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A large number of studies have found that macrophages M1 play an important role in the occurrence and development of tumors.
*e aim of our study is to explore the causes of differential infiltration of macrophages M1 in hepatocellular carcinoma from the
perspective of transcriptome and establish a prognostic model of hepatocellular carcinoma. We downloaded gene expression and
clinical data from the public database, estimated the content of macrophages M1 in different samples with R software, and found
the different genes between high- and low-infiltration groups. Using differentially expressed genes, we constructed a model
composed of 7 genes. *e risk score of the model has a good ability to predict the prognosis, has a positive correlation with
immune checkpoints, and is closely related to other immune cells and immune function. Our model shows good prognostic
function and has wide application value.

1. Introduction

Liver cancer is a kind of malignant tumor disease with high
incidence all over the world, which seriously endangers public
health. Improving the prognosis of patients with liver cancer
and curing liver cancer is one of the goals of researchers. *e
impact of the tumor immune microenvironment on liver
cancer cells has been found to be more and more important.
At present, there are a large number of studies on tumor
immune microenvironment. Tumor-associated macrophages
are a key factor in cancer.Macrophages play an important role
in the development of tumors. *ey can promote genomic
instability, promote the growth of tumor stem cells, promote
metastasis, and so on [1]. Rodell et al. found that TLR7/8-
agonist-loaded nanoparticles enhance cancer immunotherapy
by macrophages M1 [2]. Chen et al. found that tumor-
recruited M2 macrophages promote gastric and breast cancer
metastasis [3]. Choo et al. found thatM1macrophage-derived
nanovesicles potentiate the anticancer efficacy of immune
checkpoint inhibitors [4]. Rao et al. found that hybrid cellular
membrane nanovesicles amplify macrophage immune re-
sponses against cancer recurrence and metastasis [5].

At present, a considerable number of studies have found
that some genes can affect the prognosis of cancer patients.
Conlin et al. found that K-ras, p53, and APC mutations had
prognostic significance in colorectal carcinoma [6]. Powell
et al. found that p53 is a prognostic significance in breast
cancer [7]. Gurung et al. found that AIMP3 predicts survival
following radiotherapy in muscle-invasive bladder cancer
[8]. In recent years, a large number of models were con-
structed by multiple genes that can accurately predict the
prognosis of patients. Deng et al. found that a five-auto-
phagy-related lncRNA signature was used to be a prognostic
model in HCC [9]. Feng et al. found a 7-gene prognostic
signature to predict the survival of pancreatic ductal ade-
nocarcinoma [10]. Yin et al. found a novel prognostic six-
CpG signature in glioblastomas [11].

*e aim of our study is to explore the causes of dif-
ferential infiltration of macrophages M1 in hepatocellular
carcinoma from the perspective of transcriptome. Using
differentially expressed genes to construct a reliable prog-
nosis model is expected to improve the prognosis of patients
with HCC. In our model, we scored the content of mac-
rophages M1 according to the transcriptome data
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downloaded from *e Cancer Genome Atlas and found the
differentially expressed genes between high- and low-infil-
tration groups. *e prognostic model was constructed
according to the differential genes and verified on the ex-
ternal database. Our model is also deeply discussed.

2. Materials and Methods

2.1. DataDownload. We downloaded the expression data of
the hepatocellular liver carcinoma project rectified to
fragments perkilobase million (FPKM) as the training co-
hort and clinical data of HCC in *e Cancer Genome Atlas
(TCGA, https://tcga-data.nci.nih.gov/tcga/). *e expression
data and clinical data of Liver Cancer-RIKEN, Japan, were
downloaded from the International Cancer Genome Con-
sortium (ICGC, https://dcc.icgc.org/). We annotated the
data by gene transfer format (GTF) files obtained from
Ensembl (http://asia.ensembl.org).

2.2. Construction and Validation of the Model. Screening of
DEGs was carried out by “limma” package (https://
bioconductor.org/packages/limma/) in R software (4.0.0).
*e data were analyzed by Cox hazard analysis and Lasso
regression with the “survival” (https://cran.r-project.org/
package�survival), “glmnet” (https://cran.r-project.org/
package�glmnet), and “survminer” (https://cran.r-project.
org/package�survminer) package. *e “survivalROC”
package was used to draw receiver operating characteristic
curve, and the “survival” package was used to draw the
survival curve.

2.3. Gene Set Enrichment Analysis (GSEA). GSEA was uti-
lized in this study to find the differences between different
risk groups in the TCGA cohort. An annotated gene set file
(c2.cp.kegg.v7.0.symbols.gmt) was selected as the reference.
*e threshold was confirmed as FDR q-val <0.05.

2.4. �e Analysis of Immune. Significant results of immune
infiltrate deconvolution were obtained in TCGA patients
with HCC by CIBERSORT analysis. *e “StromalScore,”
“ImmuneScore,” and “ESTIMATEScore” of each sample in
the TCGA cohort are carried out by the “estimate” package.
*e “GSVA” and “GSEABase” packages were used for
ssGSEA analysis for each patient. *e correlation analysis of
each index was completed by the Spearman test.

