inhibitor C29, the
phosphorylation of NF-κB (p-p65) were obviously de-
creased, and the expression of CXCR4 showed a similar
trend with p-p65. Consistent with these findings, our ex-
periment indicated that tumor derived exosomes could
upregulate CXCR4 expression, putatively by increasing
phosphorylation of NF-κB, causing the expansion and mi-
gration of MDSCs.

In conclusion, new data were provided herein to support
the hypothesis that exosomes secreted from prostate cancer
could upregulate the expression of CXCR4 in MDSCs,
putatively by increasing engagement of TLR2 and phos-
phorylation of NF-κB, resulting in MDSCs accumulation
into tumor microenvironment (Figure 5). In addition, the
findings in this study also illustrated the possibility for
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TSG101
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Figure 5: Schematic diagram of all the results.
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CXCR4 to be a potential therapeutic target for treating
prostate cancer, and inhibiting exosomal CXCR4 secretion
may be a novel therapeutic against tumor development in
the initial stage of prostate cancer.

Exosomes enriched with HSP70 were secreted from
prostate cancer cells, inducing the engagement of TLR2 and
phosphorylation of NF-κB, resulting in upregulating ex-
pression of CXCR4 in MDSCs and eventually leading to the
accumulation of MDSCs into tumor microenvironment
(TME).
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