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Pyroptosis is a kind of programmed cell death that is characterized by inflammation. However, the expression of pyroptosis-
related genes and their connection with prognosis in lung adenocarcinoma (LUAD) remain unknown. -e aim of this study is to
create and validate a LUAD prediction signature based on genes associated with pyroptosis. -e TCGA and GEO were used to
collect gene sequencing data and clinical information for LUAD samples. To identify patients with LUAD from the TCGA cohort,
consensus clustering by pyroptosis-related genes was employed. Our prognostic model was constructed using LASSO-Cox
analysis after Cox regression using differentially expressed genes. To predict patient survival, we created a seven-mRNA signature.
Additionally, reliability and validity were established in the GEO cohort. To assess its diagnostic and prognostic usefulness, an
integrated bioinformatics method was used. Using a risk score with varying overall survival (OS) in two cohorts (all p< 0.001), a
seven-gene signature was developed to categorize patients into two risk categories. -e signature was shown to be an independent
predictor of LUAD using multivariate regression analysis.-e signature was linked to a variety of immune cell subtypes according
to a study of immune cell infiltration. We constructed a signature consisting of seven genes as a robust biomarker with potential
for clinical use in risk stratification and OS prediction in LUAD patients, as well as a potential indicator of immunotherapy
in LUAD.

1. Introduction

Worldwide, lung cancer causes a significant percentage of
cancer mortality and has a bad prognosis [1, 2]. Lung cancer
accounted for more than a quarter (27%) of all cancer fa-
talities in 2015 [3, 4]. Clinically, LUAD is most often di-
agnosed in patients with nonsmall cell lung cancer (NSCLC),
while the most prevalent histologic form of NSCLC accounts
for 40% of all lung cancer cases [5]. Surgical excision,
chemotherapy, and radiation are the primary clinical
therapies for LUAD at the moment. Despite advances in
medical therapies in recent years, only 15% of LUAD pa-
tients survive for more than 5 years [6, 7]. Numerous studies
have shown that LUAD is a very diverse illness with unique
genetic and transcriptome features among individual indi-
viduals, and predicting LUAD prognosis remains difficult.
As a result, it is critical to discover novel prognostic gene

signatures that may be utilized to generate prognostic
predictions and act as new therapeutic targets for LUAD
patients.

Pyroptosis is the cleavage of gasdermins through con-
ventional and nonclassical mechanisms, which may cause
cells to expand indefinitely until the cell membrane ruptures,
allowing the contents of the cell to escape, resulting in a
severe inflammatory reaction [8, 9]. Pyroptosis is critical for
combating infection and endogenous danger signals.
Pyroptosis, by releasing inflammatory chemicals, provides a
tumor-suppressive environment; yet, it may also impair the
body’s immunological response to tumor cells and promote
tumor development in certain malignancies [10, 11].
However, it is unknown that how pyroptosis affects the
prognosis of LUAD.

-e use of next-generation sequencing to classify LUAD
patients is a new technique for rapidly identifying cancer

Hindawi
Journal of Oncology
Volume 2021, Article ID 6365459, 15 pages
https://doi.org/10.1155/2021/6365459

mailto:497857934@qq.com
https://orcid.org/0000-0003-0558-268X
https://orcid.org/0000-0003-0119-4532
https://orcid.org/0000-0002-0856-5423
https://orcid.org/0000-0002-6378-5859
https://orcid.org/0000-0002-7167-1958
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6365459


features and determining the best therapy options. Although
EGFR tyrosine kinase inhibitors (TKIs) and PD-L1/PD1
immune checkpoint targeting treatments have been shown
effective, the underlying mechanisms that contribute to the
lack of efficacy in patients with LUAD or even complete
unresponsiveness to these therapies have still to be identified
[12, 13]. According to the current understanding, molecular
subtypes cannot be used as guides in clinical therapy due to
the absence of subgroup classifications. As a result, the
creation of a reliable gene signature to predict prognosis and
guide therapeutic treatment, particularly in the areas of
targeted therapy and immunotherapy, is critical.

