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Gliomas represent solely primary brain cancers of glial cell or neuroepithelial origin. Gliomas are still the most lethal human
cancers despite modern innovations in both diagnostic techniques as well as therapeutic regimes. Gliomas have the lowest overall
survival rate compared to other cancers 5 years after definitive diagnosis. 'e dietary intake of vitamin C has protective effect on
glioma risk. Vitamin C is an essential compound that plays a vital role in the regulation of lysyl and prolyl hydroxylase activity.
Neurons store high levels of vitamin C via sodium dependent-vitamin C transporters (SVCTs) to protect them from oxidative
ischemia-reperfusion injury. Vitamin C is a water-soluble enzyme, typically seen as a powerful antioxidant in plants as well as
animals. 'e key function of vitamin C is the inhibition of redox imbalance from reactive oxygen species produced via the
stimulation of glutamate receptors. Gliomas absorb vitamin C primarily via its oxidized dehydroascorbate form by means of
GLUT1, 3, and 4 and its reduced form, ascorbate, by SVCT2. Vitamin C is able to preserve prosthetic metal ions like Fe2+ and Cu+

in their reduced forms in several enzymatic reactions as well as scavenge free radicals in order to safeguard tissues from oxidative
damage. 'erapeutic concentrations of vitamin C are able to trigger H2O2 generation in glioma. High-dose combination of
vitamin C and radiation has a much more profound cytotoxic effect on primary glioblastoma multiforme cells compared to
normal astrocytes. Control trials are needed to validate the use of vitamin C and standardization of the doses of vitamin C in the
treatment of patients with glioma.

1. Introduction

Gliomas represent solely primary brain cancers of glial cell
or neuroepithelial origin [1–4]. Gliomas are categorized into
lowest-grade tumors, lower-grade tumors, higher-grade
malignancies, and highest-grade malignancies as stipulated
by the American Association of Neurosurgeons [1–4].
World health organization further categorized astrocytoma
into four grades [1–4]. Grade I comprises pilocytic astro-
cytoma; grade II comprises low-grade astrocytoma; grade III
comprises anaplastic astrocytoma, whereas grade IV com-
prises glioblastoma multiforme (GBM) [1–4]. Grade I often
has minimal transformation abilities into grades II–IV and
mostly seen children. Nevertheless, grade II or III is mostly

accompanied with malignant transformations into grade IV
[1–4].

Vitamin C, also referred to as L-ascorbic acid/L-ascor-
bate, is an essential compound that plays a vital role in the
regulation of lysyl and prolyl hydroxylase activity [5]. Vi-
tamin C is a general term that describes its oxidized
dehydroascorbate (DHA) and its reduced forms (ascorbate)
[6]. Vitamin C is a water-soluble enzyme, typically seen as a
powerful antioxidant in plants as well as animals [7]. Vi-
tamin C was capable of preserving prosthetic metal ions like
Fe2+ and Cu+ in their reduced forms in several enzymatic
reactions as well as scavenge free radicals in order to safe-
guard tissues from oxidative damage [8, 9]. Also, vitamin C
participates in numerous intracellular as well as extracellular
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biological processes to efficiently scavenge free radicals
[7, 10].

Vitamin C intake as a dietary antioxidant was capable of
augmenting growth restriction of cancer cells in general and
glioma cells to be specific [11, 12]. Studies have shown that
vitamin C was capable of inhibiting cancer via mechanism,
such as the argumentation of stromal integrity of normal
tissue, activating lymphocytes to a greater level of immu-
nocompetence, stimulating “auspicious modification in the
steroid environment,” blocking hyaluronidase activity in
malignant cells, augmenting antiviral activity, and inter-
fering with the metabolism of malignant cells [13–16].

Studies have demonstrated that vitamin C was selectively
concentrated in tumors and may form cytotoxic quantities
of hydrogen peroxide (H2O2) within the tumor as a
byproduct of oxidation [13, 15, 16]. Vitamin C can act as a
prodrug to deliver a substantial influx of H2O2 to tumors
after intravenous (IV) administration [17, 18]. A study
established that H2O2 was the key mediating factor in cy-
totoxicity to cancer cells through IV vitamin C [17, 19].
Vitamin C stimulated intracellular oxidation as well as
energy generation resulting in total therapeutic potential.
Also, vitamin C stimulated of activities like apoptosis and
necrosis [17, 20].

