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Background. +e Ron receptor tyrosine kinase (RON) can act as a protooncogene and may play a prominent role in the initiation
and development of lung cancer. microRNAs (miRNA) are master regulators of gene expression through direct or indirect
regulation, and impact all aspects of cell biology.Methods. Nonsmall-cell lung cancer (NSCLC) samples and small-cell lung cancer
(SCLC) were stratified based on RON expression to identify miRNA profiles associated with RON expression levels, differentially
expressed miRNA regulated by RON were screened out, and their biological behavior was analyzed. Results. miRNA expression
was most significantly affected by cancer type, and we found 85 miRNAs that were significantly differentially expressed between
NSCLC and SCLC.+ere were 46 miRNAs differentially expressed between high RON expressing NSCLC compared to low RON
expressing NSCLC. Biological processes and pathways found to be significantly influenced by RON expression included epithelial-
mesenchymal transition (EMT) and activation of the PI3K-Akt and MAPK signaling pathways. Conclusions. +ese data may
provide the basis for a novel strategy to characterize lung cancer by RON expression and microRNA genotyping.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths in
the world, and mutations and deregulation of many pro-
teins and pathways, including EGFR, ALK, ROS1, and
MET, play a significant role in lung cancer occurrence and
development [1, 2]. Better identification and utilization of
these disease-related biomarkers could lead to improve-
ment in precision treatment of lung cancer, ultimately
reducing disease incidence, lowering disease recurrence,
and improving survival and the quality of life for lung
cancer patients.

RON is located at the chromosome 3p21.3 region, a
region that has tumor suppressor activity and undergoes
frequent loss of heterozygosity in human lung and breast
cancers. +e mature RON is a 180 kDa heterodimer com-
posed of a 40 kDa extracellular chain and a 150 kDa
transmembrane β-chain. Stimulation of RON by its ligand,
MSP, promotes invasive growth of epithelial cells, resulting
from the integration of a number of input pathways,

including epithelial-mesenchymal transition (EMT), cell-
cell dissociation (“scattering”), and extracellular matrix
growth and invasion [3, 4].

RON is primarily expressed in cells of epithelial origin
including lung cells. Several lung cancer cell lines over-
expresses Ron and variant isomers, and normal lung tissue
exhibits minimal expression of RON compared to adjacent
tumor tissue. +ese data suggest that RON expression may
be related to the occurrence and development of both
NSCLC and SCLC and could be used as a prognostic in-
dicator for lung cancer patients [5]. Regulation of how RON
expression and splicing is deregulated in NSCLC and SCLC
requires further characterization. +e frequency and in-
tensity of RON and phospho-RON expression in NSCLC is
lower than in SCLC, and the β-RON isoform (around
150 kDa) was found to be the dominant isoform in NSCLC,
compared to the 120 kDa isoform in SCLC. Furthermore,
northern blot analysis verified that the RON gene is normally
transcribed in the lungs. +ese data suggest that charac-
terizing mechanisms regulating RON gene expression are of
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great significance to improve understanding of lung tumor
occurrence and development [6].

microRNAs (miRNAs) are small noncoding RNAs,
∼18–25 nucleotides in length, that regulate gene expression
at the posttranscriptional level by hybridizing to target
mRNAs, and either inhibiting gene translation or promoting
degradation of messenger RNAs (mRNA) by miRNAs are
thought to regulate at least 30% of human gene expression
and are involved in essential biological processes, including
cell-cycle control, cell lineage fate decision, cell survival,
tissue patterning, vascular development, immune control,
and metabolism [7]. miRNAs act as oncogenes or tumor
suppressors in various tumors, including lung cancer [8].

RON and miRNAs are closely related to the occurrence
and development of lung cancer; however, it is unclear how
miRNAs interact with RON to facilitate lung cancer pro-
gression. In vitro, RON mutations that alter miRNA ex-
pression induce oncogenic and metastatic potential. miRNA
profiles are significantly affected by RON expression in
pancreatic cancer, indicating the potential role of miRNAs in
tumor invasion and metastasis [9]. In the present study, we
compare miRNA profiles of lung cancer samples with dif-
ferential expression of RON in order to investigate how
RON regulates miRNA expression in both NSCLC and
SCLC.