-e goal of this research was to develop a model for
predicting prognosis and guiding therapeutic therapy by
categorizing LUAD patients based on genes associated with
pyroptosis. After grouping 414 people with LUAD based on
genes associated with pyroptosis, we identified two sub-
groups that were connected to prognosis. -e risk score may
then be calculated by utilizing the LASSO-Cox technique to
build a model associated with pyroptosis.-is risk score may
forecast prognosis and immunological infiltration. Our re-
sults suggest a possible link between pyroptosis, prognosis,
and the immunological milieu of individuals with LUAD.

2. Materials and Methods

2.1. Data Collection. We conducted a comprehensive search
of publicly accessible transcriptome cohorts for LUAD with
matching clinical data. -e TCGA database was used to
obtain normalized gene expression data from RNA se-
quencing (FPKM), somatic mutation data, and clinical data
from TCGA-LUAD cohort. Using the total number of
mutations identified in the exome content, the tumor
mutation burden (TMB) was then calculated per megabase
for each sample. -e GEO database was also used to gather
clinical information and normalized gene expression data;
the accession number is GSE13507. R was used to examine
the data (version 4.0.2).

2.2. Identification of Pyroptosis-Related Genes with Variable
Expression. From previous studies [14–17], we retrieved 52
pyroptosis-related genes, which are listed in Table S1. In
order to discover the genes that were differentially expressed
between normal and tumor tissues, we collected 19 normal
lung tissues as well as 414 LUAD tissues. DEGs with a p

value of 0.05 were identified using the “limma” package. A
heatmap was then utilized to compare the gene expression
associated with pyroptosis in LUAD versus normal lung
tissues.

2.3. Consensus Clustering. Consensus clustering using k-
means algorithms was used to discover unique pyroptosis-
related patterns pertaining to gene expression [18]. -e
number and stability of clusters were established using the
consensus clusteringmethod, which was implemented in the
“ConsensuClusterPlus” package. We repeated our catego-
rization 1,000 times to ensure its stability [19].

2.4. �e Development and Validation of a Predictive
Pyroptosis-Related Pattern Gene Signature. With an ad-
justed p value of 0.05 and an absolute value of |log2FC|≥ 1,
in TCGA cohort, DEGs between pyroptosis-related patterns
were identified. Using the univariate Cox method, the DEGs
with prognostic significance were identified, and the p value
was corrected using the Benjamini & Hochberg (BH) cor-
rection approach. A prognostic model was built using
LASSO-Cox regression analysis to minimize the risk of
overfitting [20, 21]. -e LASSO method was used to select
and minimize variables. A regression analysis was per-
formed using the normalized expression matrix of potential
prognostic DEGs as an independent variable, with the OS
and status of patients in the TCGA cohort serving as the
dependent variables. Patients’ risk scores were computed
using a method that included finding a patient’s level of
expression for each pattern gene associated with pyroptosis
and the regression coefficient associated with that level. -e
formula was devised as follows:

risk score � 
n

i�1
exp i∗ βi. (1)

Patients were classified into high-and low-risk categories
based on their median risk score. In order to investigate the
distribution of various groups in terms of gene expression
levels in the constructed model, PCA and t-SNE analyses
were carried out using the “Rtsne” and “ggplot2” R packages,
respectively [22]. Using the “survminer” R package, a sur-
vival analysis was performed to compare the OS of high-and
low-risk groups. Survival and TimeROC packages were used
to perform time-dependent ROC curve analysis, which was
used to assess the prognostic signature’s predictive value.
-e signature’s prognostic significance was further inves-
tigated using univariate and multivariate Cox analysis.

2.5. Analysis of Functional Enrichment of DEGs between
Patterns. Consensus clustering classified LUAD patients in
the TCGA cohort into two categories. -e software “clus-
terProfiler” was used to perform GO and KEGG analysis on
the DEGs. -e ssGSEA was performed using the “gsva”
package to compute infiltrating immune cell scores and
assess immune-related pathway activity [23, 24].