Studies have shown that vitamin C precisely eradicated a
sizable quantities of cancer cells when plasma concentra-
tions reach 1mM or more [21–23]. Another study revealed
that vitamin C was capable of decreasing the adverse re-
actions triggered by chemotherapy during the treatment of
cancer in patients [24, 25].'us, this explicit review explores
the pivotal neurophysiologic and therapeutic potentials of
vitamin C in glioma. 'e “Boolean logic” was used to search
for article role of vitamin C in glioma. Most of the articles
were indexed in PubMed and/or PMC with strict inclusion
criteria being the neurophysiologic and therapeutic poten-
tials of vitamin C in glioma. 'e search terms on PubMed
and/or PMC were vitamin C and/or L-ascorbic acid and/or
L-ascorbate and glioma.

1.1. Vitamin C Levels in the Blood, Cerebrospinal Fluid, and
Brain. 'e brain, spinal cord, and adrenal glands had the
highest vitamin C levels of all the tissues in the body as well
as the highest retention capacity of vitamin C [26, 27].
Studies have shown that brain tissue concentration of vi-
tamin C was regionally dependent. Higher concentrations
were detected in anterior regions like the cerebral cortex as
well as hippocampus, with gradually lower concentrations in
more posterior regions like the brainstem as well as spinal
cord [28, 29]. Generally, brain tissue vitamin C levels were
several millimolars (mM) with the average concentration in
neurons likely to be 10mM andmerely 1mM in glia [28–30].
Under normal circumstances, turnover of vitamin C in brain
is approximately 2% per hour [26, 31].

Molecules with low molecular weight as well as passable
hydrophilic/hydrophobic balance are allowed to penetrate
the central nervous system (CNS) [32, 33]. It was established
that endothelial cells of the brain capillaries, which form the
blood-brain barrier (BBB), possess selective transport

systems for particular nutrients as well as endogenous
biomolecules besides unspecific permeation [32]. 'us, they
are conscientious for the transport of glucose, neutral, acidic,
and basic amino acids like alanine and taurine, monocar-
boxylic acids, amines, and neuromediators like choline,
vitamins, and nucleosides, as well as the peptide transport
system for small neurotropic peptides [32, 34, 35].

'e epithelium of the choroid plexus, which is a re-
stricted part of the BBB, is implicated for the maintenance of
CNS homeostasis for vitamin C [32, 36]. IV administration
of vitamin C revealed that vitamin C reached the CSF via the
choroid plexus and then gradually penetrates the brain
substance from the CSF (Figure 1) [32, 37]. Vitamin C enters
the CNS principally via active transport at the choroid plexus
(Figure 1). Vitamin C concentration is modulated homeo-
statically after it diffuses from cerebrospinal fluid (CSF) to
brain extracellular fluid (ECF) [32]. Vitamin C was capable
of entering the ECF via carrier-mediated uptake and via
simple diffusion across brain capillaries at the BBB [26, 38].
Extracellular vitamin C levels are also vigorously regulated
via glutamate-mediated activity through glutamate-vitamin
C heteroexchange (Figure 1) [26].

It was established that vitamin C from ECF was taken up
into brain cells, where its levels augmented up to 20-fold
[26]. It was further revealed that, in some neurons, vitamin C
levels were up to 200-fold higher than the levels in the
bloodstream [26, 32]. Vitamin C is transferred from the
blood, where its levels are about 50 μM into the CFS where
its levels are maintained at 200 μM via specific physiological
mechanisms (Figure 1) [32, 39]. Vitamin C uptake from the
blood into CSF involves active stereospecific Na+-dependent
transport at the choroid plexus (Figure 1) [26, 40]. Fur-
thermore, vitamin C serves as a cofactor in several enzymatic
activities associated with the processing of neurotransmit-
ters as well as an antioxidant offering neuroprotection
within the CNS [32].

Tsukaguchi et al. indicated that the reduced form of
vitamin C is absorbed via a mechanism that involves so-
dium-dependent vitamin C transporters 2 (SVCT2) [8].
SVCT2 RNA was identified in the epithelium of the choroid
plexus [7]. Precisely, the neuroepithelial cells of the choroid
plexus as well as the retinal pigmented epithelium secreted
SVCT2 transporter. It was established that SVCT1 as well as
SVCT2 each mediate concentrative, high-affinity vitamin C
transport that was stereospecific and was driven by the Na+
electrochemical gradient (Figure 1) [8]. Higher levels of Na+-
dependent vitamin transporters such as SVCT1 and SVCT2
were detected in the choroid plexus but not in brain
capillaries (Figure 1) [8, 26].