3. Result

3.1. Constructing the Prognosis Model in the TCGA Cohort.
After scoring the macrophages M1 of different HCC pa-
tients, we ranked the scores from low to high. Analyzing the
DEGs between the first quarter of patients (86) and the last
quarter of patients (87), 317 DEGs were found in the process.
Combined with the clinical prognosis, we screened 55 genes
by univariate Cox hazard analysis in the TCGA cohort. We
used Lasso regression and multivariate Cox hazard analysis
to narrow the number of genes and finally got 7 genes to
optimize the model (Figure 1(a)), and the risk score of each

sample was calculated (risk score � UAP1L1 ∗ 0.0433 + EPO
∗ 0.0226 + PNMA3 ∗ 0.0307 + NDRG1 ∗ 0.0032 + KCNH2
∗ 0.0406 + G6PD ∗ 0.0092 + HAVCR1 ∗ 0.0460) and the
median of risk score was used to distinguish the high- and
low-risk group. In the 0.5, 1, and 3 years, the AUC value
under the ROC curve is 0.722, 0.757, and 0.708 (Figure 1(b)).
*ere were significant differences in prognosis between
high- and low-risk groups (Figure 1(c)). *e heatmap
showed that the expression level of UAP1L1, EPO, PNMA3,
NDRG1, KCNH2, G6PD, and HAVCR1 in the high-risk
group was higher than that in the low-risk group
(Figure 1(d)) and the risk of death in HCC patients increased
with the increase in risk score (Figures 1(e) and 1(f )).

3.2. Verifying the Prognosis Model. We validated the model
in the GSE14520 cohort. In the 0.5, 1, and 3 years, the AUC
values under the ROC curve are 0.706, 0.751, and 0.759
(Figure 2(a)). *e model can significantly distinguish the
prognosis of patients in high- and low-risk groups
(Figure 2(b)).

3.3. �e Risk Score Was an Independent Prognostic Indicator.
We analyzed the relationship between risk score and clin-
icopathological characteristics (age, gender, histological
grade, clinical stage, and TNM). Univariate Cox hazard
analysis of clinicopathological features showed that the p

value of stage, T, and risk score was less than 0.001 and the
hazard ratio was over 1 (Figure 3(a)). Multivariate Cox
hazard analysis of clinicopathological features showed that
the p value of risk score was less than 0.05 and the hazard
ratio was over 1 (Figure 3(b)). *e risk score in different
ages, genders, grades, stages, and T groups has significant
differences (Figures 3(c)–3(f )). *ere are significant dif-
ferences in the prognosis of different risk score groups in
different ages, genders, histological grades, M0, N0, stages,
and T (Figure 3(g)).

3.4.�eGSEAofDifferentRisk ScoreGroups. In the high-risk
group, 0 gene sets were found (FDR q-val <0.05). In the low-
risk group, we found 18 gene sets, including DRUG_ME-
TABOLISM_CYTOCHROME_P450, COMPLEMENT
_AND_COAGULATION_CASCADES, RETINOL
_METABOLISM, VALINE_LEUCINE_AND_ISOLEUCI-
NE_DEGRADATION, FATTY_ACID_METABOLISM,
TRYPTOPHAN_METABOLISM, PRIMARY_BILE_A-
CID_BIOSYNTHESIS, GLYCINE_SERINE_AND_-
THREONINE_METABOLISM, PROPANOATE
_METABOLISM, PPAR_SIGNALING_PATHWAY,
METABOLISM_OF_XENOBIOTICS
_BY_CYTOCHROME_P450, and BUTANOATE_ME-
TABOLISM (Figure 4) (FDR q-val <0.001).

3.5.�eRisk Score and Immune. We found that the content
of macrophages M1 can be well distinguished among
different risk score groups. *ere were also significant
differences in the content of some immune cells in dif-
ferent risk score groups (Figure 5(a)). *ere was a
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significant correlation between risk score and macro-
phages M1 (Figure 5(b)). *e ssGSEA analysis showed
that there was no significant difference in the cell content
of B cells, CD8 Tcells, DCs, mast_cells, neutrophils, pDCs,
and T helper cells in the high- and low-risk groups and

APC coinhibition, cytolytic activity, inflammation pro-
moting, and type 1 INF reponse (Figures 5(c) and 5(d)).
We also found a significant positive correlation between
risk score and immune checkpoint (CTLA4 and PDCD1)
(Figure 5(e)).