2.6. Predictive Nomogram Establishment. A nomogram was
developed by taking into consideration the patient’s risk
score and other clinicopathological features and then using
that information to provide a reliable clinical prediction tool
for LUAD patients, especially with regard to their 1-, 3-, and
5-year survival. Following that we conducted calibration
curve analyses to determine the suitability of our nomogram
for clinical use.

2.7. Statistical Analysis. For statistical analyses, R software
version 4.0.2 and various R packages were utilized, with a 2-
tailed p value of 0.05 indicating statistical significance. -e
“survival” package was used to run univariate and multi-
variate Cox regression analysis. -e “glmnet” package was
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used to perform the LASSO-Cox regression analysis, and ten
times cross-validations were employed to find the optimum
penalty parameter lambda. -e “survival” package was used
to create Kaplan–Meier analyses and survival curves. -e
nomogram and calibration curve were created using the
“rms” package.-e “timeROC” software was used to analyze
time-dependent ROC curves. Based on FDR, the Benjami-
ni–Hochberg technique was employed to identify differ-
entially expressed genes. Using “GSVA,” the ssGSEA-
normalized DEGs were compared with a genome.

3. Results

3.1. An Overview of Genetic Alterations and Expression
Variations in Pyroptosis-Related Genes in LUAD. In order to
compare the pyroptosis-related gene expression levels found
in the TCGA data from 19 normal and 414 tumor tissues, we
first calculated the 52 pyroptosis-related gene expression
levels and then looked for the DEGs that corresponded to
them. 6 genes were found to be downregulated, while 23
genes were found to be enriched in the tumor group.
Figure 1(a) shows heatmaps of these genes’ RNA levels.
Figure 1(b) depicts the correlation network including all
pyroptosis-related genes. At the genetic level, 337 of the 561
samples (approximately 60.07%) had mutations in pyrop-
tosis-related genes (Figure 1(c)). We also discovered CNVs
in pyroptosis-related genes, which were frequent alterations
with a focus on copy number amplification (Figure 1(e)). We
discovered changes in pyroptosis-related genes with CNVs
on the chromosome (Figure 1(d)). We predicted that al-
terations in CNV might play a significant role in causing
aberrant gene expression. Finding that pyroptosis-related
genes had a relationship with the LUAD suggests that they
may reflect unique features in patients in our research.

3.2. Tumor Classification Based on the DEGs. We did a
consensus clustering analysis of all the LUAD cases in the
TCGA cohort, with a focus on all the 29 pyroptosis-related
DEGs, in order to investigate the links between those ex-
pression patterns and LUAD subtypes. In order to see
whether two groups can be successfully distinguished using
the DEGs, we increased the clustering variable (k) from 2 to
10. As we predicted, at k� 2, the intragroup correlations
were low, suggesting that the LUAD patients could be well
split into two clusters (Figure 2(a)). A heatmap depicts the
gene expression profile as well as clinical characteristics such
as stage, grade, age, and gender, with grade indicating a
difference between the two groups (Figure 2(c)). -e OS
time of the two clusters was also examined, and a substantial
difference was discovered (p � 0.031; Figure 2(b)).

3.3. Gene Signature Constructed from Pyroptosis-Related
Clustering. On the basis of these findings, we created a gene
signature that may be used in the treatment of LUAD and
can be used to calculate an individual patient’s LUAD score.
-e gene signature was also assessed in order to diagnose
and treat each patient on an individual basis. First, 1458
DEGs with |log2FC|≥ 1 and p< 0.05 were shown to be linked