In situ hybridization in the rat brain revealed that
SVCT2 was more concentrated in neurons than glial cells,
which was coherent with higher concentrations of vitamin C
in neurons than glia [8, 26]. 'us, neuronal cells take up
vitamin C, because these cells secrete SVCT2 [41]. It was
affirmed that SVCT2 was present in both glutamatergic as
well as GABAergic neurons, including glutamatergic pyra-
midal cells of the hippocampus, glutamatergic granule cells
of the cerebellum, and GABAergic cerebellar Purkinje cells
(Figure 1) [8]. It was affirmed that astrocytes were capable of
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removing glutamate from the synaptic cleft when synapses
are glutamatergically active [8].

Several studies have demonstrated that glutamate
transport in these cells was capable of activating glucose
transport, to stimulate glycolysis with lactate and vitamin C
release (Figure 1) [42, 43]. Castro et al. demonstrated that
intracellular vitamin C blocked glucose transport via direct
or indirect blockade of GLUT3 and triggered lactate uptake
(Figure 1) [44]. 'us, when GLUT3 was downregulated,
glucose utilization was not inhibited by vitamin C and lactate
transport was not stimulated (Figure 1) [42].

1.2. Function of Vitamin C in the Normal Brain. Brain vi-
tamin C concentrations are gender dependent, with lower
estrogen-modulated levels in the female brain than in the
male brain [26, 45]. Neurons store high levels of vitamin C
via SVCTs to protect them from oxidative ischemia-reper-
fusion injury [46, 47]. Studies have demonstrated that the
key function of vitamin C was the inhibition of redox im-
balance from reactive oxygen species (ROS) produced via

the stimulation of glutamate receptors (Figure 2) [48, 49].
Studies have further exhibited that vitamin C was capable of
buffering glutamate-generated ROS and inhibited suc-
ceeding cell death in cultured neurons [50, 51].

Studies have demonstrated that vitamin C serves as a
neuromodulator for both dopamine- and glutamate-medi-
ated neurotransmission besides its functions as an antiox-
idant in the CNS [52, 53]. It was further established that the
main localization of vitamin C in neurons was coherent with
such neuromodulatory functions [52, 53]. Furthermore,
vitamin C was implicated as a fundamental cofactor for
noradrenaline synthesis [26, 54]. Also, vitamin C was es-
sential for the secretion of noradrenaline as well as acetyl-
choline from synaptic vesicles [26, 55]. In addition, vitamin
C was a crucial cofactor in the synthesis of numerous
neuropeptides [26, 56]. Moreover, at physiological con-
centrations, vitamin C augmented the secretion of theses
neuropeptides [26, 57].

'e accumulate of vitamin C in the basal lamina trig-
gered myelin formation by Schwann cells [26, 58]. Studies
have shown that variations in vitamin C concentrations were
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Figure 1: 'e neurophysiological mechanisms via which vitamin C and glucose cross the blood brain barrier (BBB) to influence normal
brain tissues. VC� vitamin C; GL� glucose. All other abbreviations are indicated in the abbreviation list.
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associated with brain activity as well as brain energetics
[59, 60]. Also, vitamin C servers as a metabolic switch in
brain, modulating glucose consumption in neuronal cells via
the blockade of neuronal GLUT3 [42]. Owens and Bunge
established that vitamin C was a fundamental in the en-
hancement of axonal ensheathment in Schwann cell-neu-
ronal coculture [61]. 'ey further revealed that vitamin C
was crucial for periphery nervous system myelinogenesis
because it was capable of stimulating the P0 protein gene in
cultured Schwann cells [61].