2. Materials and Methods

2.1. MicroRNA Expression Analysis. +is research has been
carried out in accordance with the World Medical Associ-
ation Declaration of Helsinki and was approved by the
Institutional Review Board (CWO) of Medical School of
Ningbo University, Ningbo, China (2020-YXY-0035). All
subjects provided written informed consent. Nine NSCLC
samples and nine SCLC samples were analyzed by miRNA
microarray. Each group was classified based on RON ex-
pression levels, no expression, low expression, and high
expression, with three samples representing each level.
miRNA expression patterns were compared between
NSCLC and SCLC samples with different RON expression
levels. +e expression of RON was determined by Western
blot and immunohistochemistry.

2.2. Immunohistochemistry of Lung Tissue. Fragments of
lung tissue were incubated with anti-RON monoclonal
antibodies Zt/f2 overnight at 4°C, followed by the DAKO
Envision DAB System visualization reagents (DAKO,
Denmark). All slides were counterstained with hematoxylin.
RON expression was assessed using a semiquantitative
scoring system.

2.3. miRNA Expression by Microarray. Total RNA was
harvested using TRIzol (Invitrogen) and the miRNeasy mini
kit (QIAGEN), according to manufacturer’s instructions.
RNA quantity was determined using a NanoDrop 1000
instrument. RNA was labeled using the miRCURY™ Hy3™/
Hy5™ Power labeling kit and hybridized onto the
miRCURY™ LNA Array (v.16.0). +e slides were washed

and scanned using an Axon GenePix 4000B microarray
scanner.

Scanned images were imported into GenePix Pro 6.0
software (axon) for grid alignment and data extraction.
miRNAs with intensity ≥50 in all samples were selected for
calculating a normalization factor after averaging the rep-
licated miRNAs. After normalization using median nor-
malization, volcano plot filtering was used to identify
significantly differentially expressed miRNAs. Hierarchical
clustering was performed to visualize distinct miRNA ex-
pression profiling among samples.

2.4. miRNA-mRNA Coexpression Network Analysis.
Network diagram analysis of miRNAs and mRNAs revealed
regulatory relationships between miRNAs and their target
genes. Target prediction information was derived from the
following three resources: miRWalk (http://mirwalk.umm.
uni-heidelberg.de/), miRDB (http://mirdb.org/), and Tar-
getScan (http://www.targetscan.org/vert_60/). Predicted
targets were filtered by identifying targets overlapping from
the different prediction resources. miRNAs and predicted
target genes were analyzed using Cytoscape software, and
pathway enrichment was analyzed using the DAVID web
resource (https://david.ncifcrf.gov/).

3. Statistical Methods

One-way analysis of variance was applied to assess differ-
ential expression of miRNAs between groups, and Benja-
mini–Hochberg FDR correction was applied, in addition to
Tukey’s honestly significant difference (HSD) post hoc test.
A p value of <0.05 was considered to indicate a statistically
significant difference.

4. Results

miRNA expression profiling was performed for NSCLC and
SCLC samples with different RON expression levels. miRNA
expression levels were more greatly influenced by tumor
type than by RON expression levels.

Comparison of miRNA expression between NSCLC and
SCLC identified 85 significantly differentially expressed
miRNA genes. Among these, 55 (65%) were overexpressed
in SCLC vs. NSCLC, and 30 (35%) were underexpressed.
miRNAs with fold-change with ≥1.5-fold overexpression or
≤0.5-fold underexpression are given in Table 1 and Figure 1.
In addition, RON overexpression was associated with dis-
crete miRNA expression patterns (Table 2), particularly in
NSCLC patients (Table 3), compared to RON nonexpressing
samples; hierarchical clustering was performed to show the
distinct miRNA expression profiling among samples
(Figure 2).