with the two clusters (Figure S1; Table S2). 13 genes were
identified as independent prognostic signatures by univar-
iate regression analysis (Table S3). Applying the LASSO-Cox
regression model with a minimum of λ, 7 of the 13 DEGs
were maintained in order to construct a model capable of
quantifying each patient. We utilized these to create a sig-
nature that was associated with pyroptosis (Figures 3(a) and
3(b)). -e next step was to try to evaluate the signature’s
worth by forecasting patient prognosis. In accordance with
the median cut-off value, the patients were split into two
groups (Figure 4(c)). Patients in various risk categories were
dispersed in two directions according to PCA and t-SNE
analyses (Figures 4(e) and 4(g)). Additionally, the scatter
chart showed that individuals at high risk died sooner than
those at low risk (Figure 4(a)). -e Kaplan–Meier curve
consistently indicated that high-risk patients had a sub-
stantially shorter OS than low-risk patients (Figure 3(d);
p< 0.001). For examination of the prognostic model’s
survival prediction, time-dependent ROC curves were
constructed, and the AUC reached 0.688 at one year, 0.665 at
three years, and 0.688 at five years (Figure 3(c)).

3.4. Validation of the 7-Gene Signature in the GEO Cohort.
Patients in the GEO cohort were also divided into high-risk
and low-risk groups based on the median value from the
TCGA cohort in order to assess the stability of the model
built from the TCGA dataset. PCA and t-SNE analysis
revealed a distinct distribution of patients in the two cate-
gories, similar to the TCGA cohort findings (Figures 4(f )
and 4(h)). Additionally, individuals in the high-risk group
died sooner (Figure 4(b)) and had a lower OS time when
compared with those in the low-risk group (Figure 3(f )).
Additionally, the AUC for the seven-gene signature was
0.743 at one year, 0.736 at three years, and 0.710 at five years
(Figure 3(e)).

3.5. �e 7-Gene Signature’s Independent Prognostic Value.
-e Cox analyses of factors, both univariate and multivar-
iate, were used to evaluate whether or not the risk score was
an independent prognostic predictor for OS. Using uni-
variate Cox analysis, it was discovered that risk ratings in
both the TCGA and GEO cohorts were substantially asso-
ciated with OS (TCGA cohort: HR� 3.663, 95%
CI� 2.303− 5.826, p< 0.001; GEO cohort: HR� 4.422, 95%
CI� 2.364− 8.271, p< 0.001) (Figures 5(a) and 5(b)). Mul-
tivariate Cox analysis showed that the risk score remained a
significant predictor when additional confounding factors
were taken into consideration. (TCGA cohort: HR� 2.717,
95%CI� 2.175− 5.677, p< 0.001; GEO cohort:
HR� 1.185− 6.227, p � 0.018) (Figures 5(c) and 5(d)).
Furthermore, we created a heatmap of clinical characteristics
for the TCGA cohort (Figure 5(e)) and discovered that
gender, grade, stage, and so on were distributed differently
across the low- and high-risk categories (p< 0.05).

3.6. Developing andValidating aNomogram�at Incorporates
Clinical Features. Because the risk score was strongly
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Figure 1: Continued.
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associated with high malignancy, we integrated clinical
variables and created a nomogram in the TCGA cohort to
expand the clinical applicability and use of the signature
(Figure 6(a)). By combining the points for each prognostic
criterion, each patient was given a total point value. Patients
with a higher overall point had a poorer clinical outcome.
Additionally, the calibration plot demonstrated that the
nomogram operated in a manner consistent with an ideal
model (Figure 6(b)).

3.7. Functional Analyses Based on the Risk Model. To in-
vestigate further the variations in gene functions and
pathways across the risk model subgroups, we used the
“limma” R package to extract DEGs using the FDR< 0.05
and |log2FC|≥ 1 criterion. According to the TCGA cohort, a
total of 317 DEGs were found between those who were at low
and high risk of LUAD. As a result, 161 genes were upre-
gulated, whereas 156 genes were downregulated in the high-
risk group (Table S4). Based on these DEGs, GO and KEGG
analyses were carried out. -e DEGs were mostly associated
with immunological and cell differentiation signaling
pathways according to the findings (Figures 7(a) and 7(b)).

