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Wilms tumor is the most common renal malignancy in children, with a survival rate of more than 90%; however, treatment
outcomes for certain patient subgroups, such as those with bilateral and recurrent diseases, remain significantly below this survival
rate. )erefore, it remains essential to identify new biomarkers and develop effective therapeutic strategies. Based on the
)erapeutically Applicable Research to Generate Effective Treatments and Gene Expression Omnibus RNA microarray datasets,
we have identified eight differentially expressed genes inWilms tumors as renal-specific in 33 randomly selected adult tumors.)e
risk model, constructed using survival forest andmultivariate Cox regression, can effectively predict the prognosis; the risk score is
an independent prognostic factor in Wilms tumor. Gene set enrichment analysis showed that most of the signature genes were
involved in regulating human development-related pathways. At the same time, patients in the high-risk group exhibited more
sensitive immunological and chemotherapeutic properties than those in the low-risk group. )ese results provide new insights
into personalized and precise Wilms tumor treatment strategies.

1. Introduction

Wilms tumor is the most common malignant kidney tumor
and the fourth most common cancer in children [1] with an
onset age between 3 and 5 years. Approximately, 650 new
cases are annually reported in the United States [2]. His-
tologically, Wilms tumor mimics the various stages of stem
cells in the kidney, suggesting the abnormal differentiation
of pluripotent mesenchymal stem cells. )e classic Wilms
tumor comprises three cell types, namely, blastoderm,
stroma, and epithelium, which do not coexist in all cases.
Meanwhile, Wilms tumors can be divided into two histo-
logic types, namely, “favorable” and “unfavorable.” Ap-
proximately, 90% of all cases show a “favorable” histology,
including the three abovementioned cell types, and usually
have a good prognosis [3]. Conversely, cases with an “un-
favorable” histology show a higher degree of dysregulation,
which is defined as a polychromatic, polymorphic nucleus
that is three times the size of neighboring cells with an
abnormal mitotic morphology.

Although the guidelines of the International Society of
Pediatric Oncology (SIOP) and the American Pediatric
Oncology Group (COG) differ regarding the treatment and
risk stratification strategies, their therapies follow relatively
simple methods, with very similar outcomes and overall
survival rates >85% [4, 5]. Surgery is usually the first line of
treatment for Wilms tumor, followed by systemic chemo-
therapy; however, in some cases, chemotherapymay proceed
nephrectomy. Radiotherapy and chemotherapy can effec-
tively improve the survival rate of patients with advanced
Wilms tumors; however, they may also increase the risk of
secondary malignant tumors years later [6, 7].

Chemotherapeutic agents including actinomycin,
adriamycin, and vincristine can increase the risk of sec-
ondary malignant tumors, are associated with specific
toxicities, may interfere with hearing (carboplatin) and
cardiac function (doxorubicin), and may induce peripheral
neuropathy (vincristine) [5]. )erefore, identifying new
biomarkers for Wilms tumors, reducing the intensity of
treatment for children with a low risk of recurrence and
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developing strategies to reduce their toxicity are urgently
needed.

In this study, we have identified unique biomarkers of
Wilms tumor using the )erapeutically Applicable Research
to Generate Effective Treatments (TARGET) and Gene
Expression Omnibus (GEO) RNA-seq datasets and clinical
information and verified them using adult kidney tumors.
Furthermore, we systematically analyzed the risk charac-
teristics constructed by these biomarkers to predict the
prognosis of patients withWilms tumor and determine their
feasibility for immunotherapy and chemotherapy.

2. Materials and Methods

2.1.Datasets. )eRNA-seq transcriptome data, methylation
data, and clinical information of the patients were down-
loaded from the TARGET database (https://ocg.cancer.gov/
programs/target), which contains a total of six cases: normal
samples, 130 cancer samples, 117 methylated samples, and
125 patients with complete clinical information. )e
microarray data of the other two datasets, GSE73209 and
GSE66405, were downloaded from the GEO database.
GSE66405 contains 28 Wilms tumor samples and four
normal kidney tissue samples. GSE73209 includes 32 Wilms
tumor samples and four fetal kidney tissues for genetic
difference analysis. All datasets were processed using the
log2 normalization standard. )e TCGA pan-cancer RNA
sequencing data were downloaded from the UCSC Xena
database (https://xenabrowser.net/datapages/), and 18 can-
cers containing both normal and tumor samples were used
for the verification of differentially expressed genes in the
Wilms tumors. )e comparison of the methylation levels
between the normal and tumor samples of kidney renal clear
cell carcinoma (KIRC) and kidney renal papillary cell

carcinoma (KIRP) was downloaded from the UALCAN
(http://ualcan.path.uab.edu) database.