In order to discern the major miRNA genes associated
with RON overexpression in NSCLC, differentially
expressed miRNA genes were obtained after comparing the
RON high-expressing and RON nonexpressing NSCLC
samples, and a gene coexpression network was constructed.
Using the miRWalk, miRDB, and TargetScan miRNA target
prediction databases, 1827 overlapping target genes were
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identified for the 10 most significantly differentially
expressed miRNAs. A regulatory network between the
overlapping target genes and their upstream miRNAs was
constructed using Cytoscape (Figure 3). In order to identify
the potential mechanism by which RON may promote

NSCLC through miRNA-mediated regulation, the 1827
predicted target genes were then subjected to DAVID
pathway enrichment analysis. +is pathway enrichment
revealed that RON-related miRNAs are predicted to target
genes that significantly affect pathways involved in

Table 1: Differentially expressed miRNAs with ≥1.5-fold overexpression or ≤0.5-fold underexpression in SCLC vs. NSCLC samples.

ID Name Fold-change ≥1.5 SCLC vs. NSCLC ID Name Fold-change 1.5 SCLC vs. NSCLC
11040 hsa-miR-29b-3p 8.051603 11260 hsa-miR-151a-5p 0.41632
28191 hsa-miR-30e-5p 5.304497 46228 hsa-miR-320c 0.59677
11000 hsa-miR-200a-3p 4.301609 42630 hsa-miR-140-3p 0.26368
10946 hsa-miR-141-3p 3.426177 19582 hsa-miR-106b-5p 0.50352
10923 hsa-miR-107 3.120694 148668 hsa-miR-378a-3p 0.28814
10967 hsa-miR-16-5p 3.002912
148038 hsa-miR-3679-3p 2.81699
145996 hsa-miR-205-3p 2.803615
31026 hsa-miR-101-3p 2.425494
10138 hsa-miR-130a-3p 2.058103
10977 hsa-miR-183-5p 2.040765
145676 hsa-miR-30e-3p 1.961315
42739 hsa-miR-339-5p 1.858763
27217 hsa-miR-34a-5p 1.760212
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Figure 1: Differential expression of miRNAs in NSCLC and SCLC. Volcano plot of differentially expressed miRNAs between SCLC and
NSCLC samples.+e vertical lines correspond to 1.5-fold overexpression and underexpression, respectively.+e horizontal line represents a
p value of 0.05. +e red points in the plot represents differentially expressed miRNAs which met the threshold for statistical significance.

Table 2: miRNAs with statistically significant differential expression ≥1.5-fold overexpression or ≤0.5-fold underexpression in high RON
expressing lung cancer samples compared to RON nonexpressing samples.

ID Name
Fold-change ≥ 1.5 overexpression in

RON high-expressing vs. RON
nonexpressing

ID Name
Fold-change ≤ 0.5 underexpression in

RON high-expressing vs. RON
nonexpressing

145859 hsa-miR-33a-5p 2.36 28302 hsa-miR-27b-
3p 0.49

148642 hsa-miR-1246 1.59 13138 Hy3 0.39

11000 hsa-miR-200a-
3p 1.55

10936 hsa-miR-130b-
3p 1.55

11260 hsa-miR-151a-
5p 1.55

Journal of Oncology 3



tumorigenesis. +e top 4 significantly enriched signaling
pathways were pathways in cancer, the PI3K-Akt signaling
pathway, the MAPK signaling pathway, endocytosis, and
proteoglycans in cancer (Figure 4). In addition, the top 10
overexpressed and top 10 underexpressedmiRNAs and their
major targets which might have key function were predicted
from published data (Figure 5). Overexpression or under-
expression of miRNAs detected by the microarray chip is
represented by an upward (red) or a downward (blue) arrow,
respectively. Changes of target genes expression levels,
which were inversely correlated with the expression of the
miRNAs that target them, are also represented by a down
(blue) or up (red) arrow.

5. Discussion

Lung cancer is one of the most common cancers and a
leading cause of cancer-related deaths. +e identification of
critical genetic factors leading to cellular transformation,
including EGFR, ALK, and Ros1, has resulted in significant
improvements in therapy for advanced lung cancer based on
radiotherapy and chemotherapy and has improved the
prognosis and quality of life for patients with lung cancer
[1, 2].