3.8. Comparative Analysis of Immunological Activation
among Subgroups. On the basis of the functional analyses,
we used the single-sample gene set enrichment analysis
(ssGSEA) to compare the enrichment scores for 16 different
types of immune cells, as well as the activity of 13 different
immune-related pathways, between the low-and high-risk
groups in both the TCGA and GEO cohorts. -e high-risk
subgroups in the TCGA cohort (Figure 8(a)) exhibited
higher levels of immune cell infiltration, particularly CD8+

T cells, macrophages, and T helper cells (Tfh, -1, and -2
cells) than the low-risk category. Except for the Type II IFN
response pathway, the other 12 immune pathways showed
more activity in the high-risk group than in the low-risk
group during immune function analysis (Figure 8(c)).
Similar results were found when evaluating the immuno-
logical state of the GEO cohort (Figures 8(b) and 8(d)).

4. Discussion

Lung cancer is widely recognized to be the leading cause of
mortality around the globe. Lung cancer patients with
NSCLC, of whom roughly 50% have LUAD, make up almost
80 percent of all lung cancer patients [25]. Despite advances
in treatment regimens, the survival rate for LUAD patients
remains low. -e high-level variability of LUAD, as well as
the complicated etiologic variables, makes prognostic pre-
diction difficult. As a result, the development of new
prognostic models is critical.

Pyroptosis is a kind of programmed cell death that
happens in cells attacked by pathogens, triggering the body’s
inflammatory response [15, 26]. Apoptosis may therefore be
changed to pyroptosis in response to pathogen activation.
Pyroptosis is involved in a variety of malignancies [27]. It
inhibits tumor development in colorectal, liver, and skin
cancers but has a bidirectional impact on breast cancer
[28–31]. As a result, we cannot assess the predictive use-
fulness of LUAD only on the basis of the expression of
various gasdermins. As a result, we investigated all pathways
associated with pyroptosis and developed a predictive sig-
nature. Pyroptosis is now being explored for antitumor
treatment, and our research suggests that pyroptosis in
conjunction with immunotherapy may be a feasible thera-
peutic approach for patients with poor prognoses.
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Figure 1: Genes associated with pyroptosis in LUAD have distinct characteristics and differences. (a) Heatmap depicting the variations in
pyroptosis-related gene expression between the normal and tumor samples. (b) A network of correlations including pyroptosis-related
genes in the TCGA cohort. (c)-emutation landscape in 561 LUAD patients from the TCGA-LUAD cohort. Each pyroptosis-related gene’s
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types. -e barplot above depicted the mutation load. Individual mutation frequencies were indicated by the right values. (d) -e TCGA
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the TCGA cohort. -e height of the columns revealed various proportions. Copy number variants, or CNVs, are a kind of copy number
variation.
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Classification of samples according to specified gene
expression criteria is a well-established technique. On the
basis of the expression of pyroptosis-related genes, we

developed a subtyping approach for LUAD patients. We
demonstrated a substantial association between the ex-
pression of these pyroptosis-related genes and various
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Figure 3: -e development of a gene signature to predict patient OS based on clusters associated with pyroptosis. (a-b) Ten-fold cross-
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risk score in the TCGA cohort. (d) OS curves for the TCGA cohort’s various risk score subgroups. (e) Time-dependent ROC analysis of the
risk score in the GEO cohort. (f ) OS curves for the GEO cohort’s various risk score subgroups.
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Figure 4: Continued.

8 Journal of Oncology



20

0

-20

-20 -10 0 10 20

tS
N

E2

tSNE1

Risk
high
low

(g)

10

0

-10

tS
N

E2

-10 0 10 20
tSNE1

Risk
high
low

(h)