2.2.Differentially ExpressedGeneAnalysis. We used the edgr
package at the same time to control the normal and tumor
samples of TARGET, GSE66405, and GSE73209 after log2
normalization and used |log2FC|> 1 and p< 0.05, as the
threshold values to screen for differentially expressed genes.
In addition, we analyzed the intersection of the three
datasets to obtain 48 differentially expressed genes and used
GO (gene ontology) and KEGG (Kyoto Encyclopedia of
Genes and Genomes) for functional enrichment analysis.

2.3. Random Survival Forest. To identify the differentially
expressed genes with significant impacts on the prognosis of
Wilms tumors, a univariate Cox proportional hazard re-
gression model was established for each DEG using survival
data. We used the coxph function in the Survival R package
and found that a screening criterion of p< 0.05 would not be
sufficient to screen the target gene; therefore, we set the
threshold to p< 0.9. We used the randomSurvivalForest
algorithm to rank the importance of prognostic-related
genes (ntree< 1,000, which indicates that the number of
random forest CHAID decision trees is lower than 1,000).
We identified genes with a relative importance >0.3, as the
final feature.

2.4. Multivariate Regression Was Used to Build a Predictive
Model. We performed multiple regression analysis on the
eight genes obtained from the random forest algorithm and
then obtained their coefficients, p value, and Z score. )e
final risk model is as follows:

risk score � 0.59190 × UMODexpression + 0.76363 × NAT8 expression +

0.05435 × CLDN19 expression − 0.02884 × TMPRSS2 expression − 0.66439×

DEFB1 expression − 0.59586 × KCNJ1 expression − 0.39844 × AQP2 expression−

0.16687 × HMGCS2 expression.

(1)

2.5. Gene Set Enrichment Analysis (GSEA) of Risk Models.
According to the risk score calculated using the above formula,
the TARGET patients were divided into high- and low-risk
groups, based on the median value. To analyze the significantly
enriched pathways between them, we used h.all.v7.4.symbols of
GSEA 4.0.1. gmt [Hallmarks], c2.cp.kegg.v7.4.symbols.gmt
[Curated], and c5.all.v7.4.symbols.gmt [Gene ontology] as
reference datasets, and a p< 0.05 was used as the screening
threshold. In addition, the gene set related to development was
also obtained from the GSEA database (http://www.gsea-
msigdb.org/gsea/index.jsp).

2.6. Chemical Prediction and Immune Prediction. We used
the R package “pRRophetic” to predict the chemotherapy
response of each sample through a 10-fold crossover based

on the GDSC training set and verified the accuracy of the
prediction. )e half-maximal inhibitory concentration
(IC50) of the sample was estimated using ridge regression.
Second, based on the data on the immune response of
melanoma patients who have recently received checkpoint
blockade treatment against cytotoxic T lymphocyte antigen
4 (CTLA-4) and programmed death receptor 1 (PD-1) [8],
we used the subgraph method to predict the responsiveness
of the high- and low-risk groups to immunotherapy [9].

2.7. Prediction of Drug Susceptibility of Signature Genes.
We downloaded the Compound activity: DTP NCI-60 and
the RNA: RNA-seq data from the CellMinerCDB (Version:
2020.4) database (https://discover.nci.nih.gov/cellminer/
home.do). Only clinical trials and FDA-approved drugs
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were retained, the correlation between the signature genes
and drug sensitivity was checked, and a Spearman corre-
lation coefficient >0.3 and a p< 0.05 were used as the
screening thresholds.

2.8. Statistical Analysis. All statistical tests were performed
using R version 4.0.3. )e Wilcoxon test was used for the
comparison between two groups of data. A nonparametric
test was used for Spearman correlation analysis within the
study, and log-rank test was used for the survival analysis of
the Kaplan–Meier curve. Bonferroni correction was used to
adjust the immunotherapy response in the high- and low-
risk groups. All tests were two-sided, and statistical signif-
icance was set at a p value< 0.05.