+e RON receptor tyrosine kinase is an oncogene that
plays an important role in the development of lung cancer.
RON overexpression can induce a complex genetic program
that results in cell dissociation, migration, and extracellular
matrix invasion, which may be important in several tumor
types, including lung cancer. +e extent of RON over-
expression varies widely among different lung cancer cells
and between different subtypes of lung cancers. +e fre-
quency and intensity of RON expression in different lung
cancer subtypes is not well characterized, and the specific
mechanism by which RON overexpression contributes to
the pathogenesis of different lung cancer subtypes remains
unknown. R. Kanteti et al. reported that RON expression in

NSCLC was lower than in primary and secondary SCLC
tumors [6]. Reports from M. Wang confirm that RON
overexpression is common in lung adenocarcinoma, sug-
gesting that RONmay initiate oncogenic programs and plays
an important role in the pathogenesis of lung adenocarci-
noma [10, 11].

miRNAs play important roles in lung tumor progression.
Using high-throughput RNA sequencing and bio-
informatics, many tumor-related miRNAs and their pre-
dicted targets that are oncogenes or tumor suppressor genes
have been reported. In this study, miRNA expression pat-
terns in RON high-expressing and RON nonexpressing lung
cancer samples were profiled, and we predicted potential
gene-miRNA interactions with a systematic bioinformatics
approach. Our study demonstrates that the type of tumors,
such as SCLC or NSCLC, has the greatest impact on dif-
ferential miRNA expression patterns. Within subgroups,
RON expression had a greater impact on overexpression or
underexpression of miRNAs in NSLCL samples than in
SLCL samples.

46 differentially expressed miRNA genes in RON high-
expressing NSCLC vs. RON nonexpressing NSCLC samples
were identified; most of these miRNAs have reported
functions in cancer. In addition, we also identified some
putative genetic interactions involving networks of miRNAs,
such as miR-33a-5p, hsa-miR-33b-5p, hsa-miR-31-5p, and
miR-106a-5p. For example, miR-106a-5p has been reported
to inhibit the migration and invasion of renal cell carcinoma
through targeting PAK5. It has also been reported that miR-
16a-5p acts as an onco-miRNA by targeting PTEN, E2F3,
and E2F5. +e Akt/mTOR and PI3K/AKT signaling path-
ways were also directly regulated by MiR-106a-5p [12, 13].

+e most significantly overexpressed miRNA between
RON high-expressing and RON nonexpressing NSCLC
samples was hsa-miR-1290. hsa-miR-1290 directly targets a
number of genes, including NAT1, INPP4B, SOCS4, IRF2,
and hMSH2, and activates the JAK/STAT3 and PI3K/AKT

Table 3: Differentially expressed miRNAs with >1.5-fold overexpression or 0.5-fold underexpression in high RON expressing NSCLC
samples compared to RON nonexpressing NSCLC samples.

ID Name Fold-change ≥1.5 RON high-expressing
vs. RON nonexpressing NSCLC ID Name Fold-change ≤0.5 RON high-expressing

vs. RON nonexpressing NSCLC
46921 hsa-miR-1290 7.57 13138 hsa-let-7c-3p 0.24

148642 hsa-miR-1246 7.28 147162 hsa-miR-31-
5p 0.33

25611 spike_control_v2_19 4.1 147512 hsa-let-7a 0.34
11052 hsa-miR-21-5p 3.29 147506 Hy3 0.42

27318 spike_control_v2_23 3.2 28302 hsa-miR-
320e 0.46

145859 hsa-miR-33a-5p 2.41 11040 hsa-miR-
27b-3p 0.46

145950 hsa-miR-33b-5p 2.3 147691 hsa-miR-
29b-3p 0.47

11260 hsa-miR-151a-5p 1.99 11030 hsa-miRPlus-
A1015 0.47

10936 hsa-miR-130b-3p 1.89 46801 hsa-miR-
106a-5p 0.49

11000 hsa-miR-200a-3p 1.52 17503 hsa-miR-590-
5p 0.49

4 Journal of Oncology



signaling pathways. Inhibition of miR-1290 resulted in a
decrease in stemness markers and EMTmarkers in NSCLC.
Anti-miR-1290 treatment suppressed proliferation, sphere-
formation, colony formation, and invasion of NSCLC cells
in vitro [14, 15].