1.3.VitaminCandGlioma. Several studies have assessed the
outcomes of dietary vitamin C intake on primary brain
tumor risk [62–70]. 'ese studies involved both children
and adults [62–70]. 'e studies in children revealed that
glioma risk differs inversely with maternal vitamin C intake
during pregnancy [62–64]. In studies involving adults, an
inverse association between dietary vitamin C intake and
glioma risk was also observed [62, 65–67]. Nevertheless,
some studies detected a positive relationship between vi-
tamin C intake and glioma risk [62, 68, 69]. Another study
found positive relationship for men and a negative rela-
tionship for women [70]. Zhou et al. with a meta-analysis
observed that the consumption of vitamin C had protective
effect on glioma risk [11].

Studies have shown that GLUTs mediate the facilitative
transport of the DHA form of vitamin C [6, 71, 72]. Also,
studies have demonstrated that ascorbate, the reduced form
of vitamin C, is transported by SVCT [6, 8, 73, 74]. Gliomas
absorb vitamin C primarily via its oxidized form (DHA) by
means of GLUT 1, 3, and 4 and its reduced form, ascorbate,
by SVCT2 (Figure 2) [6]. Nevertheless, it was established
that SVCT2 had modest capacity in gliomas [75]. DHA was
reduced to vitamin C via the GSH-consumption enzyme
DHA reductase (DHAR) once it gets into the cells (Figure 2)
[6]. Laszkiewicz et al. exhibited that, vitamin C is a potent
modulator of the proteolipid protein as well as the secretion
of myelin-associated glycoprotein gene in CNS-derived C6
cells [76].

Salmaso et al. established that vitamin C could be utilized
as a targeting agent to stimulate the disposition of drug
loaded nanosystems in gliomas [32]. Conklin et al. indicated
that antioxidants are capable of safeguarding normal brain
tissues from radiation damage resulting in better survival,
because brain tissues possess oxidative milieus and are thus
susceptible to radiation damage [77]. Lawenda et al. dem-
onstrated that antioxidants are capable of rending glioma
more resistant to tumor killing by radiation, resulting in
poorer patient survival [78]. It was established that, at low
doses, vitamin C was capable of protecting cells from oxi-
dative stress, thus inhibiting the advancement of tumors

VC

VC VC VC
VC

VC

VC

VC
VC VC

VC

GluRGLUTs
1,3&4

SVCT2

ASC
Anti-oxidate

Asc-S

NO

Nrf2

PLP &
MAG

angiogenesis

H2O2

IGF-IR

Apotopsis

HIF-1a

Bcl-2
Caspase-3,8 & 9
PARP NF-κB

Bax

S/G2-M

DHAR

DNA-AF

CYP

DNA

G2/M

AF

NAT ROSDHA

Glioma Cell Death

Figure 2: 'e mechanisms via which vitamin triggers glioma cell death. VC� vitamin C; ASC� ascorbate. All other abbreviations are
indicated in the abbreviation list.

4 Journal of Oncology



[5, 79]. Prasad demonstrated that sodium ascorbate trig-
gered a cytotoxic stimulus on normal brain cells in culture
[15]. Benade et al. established that the toxicity of ascorbate
was as a result of low catalase levels in tumor cells [80].

Vitamin C was able to inhibit DNA damage and the
deterioration of subcellular structures like proteins, lipids,
and DNA by scavenging of ROS (Figure 2) [5]. Studies have
demonstrated that therapeutic concentrations of vitamin C
triggered H2O2 generation in solid tumors (Figure 2)
[22, 81]. Furthermore, studies have demonstrated that H2O2
diffuses into cancer cells and overpowers their antioxidant
defense system via the depletion of glutathione levels
[22, 23]. Espey et al. established that vitamin C stimulated
generation of extracellular H2O2 was only partly accountable
for cell death [82]. Peterkofsky and Prather indicated that
H2O2 was either formed intracellularly and excreted in the
medium or formed at the cell surface on culture medium
[83].

It was further established that H2O2 was not detectable in
growth medium containing Na+-ascorbate alone [83].
Studies have demonstrated that H2O2 was capable of trig-
gering lipid peroxidation, which resulted in cell death
[84–86]. It is also revealed that Na+-ascorbate was capable of
triggering the formation of DHA exogenously or intracel-
lularly or both. Also, sodium ascorbate was capable of
blocking catalase activity in vitro [87]. Furthermore, the
blockade of catalase was capable stimulating the accumu-
lation of H2O2 in tumor cells resulting in cell death [87].

1.4. Vitamin C Derivatives and Glioma. Ascorbyl esters are
nontoxic, synthetic derivative of vitamin C used as anti-
oxidants [88, 89].