HAVCR1
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Figure 1: Constructing the prognosis model. (a) *e result of multivariate Cox hazard analysis. (b) Comparison of survival status between
the high-risk group and low-risk group. (c) *e ROC curves at different years in the TCGA cohort. (d) *e expression level of 7 genes in
different groups. ((e) and (f)) *e survival sates of different risk score patients.
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4. Discussion

Macrophages M1 in hepatocellular carcinoma have been
concerned by a large number of researchers. During the
differentiation of monocytes into macrophages, macro-
phages obtain immunosuppressive function in order to
maintain the homeostasis of the immune microenviron-
ment, but the M1 polarization of macrophages has a sig-
nificant antitumor effect [12]. Macrophages secrete vascular
endothelial growth factor, platelet-derived growth factor,
and transforming growth factor βwhich inhibited antitumor
immunity and promoted tumor progression [13–15]. *ese
findings also provide a new dimension for the immuno-
suppressive effect of cancer. Angiogenesis inhibition therapy
has also become a promising treatment strategy for HCC
[16]. Zhao et al. found that the miR-144/miR-451a cluster
could promote macrophage M1 polarization and antitumor
activity in HCC [17]. Sprinzl et al. found that macrophage
might contribute to the anticancer activity of sorafenib [18].
Kim et al. found that hippo signaling suppresses macrophage
infiltration in HCCs [19]. Clinical trials that exert influence
on macrophages have shown improvement on tumors. *e
prognostic significance of combining tumor-secreted
osteopontin with microenvironment-associated peritumoral
macrophages was confirmed in HCC with early stage [20].
*e combination of bavituximab with sorafenib could in-
crease the frequency ofM1macrophages in the treatment for
advanced HCC patients [21]. Terakawa et al. found that the
capability of macrophages to produce TNF-alpha could be
useful for prognostis and for monitoring immunocompe-
tence in patients with pancreatic cancer [22].

*e immune microenvironment of HCC is quite com-
plex. In particular, the relationship between macrophages
and Tregs has been widely concerned. Macrophages ag-
gregate Tregs cells to cancer sites by expressing CCL17,

CCL18, and CCL22, thus hindering the activation of cyto-
toxic T cells [23, 24]. Granito et al. [25] found that tumor-
associated macrophages (by secreting IL-10) can induce
CD4+ CD25+ Foxp3 regulatory T cells, thus indirectly
supporting tumor growth and progression. It was found that
the IL-10 antibody could partially block the aggregation
effect of macrophages on Tregs [26].

*e genes in ourmodel play an important role in tumors.
Hill et al. identified UAP1L1 is a methylated gene associated
with clinical features [27]. Lai et al. found that UAP1L1 is a
critical factor for protein O-GlcNAcylation and cell pro-
liferation in human hepatoma cells [28]. Bradbury found
that EPO helps children with cancer-related anaemia [29].
Kumar et al. found that EPO receptor contributes to mel-
anoma cell survival [30]. Schüller et al. found that PNMA3 is
a novel neuronal protein implicated in paraneoplastic
neurological disease [31]. Sevinsky et al. found that NDRG1
regulates neutral lipid metabolism in breast cancer [32].
Villodre et al. found that NDRG1 is an independent
prognostic factor in breast cancer [33]. Afrasiabi et al. found
that KCNH2 regulated melanoma cell proliferation and
migration [34]. Feng et al. found that G6PD regulated
paclitaxel resistance in ovarian cancer [35]. Liu et al. found
that HAVCR1 might be a novel prognostic factor for gastric
cancer [36].

*ere is a significant correlation between the risk score
in our model and many immune indexes and immune
checkpoints, which is a very meaningful discovery. However,
our model needs more biological function verification and
multicenter patient data to modify our model. It is hoped
that our model can provide new ideas for the treatment of
hepatocellular carcinoma and improve the prognosis of
hepatocellular carcinoma patients.

List of abbreviations: HCC, hepatocellular carcinoma;
FPKM, fragments perkilobase million; TCGA, *e Cancer
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Figure 2: Verifying the prognosis model. (a) *e ROC curves at different years in the ICGC cohort. (b) Comparison of survival status
between different groups in the ICGC cohort.
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Figure 3: Relationship between risk score and clinicopathological features. Univariate Cox hazard analysis (a) and multivariate Cox hazard
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Figure 4: Continued.
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Figure 4: *e gene sets of the low-risk group.
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Figure 5: Continued.
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Genome Atlas; GTF, gene transfer format; DEGs, differen-
tially expressed genes; GSEA, gene set enrichment analysis.
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[34] E. Afrasiabi, M. Hietamäki, T. Viitanen, P. Sukumaran,
N. Bergelin, and K. Törnquist, “Expression and significance of
HERG (KCNH2) potassium channels in the regulation of
MDA-MB-435S melanoma cell proliferation and migration,”
Cellular Signalling, vol. 22, no. 1, pp. 57–64, 2010.

[35] Q. Feng, X. Li, W. Sun et al., “Targeting G6PD reverses
paclitaxel resistance in ovarian cancer by suppressing
GSTP1,” Biochemical Pharmacology, vol. 178, Article ID
114092, 2020.

[36] L. Liu, Z. Song, Y. Zhao et al., “HAVCR1 expression might be
a novel prognostic factor for gastric cancer,” PLoS One, vol. 13,
no. 11, Article ID e0206423, 2018.

10 Journal of Oncology