+e overexpressed miRNA, hsa-miR-1246, is closely
related to the occurrence and development of p53 family
tumors. Inhibition of miR-1246 in NSCLC resulted in de-
creased stemness markers and EMT markers. Anti-miR-
1246 treatment suppressed the proliferation, sphere-for-
mation, colony formation, and invasion of NSCLC. Fur-
thermore, genes repressed by miR-1246 include PRL36A,
GLIPR1, HAS2, NCKAP5, MT1G, CYP4F11, CCNG2, and
THBS2 [14, 16, 17].

miR-21-5p promotes peritoneal metastasis through
EMT in gastric cancer, increases the proliferation, mi-
gration, and invasion of colon cancer by downregulating
Tiam1, promotes cell migration and invasion in

esophageal cancer by targeting PDCD4, induces metas-
tasis of human cervical carcinoma cells, and can be used as
a biomarker to predict the recurrence of digestive system
tumors [18, 19].

hsa-miR-151a is overexpressed in primary NSCLC and
induces proliferation, migration, and EMT as an onco-
miRNA by targeting E-cadherin mRNA. hsa-miR-151a also
promotes metastasis and functions synergistically with FAK
to inhibit RhoGDIA. In addition, miR-151a-5p targets
SOCS5 and activates downstream JAK2/STAT3 signaling
[20, 21].

hsa-miR-130b, an onco-miRNA, is directly regulated by
NF-κB and sustains NF-κB activation by decreasing cylin-
dromatosis expression. hsa-miR-130b-3p also downregulates
PTEN expression, which promotes the proliferation,migration,
invasion, and cytoskeletal rearrangement through the activa-
tion of PI3K and integrin β1 signaling pathways. Moreover,
miR-130b-3p inhibitors induced apoptosis [22–24].
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Figure 2: Heat map of miRNA expression in SCLC and NSCLC samples. +e heat map diagram depicts the results of the two-way
hierarchical clustering of miRNAs and sample type. Each row represents a miRNA and each column represents different sample type. +e
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hsa-miR-200a-3p regulates EMT-related gene expres-
sion, promotes the proliferation of cancer cells by post-
transcriptionally regulating cytoplasmic collapsin response
mediator, and prevents apoptotic cell death through
downregulation of MKK4 [25].

+e top downregulated RON overexpression-associated
miRNA was hsa-let-7c-3p. hsa-let-7c-3p, a metastasis sup-
pressor, was shown to suppress cell migration and invasion by
downregulating K-RAS, MMP11, Bcl-2, CASP3, and PBX3.
Moreover, hsa-let-7c-3p directly repressed the cisplatin-acti-
vated IL-6/STAT3 prosurvival pathway to modulate chemo-
sensitivity, and transfection of hsa-let-7c restored sensitivity to

cisplatin and increased the rate of esophageal squamous car-
cinoma cellular apoptosis after exposure [26, 27].

Increased expression of hsa-miR-31-5p inhibits cell
proliferation, migration, and invasion by regulating the Sp1
transcription factor in hepatocellular carcinoma. However,
the function of hsa-miR-31-5p was shown to differ, as hsa-
miR-31-5p was also demonstrated to positively influence cell
motility in correlation with metastatic status by regulating
PGE2, which was mediated by EP1-ERK-MMP9 signaling.
Moreover, comprehensive miRNA expression profiling
analysis found that hsa-miR-31-5p is a diagnostic biomarker
for pancreatic cancer [28, 29].
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Hsa-let-7a expression plays an important role in tu-
morigenesis through repressing c-Myc and is significantly
downregulated in a number of cancers, including hepato-
cellular cancer, breast cancer, and ovarian cancer [30].

+e hsa-miR-320 family, particularly hsa-miR-320e, is
downregulated in colorectal adenoma and affects colorectal

tumor proliferation by targeting CDK6. hsa-miR-320e plays
an important role in the growth of colorectal tumors and is
considered as a biomarker for the early detection of colo-
rectal tumors [31].