'ese esters can easily cross the BBB because of their
lipophilic nature [90]. 'e breakdown products of ascorbyl
stearate are ascorbate and stearic acids, which are nontoxic
to biological system [88, 89]. Studies have indicated that
ascorbyl esters, such as ascorbyl stearate (Asc-S) and
ascorbyl palmitate, block the proliferation of mouse as well
as human glioma cells [91, 92]. Furthermore, studies have
demonstrated that Asc-S as well as ascorbyl palmitate
suppressed the growth of murine (G-26) as well as human
glioma (U-373) cells [91, 92]. Makino et al. established that
Asc-S, a lipophilic derivative of vitamin C is a potent in-
hibitor of cell proliferation as compared to vitamin C [93].

Studies have demonstrated that human gliomas are
capable of secreting insulin-like growth factor- (IGF-) I as
well as IGF-II. It was further established that IGFs autocrine
receptor was capable of stimulating glioma cell growth
[94, 95]. Naidu et al. established that Asc-S was capable of
modulating of secretion of IGF-IR as well as triggering of
apoptosis in T98G cells (Figure 2) [96]. 'ey revealed that
Asc-S inhibited the growth of human GBM T98G cells via
the arrest of cells at late S/G2-M phase of cell cycle as well as
trigger cell death via apoptosis (Figure 2) [96]. 'ey further
indicated that Na+-ascorbate was capable of blocking the
growth of T98G cells with an IC50 of 6.0mM [96]. Nev-
ertheless, Asc-S was about 68-fold more potent than Na+-
ascorbate with an IC50 value of 88.5 μM [93].

It was also established that administration of Asc-S led to
a substantial augmentation in the proportion of cells in late
S/G2-M phase of cell cycle in comparison with untreated
control cells [96]. Also, DHA was capable of modulating cell
cycle progression as well as trigger cell cycle arrest at G2/M
DNA damage checkpoints during oxidative stress (Figure 2)
[97]. Furthermore, Asc-S stimulated cell cycle arrest at late S/
G2-M phase checkpoints was capable of blocking of cell
proliferation as well as apoptosis [96]. 'us, vitamin C
derivatives interfere with cell cycle progression [96]. Rys-
zawy et al. demonstrated that Na+-ascorbate was capable of
triggering significant impairment of GBM cell viability as
well as invasiveness [5].

Also, the blockade influence of Na+-ascorbate on GBM cell
motility resulted in heterogeneous viability-associated cell re-
sponses [5]. Moreover, a rapid necrotic-like death was detected
in a proportion of cells with Na+-ascorbate, which resulted in
cell swelling, membrane break, and their release from cyto-
plasm [5]. Furthermore, “autoschizis”-associated violent cell
responses to elevated Na+-ascorbate doses substituted apo-
ptosis in “hypersensitive” GBM cells [5]. 'is cell death
mechanism was a self-excision of cytoplasm and was detected
only in the coexistence of vitamin C and menadione [98, 99].

1.5. Vitamin C and Glioma Angiogenesis. Angiogenesis is a
normal physiological activity, obligatory for normal tissue
repair as well as growth [100]. Nevertheless, angiogenesis is
depicted by the assiduous proliferation of endothelial cells as
well as blood vessel formation in pathological situations
[100]. 'us, angiogenesis is very critical in tumor growth,
invasion, and metastasis [100]. Studies have implicated the
association of circulating endothelial precursor cells (EPCs)
to pathologic angiogenesis [101–103]. Several studies have
demonstrated that nitric oxide (NO) was associated with
tumor angiogenesis [104–106].

Dulak et al. demonstrated that NO was capable of
modulating for the secretion of endogenous angiogenic
factors like vascular endothelial growth factor (VEGF) as
well as basic fibroblast growth factor (bFGF) [107]. Studies
established that tumors that produced NO persistently had
significantly supplementary vascular network and were
more invasive [108, 109]. 'us, angiogenesis is determined
by the level of NO, which also influence migration as well as
precise motivity of the endothelial cells [100, 110].