Figure 4: Prognostic study of the TCGA and GEO cohorts using the seven-gene signature model. Cohorts of the TCGA (a, c, e, and g), and
the GEO cohort (b, d, f, and h). (a-b) -e distribution of operating system status. (b-c) -e risk scores’ median value and dispersion. (f-e)
Plot of principal component analysis. (g-h) Examination of the t-SNE coefficients.
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Figure 5: Prognostic accuracy of risk score and clinicopathological factors were compared. TCGA cohort (a, c). GEO cohort (b, d). (a, b)
Univariate cox regression analysis was used to screen OS-related variables. (c, d) Multivariate cox regression analysis was used to screen OS-
related variables. (e) Heatmap depicting the clinicopathological characteristics and gene expression variations between the high- and low-
risk groups.
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Figure 6: A prognostic signature-based nomogram for predicting 1-, 3-, and 5-year OS in LUAD patients. (a) A nomogram for predicting
survival in the TCGA cohort. (b) Nomogram calibration plots for predicting OS at 1, 3, and 5 year in the TCGA cohort.
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Figure 7: (a) GO and (b) KEGG analyses for differentially expressed genes among high and risk groups.
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survival risks. -en, using the two clusters, we built a risk
score model to quantify the prognostic risk. Our research
established a solid case for LUAD clinical treatment. To
begin, the risk score takes the patient’s heterogeneity into
consideration. Second, this score may be used to establish a
connection between pyroptosis and prognosis. A high-risk
score was associated with poor clinical characteristics and a
shorter projected survival time. -e results on TME cell
infiltration showed that the risk score is critical for im-
munotherapy. Most active immune cell infiltration resulted
in a superior response to immunotherapy in individuals with
a high score. A predictive model for LUAD under hypoxia or
modified m6A conditions was investigated as was the
immunoscore. A major emphasis of our study has been on
the factors that directly contribute to tumor cell death and
change the tumormicroenvironment. As a consequence, our
method is more advantageous in terms of facilitating
treatment.

Seven genes were included in our model (CPT1C,
PAQR8, CD109, GOLT1A, ADCY7, SERPINB2, and
KRT1). CPT1C is a member of the CPT1 family of enzymes
that catalyzes the acylation of fatty acids and their en-
trance into the mitochondria for oxidation. CPT1C has a
role in the regulation of energy balance, ceramide
metabolism, and the hypothalamic control of food intake
[32]. CPT1C levels were recently implicated in the poor
prognosis and metastatic development of human malig-
nancies, which are intimately linked to fatty acid ab-
sorption and metabolism. CD109 is a glycoprotein with a
glycosylphosphatidylinositol (GPI) anchor that is over-
expressed in squamous cell carcinomas of the lung,
esophagus, uterus, and oral cavity. CD109 inhibits TGF-β

signaling in keratinocytes via direct modulation of re-
ceptor activation [33]. According to Kazuhiro, miR-378a-
3p regulates tamoxifen sensitivity in breast cancer MCF-7
cells via targeting GOLT1A [34]. According to Li et al.,
ADCY7 promotes the development of acute myeloid
leukemia and that inhibiting ADCY7 may be a new ap-
proach for treating leukemia [35]. SERPINB2 is a stress
protein because it is highly expressed in activated
monocytes and macrophages, as well as differentiating
keratinocytes [36]. According to Han et al., the transcript
level of KRT1 may serve as a possible prognostic bio-
marker in patients with melanoma [37]. PAQR8, one of
the sex steroid hormones, is supposed to be potential
prognostic biomarker of endometrial cancer [38].

Our research sought to categorize patients with LUAD,
discover DEGs, develop a predictive model, and establish a
connection between pyroptosis and patient prognosis. -ere
are limits to this study despite our attempts to verify it from
many perspectives and using multiple databases. Further, in
vitro and in vivo testing of our model is needed to get a
deeper understanding of how the risk score and cell
pyroptosis are related. -ese have not only exacerbated the
difficulties but also provided us with optimism, which
motivates us to continue digging.

5. Conclusion

In addition to providing some hints for future study on
the mechanism of pyroptosis-related genes, our model
may also offer additional resources for a better under-
standing of immune cell-specific genes implicated in
cancer control.
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Figure 8: Immune status between two risk groups TCGA (a, c), GEO (b, d). (a-b) Boxplots were used to display the scores of 16 immune
cells and (c-d) 13 immune-related functions.
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