Upregulated hsa-miR-27b has a protective role in cell
proliferation and migration by targeting Smad7 and
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Figure 4: miRNA target pathway enrichment analysis. +e top 10 significantly enriched pathways as predicted from target genes of
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affecting the TGF-β pathway. hsa-miR-27b-3p directly
targets HSP90AA1 and Fzd7 in NSCLC, ROR1 in gastric
cancer, and CBLB/GRB2 in breast cancer to suppresses cell
proliferation, migration, invasion, and expression of MET
[32, 33].

hsa-miR-29b-3p suppresses cell proliferation, migration,
invasion, EMT, and metastasis in vitro and in vivo by
regulating DNMT3B, PGRN, and STAT3, elevating
E-cadherin expression, and decreasing Snail and vimentin.
hsa-miR-29b-3p also represses Wnt signaling, TGF-β1
signaling, and STAT3 signaling [34, 35].

miR-590-5p inhibits breast cancer cell stemness and
metastasis by targeting SOX2, inhibits colorectal cancer
angiogenesis and metastasis by regulating the NF90/VEGFA
axis, inhibits gastric cancer cell growth and chemosensitivity
through the RECK and AKT/ERK pathway, inhibits growth
of HepG2 cells via decrease of S100A10 expression and
inhibition of Wnt pathway, and suppresses the proliferation
and invasion of NSCLC by regulating GAB1 [36, 37].

RON high-expression activates or represses some
transcription factors, which likely impacts the expression of
a number of miRNAs. +e 46 miRNAs that were differ-
entially expressed miRNAs between RON high-expressing
and RON nonexpressing NSCLC samples might be im-
portant factors that mediate the pathogenesis of NSCLC.
+ese miRNAs promote tumor development via regulation
of numerous targets, multiple signaling pathways, and bi-
ological functions and behaviors. Among these, EMT and
invasion were identified as important functions enriched in
these miRNAs, which is consistent with previous findings.
Constitutively, high RON expression leads to morphological
scattering or stabilized EMT and TGF-β1, and activation of
the MAPK and Ras pathways was closely related to RON-
mediated EMT. JAK/STAT, MAPK, and Ras signaling are
possible common mediators of the functional behavior of
these miRNAs, as the JAK/STATsignaling pathwaymediates
the biological effects of various external stimuli and controls
survival, proliferation, and differentiation of several cell
types. RON overexpression may be involved in the patho-
logical process of tumorigenesis through these pathways,
although interrogation of the specific mechanisms involved
is beyond the scope of this study.

+e miRNA expression between NSCLC and SCLC
samples was clustered, and a heat map was constructed to
visualize miRNA expression patterns. Our findings suggest
that while RON expression levels are associated with distinct
miRNA expression patterns in NSCLC, the specific lung
cancer subtype (either NSCLC or SCLC) has a greater impact
on miRNA expression profiles. Furthermore, we analyzed
the interactions between miRNAs and their potential target
genes that were differentially expressed based on differential
RON expression in NSCLC, and we constructed a network
of miRNA interactions using Cytoscape software. Our data
suggest that the RON-associated miRNAs may impact a
number of pathways, including PI3K-Akt, MAPK, endo-
cytosis, proteoglycans in cancer, focal adhesion, and Ras
signaling pathway-related activation state; these pathways
may be differentially activated between NSCLC samples that
exhibit distinct patterns of RON expression and are

consistent with previous research which suggested that RON
promotes oral squamous cell carcinoma progression by
regulating EMT and the MAPK signaling pathway [38].

6. Conclusion

In summary, here, miRNA expression patterns of lung
cancer associated with differential expression of the human
receptor tyrosine kinase RON were profiled. We identified
differentially expressed miRNA between NSCLC and SCLC,
as well as between NSCLC samples with high RON ex-
pression and lacking RON expression. Our results suggest
that miRNAs regulating PI3K-Akt, MAPK, endocytosis,
proteoglycans in cancer, focal adhesion, and Ras signaling
may exhibit significantly different expression patterns as-
sociated with differential RON expression in NSCLC. EMT
and PI3K-Akt and MAPK signaling pathways are signifi-
cantly regulated by RON expression levels. +e approach
and findings of this study may provide new perspectives on
the tumor-promoting effect of RON and may lead to the
development of improved diagnostic and therapeutic
strategies for lung cancer. Further research will verify these
differentially expressed miRNAs on larger tissue samples
and then evaluate the miRNAs-regulated gene networks
predicted by bioinformation analysis. Functional verifica-
tion of gene-gene interactions can be carried out at both
cellular and animal levels.
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