Telang et al. analyzed the effect of vitamin C on tumor
development in animals after dietary consumption of low
levels [111]. Peyman et al. established that the total number
of blood vessels were decreased in vitamin C depleted tu-
mors compared to the totally supplemented animals.
Contrariwise, high levels of vitamin C administered to
cauterized corneas suppressed angiogenesis in a rat proto-
type [112]. Mikirova et al. evaluated the effect of high levels
of vitamin C (100mg/dl–300mg/dl) on in vitro endothelial
cells as well as new blood vessel formation [100]. 'ey
observed that IV administration of 25–60 grams of vitamin
C affect both endothelial progenitor cells as well as mature
endothelial cell functions associated with process of an-
giogenesis (Figure 2) [100].
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Furthermore, the effect of vitamin C on angiogenesis
assessed via tube formation assay exhibited blockade of
vessel structure after 3–24 h of exposure of the cells to vi-
tamin C (Figure 2) [100].'is appeared as a result of vitamin
C ability to block NO in endothelial cells (Figure 2) [100].
Duda et al. established that NO is a key stimulus of new
blood vessel formation [113].'us, vitamin C was capable of
inhibiting NO stimulation resulting in the inhibition of
angiogenesis as well as vasculogenesis (Figure 2) [113].

1.6. Signaling Pathways of Vitamin C in Glioma. Vitamin C
was implicated in several signal pathways associated with the
development of glioma [114–119]. Vitamin C had much a
stronger influence on the crucial stages of tumor cell pro-
liferation as well as differentiation by shifting their epige-
nome and transcriptome. Naidu et al. observed
antiproliferative as well as apoptotic effects of vitamin C on
T98G glioma cells via modulation of IGF-IR secretion
subsequent to the facilitation of programmed cell death [96].
Also, vitamin C was capable of upregulating proteolipid
protein (PLP) as well as myelin-associated glycoprotein
(MAG) genes in glioma C6 cells of rat models (Figure 2)
[76].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
fundamental constituent of cellular defense against a wide
range of endogenous as well as exogenous stresses [114]. It
was observed that vitamin C was capable of influencing Nrf2
in GBM (Figure 2) [114]. Hypoxia-inducible factor 1α (HIF-
1α) is a transcription factor responsible for the cellular
reaction to low O2 conditions via the modulation of genes
regulating various cellular transduction pathways [115].
HIF-1α further modulates growth and apoptosis, cell mi-
gration, energy metabolism, angiogenesis, and transport of
metal ions and glucose [115]. HIF-1α is often intensely
oversecreted in common cancers, cancer cell lines, and
metastases [116].

Several studies have demonstrated that therapeutic levels
of vitamin C downregulated cell survival pathways in cancer
cells via HIF-1α as well as the nuclear transcription factor
(NF-κB) [117–119]. Vitamin C was capable of regulating
HIF-1α in common cancers including glioma [120]. Also,
vitamin C was able to promote prolyl as well as lysyl hy-
droxylases in the hydroxylation of HIF-1α (Figure 2) [120].
It was established that low vitamin C levels were able to
decrease HIF-1α hydroxylation resulting in the promotion
of HIF-dependent gene transcription as well as tumor
growth [120]. Bi et al. established that over secretion of Bcl-2
and blockade of Bax secretion correlated well with anti-
apoptosis/apoptosis imbalance of glioma cells (Figure 2)
[121].

Duan et al. demonstrated that Maitake mushroom
(MP)/vitamin C was able to inhibit the proliferation of
glioma cells, augmented tumor cell apoptosis, and reduced
mRNA/protein secretion of Bcl-2 while augmenting Bax
mRNA or protein secretion (Figure 2) [7]. 'ey further
observed augmentation in the secretion of caspase-3 as well
as its endogenous substrate, cleavage of PARP [7]. Moreover,
MP/vitamin C was able activate key mediators of the apoptosis

pathway, such as caspase-3, caspase-8, and caspase-9 in
M059 K cells (Figure 2) [7]. 'us, the combination of MP
and VC triggered M059 K cell apoptosis [7]. Holme et al.
revealed that vitamin C was capable of decreasing the cy-
totoxic properties of N-hydroxy-acetylaminofluorene and
decrease the covalent binding of N-acetyl-2-aminofluorene
(AAF) to cellular protein [122]. Further studies are needed to
establish the effect of vitamin C on this protein in glioma.

Hung established that rat glial tumor cells possess
N-acetyltransferase (NAT) properties [123]. Furthermore,
the rat’s brain tissue was able to modulate NAT activity as
well as the stimulation of N-acetylation of 2-aminofluorene
(AF) (Figure 2) [124]. Hung and Lu demonstrated that
vitamin C was able to block NAT activity in C6 glioma cells
[125]. 'ey also revealed that vitamin C reduced AF-DNA
adduct formation in C6 glioma cells, but vitamin C did not
influence DNA to transcript NATmRNA [125]. Miller and
Miller showed that AF is N-acetylated via NAT and sub-
sequently metabolized via cytochrome P450 (CYP) into a
reactive metabolite, which binds to DNA to form DNA-AF
metabolite adduct (Figure 2) [126].

1.7. Vitamin C in Glioma Treatment. Cameron and Pauling
in 1976 suggested that IV vitamin C followed by oral
maintenance was a beneficial therapy for patients with
cancer [127].'us, vitamin C, specifically at high therapeutic
levels, has a long and widely been used as cancer treatment in
history [127, 128]. IV vitamin C was demonstrated to be
toxic to tumor cells, but not to normal cells [129]. Fur-
thermore, IV vitamin C was capable of inhibiting angio-
genesis and inflammation, boosts the immune system,
causes differentiation of cells, and improves quality of life of
patients with cancer [100].

Currently, temozolomide is the drug of choice for the
management of patients with glioma [24, 25, 130]. It is an
orally bioavailable, methylating agent that is able to pass
through the BBB and trigger the death of tumor cells
[24, 25]. Nevertheless, some tumor cells are capable of
repairing DNA damage triggered by temozolomide and thus
lessen the efficiency of the therapy [24, 25]. Laboratory and
clinical studies have demonstrated that temozolomide’s
anticancer efficiency was augmented when combined with
etoposide [24, 25].

Gokturk et al. demonstrated that vitamin C alone was
capable of triggering oxidative DNA damage in glioma [130].
'ey revealed that cytotoxic as well as genotoxic effects of
temozolomide and etoposide were reduced by vitamin C, but
the utmost cytotoxicity with the least genotoxicity was
attained with use of the triple therapy [130]. 'us, vitamin C
reduced the cytotoxic as well as genotoxic effect of the
etoposide and etoposide-temozolomide combination, but it
had no significant effect on temozolomide’s toxicity [130].

Mikirova et al. were able to treat neurofibromatosis type
1 (NF1) patient with optic pathway glioma (OPG) with a
high dose of IV vitamin C [131].'ey suggested that vitamin
C treatment may be appropriate for young patients’ glioma
who are not suitable to receive standard treatments regimes
due to their toxicity [131]. Studies have demonstrated that
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radiotherapy offers a 6-month survival benefit at a median
time frame for glioma patients [132, 133]. Herst et al.
demonstrated that radiation dose of 2-Gy fractions alone for
GBM patients and vitamin C alone at concentrations >1mM
was effective for GBM patients [21].

Herst et al. indicated further that combination therapy
using 0.5mM vitamin C and lower radiation dose of 1-Gy
fraction killed considerably more primary GBM cells and
astrocytoma cells compared with single therapy [21]. Nev-
ertheless, the combination therapy had a much lesser effect
on normal astrocytes, suggesting a certain level of specificity
for GBM cells [21]. 'us, they study exhibited that in the
clinical situation, combination therapy triggers more specific
GBM killing with lower doses of radiation as well as less
damage to adjacent, healthy tissues [21].

Herst et al. demonstrated that administration of vitamin C
was capable of inhibiting radiation-stimulated G2/M arrest in
GBM primary cells, but not in astrocytes, inhibiting homol-
ogous recombination and hence DSB repair, which was spe-
cifically poor in GBM cells compared with normal astrocytes
[21]. Furthermore, both vitamin C and radiation therapy were
able to trigger cell death associated with autophagy [134].
Autophagy is a salvaging mechanism that is stimulated in cells
under stress [135]. Studies have demonstrated that 5mM vi-
tamin C, 6-Gy fractions, or combined therapy did not trigger
apoptotic cell death in GBM primary cell [134, 136].

Herst et al. postulated that our cells primarily use
autophagy as a survival mechanism after exposure to ra-
diation, vitamin C, or combined treatment [21]. 'ey
concluded that high-dose combination of vitamin C and
radiation has a much more profound cytotoxic effect on
primary GBM cells compared to normal astrocytes, and this
combination could be a safe as well as clinically viable al-
ternative for treating aggressive radiation-resistant GBMs
[21]. Prasad et al. report that vitamin C at nontoxic doses
potentiated growth inhibitory capabilities of 5-fluorouracil
(5-FUra), bleomycin sulfate, sodium butyrate, cyclic AMP
stimulating agents, and X-irradiation on neuroblastoma
(NB) cells, but it did not yield analogous capabilities on rat
glioma cells in culture [137].

Prasad et al. further postulated that if vitamin C is used
arbitrarily in combined therapies, it may reduce the efficiency
of some chemotherapeutic agents [137]. 'ey indicated that
vitamin C was capable of reducing the cytotoxic effect of
methotrexate as well as 5-(3,3-dimethyl-btriazeno)-imidazole-
4-carboxamide (DTIC) on NB cells in culture [137]. 'is
was perhaps due to deactivation of these medicines in vitro
by vitamin C [137]. Prasad et al. in another study dem-
onstrated that vitamin C at nontoxic doses significantly
potentiated the effect of methylmercuric chloride (MMC)
on NB cells while it did not alter the effect of MMC on
glioma cells [137].

'e effect of vitamin C was most distinct at a MMC doses
of 1μM [137]. Moreover, vitamin C was similarly effective in
potentiating the effect ofMMConNB cells, but glutathione did
not exhibit similar effect [137]. Schoenfeld et al. demonstrate
that increased labile Fe2+ pool levels, triggered by mitochon-
drial superoxide and H2O2, expressively participated in cancer
cell-selective toxicity of therapeutic vitamin C combined with

standard radio-chemotherapy in GBM models [138]. 'ey
postulated that augmented labile Fe2+ in cancer cells triggered
an upsurge in oxidation of vitamin C to produce H2O2 capable
of further aggravating the differences in labile Fe2+ in cancer
compared to normal cells [138].

'e above occurred, at least partly, because of
H2O2-mediated interference of Fe-S cluster-containing
proteins [138].'e augmented levels of H2O2, in the company
of an augmented labile Fe2+ pool, triggered an upsurge in
Fenton chemistry to produce hydroxyl radicals resulting
in oxidative damage [138]. Sharma and Khanna showed
that vitamin C inhibited etorphine-stimulated compen-
satory upsurge in the concentrations of cyclic AMP with
slight or no influence on the temporary response of
NG108-15 hybrid cells to the effector agents, but it had no
effect on the temporary blockade response of the cells to
the drug [139].

Sharma and Khanna suggest the potential use of vitamin C
in the prevention of the development of tolerance in thera-
peutic usage of narcotics as analgesics [139]. Vita et al. dem-
onstrated that menadione alone or in combination with
vitamin C exhibited similar concentration-response curves as
well as IC50 values [140]. 'ey indicated that menadione:
vitamin C at a ratio of 1 :100 exhibited higher antiproliferative
activity when compared to each medicine alone and permitted
to decrease each medicine concentration between 2.5 and 5-
fold [140]. Analogous antiproliferative effects were exhibited in
8 patients derived GBM cell cultures [140].

2. Conclusion

'e dietary intake of vitamin C has protective effect on
glioma risk. Neurons store high levels of vitamin C via
SVCTs to protect them from oxidative ischemia-reperfusion
injury. 'e key function of vitamin C is the inhibition of
redox imbalance from ROS produced via the stimulation of
glutamate receptors. Vitamin C is able to inhibit DNA
damage and the deterioration of subcellular structures like
proteins, lipids, and DNA by scavenging of ROS. Also,
therapeutic concentrations of vitamin C are capable of
triggering H2O2 generation in solid tumors including gli-
oma. 'e total number of blood vessels was decreased in
vitamin C depleted tumors compared to the totally sup-
plemented animals, which means that vitamin C is capable
of inhibiting tumor angiogenesis. High-dose combination of
vitamin C and radiation has a much more profound cyto-
toxic effect on primary GBM cells compared to normal
astrocytes, and this combination could be a safe as well as
clinically viable alternative for treating aggressive radiation-
resistant GBMs. Control trials are needed to validate the use
of vitamin C and standardization of the doses of vitamin C in
the treatment of patients with glioma.
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