3. Results

3.1. Identification of Differential Genes in Wilms Tumors.
First, in order to screen the important differentially
expressed genes, we used the edgr package to compare the
normal and tumor samples using TARGET and GSE73209
datasets after log2 normalization, and |log2FC|> 1 and
p< 0.05 were used as the threshold values to obtain 1,121
differentially expressed genes. By intersecting these with
2,567 genes derived from GSE66405, 48 differentially
expressed genes were obtained (Figures 1 and 2(a)).

3.2. Random Survival Forest. To identify genes with signif-
icant effects on prognosis of the 48 differentially expressed
genes, we used the randomForestSRC R software package for
functional selection. We identified genes with a relative
importance >0.3 as the final feature. Figure 2(b) depicts the
relationship between the error rate and the number of
classification trees, and Figure 2(c) shows the final order of
relative importance of the first eight genes. Figures 2(d)–2(f)
show the expression of these eight genes, HMGCS2, UMOD,
DEFB1, NAT8, KCNJ1, TMPRSS2, CLDN19, and AQP2, in
the normal and cancer tissues of the TARGET, GSE66405,
and GSE73209 datasets. Compared with the normal tissues,
these eight genes were consistently downregulated in cancer
tissues and were expressed as a significant positive corre-
lation (Figure 2(g)).

3.3. Construction of a Prognostic Risk Model Based on the
Differentially Expressed Genes. Following the identification
of eight genes using random survival forest, we conducted
multiple regression analysis to construct a risk model for the
prognostic evaluation of Wilms tumor patients. Table 1
shows the coefficients, p value, Z score, raw importance,
and relative importance of these eight genes.

According to the median risk score, patients with Wilms
tumors were divided into high- and low-risk groups. )e
survival rate of patients with low-risk scores was much
higher than that of patients in the high-risk group
(Figure 3(a)). At the same time, to evaluate the relationship
between the validity of the risk model and the clinical
characteristics, we analyzed the predictive relationship

between the age, sex, stage, histological type, and risk score
from the perspective of single factors and multiple factors.
Differences in sex, stage, and risk score were statistically
significant as indicated using the univariate and multivariate
regression analyses (p< 0.05), suggesting that they are op-
posite prognostic factors for patients with Wilms tumor. In
addition, we used the R software package timeROC to
perform receiver operating characteristic (ROC) analysis of
the prognostic classification of the risk score and analyzed
the classification efficiency of the 2-year, 3-year, and 5-year
prognostic predictions. )e ROC curve showed that the 2-
year, 3-year, and 5-year AUCs were 0.654, 0.678, and 0.685,
respectively. Similarly, the 5-year risk score AUC of patients
withWilms tumors was better than that of the sex, age, stage,
and histology (Figure 3(e)).

3.4. Chemical Prediction and Immune Prediction. To further
explore the possibility and applicability of the risk model
constructed in a clinical setting, based on the recent ac-
ceptance of cytotoxic T lymphocyte antigen 4 (CTLA-4) and
programmed death receptor 1 (PD-1) checkpoint blockade
of the immune response data of melanoma patients treated,
the subgraph method was used to predict the responsiveness
of the high- and low-risk groups to immunotherapy. Pa-
tients in the high-risk group were more likely to be treated
with CTLA-4. Second, considering that chemotherapy is the
most common treatment for patients with Wilms tumor
after surgery (Figure 3(f)), we trained the prediction model
on the GDSC cell line dataset through ridge regression and
evaluated it using a 10-fold cross-validation satisfactory
forecast accuracy. We found that the high- and low-risk
groups showed highly consistent responsiveness to some
commonly used chemotherapeutic agents against Wilms
tumors, that is, in the prediction of the sensitivity to vin-
blastine, vinorelbine, mitomycin C, doxorubicin, gemcita-
bine, and cisplatin. Furthermore, the high-risk group
patients had a significantly higher response sensitivity than
the low-risk group patients (Figure 3(g); p< 0.05).

3.5. Gene Set Enrichment Analysis of the High- and Low-Risk
Groups. Next, explain these differences in drug sensitivity
between the high- and low-risk groups, we performed Gene
Set Enrichment Analysis (GSEA) on the high- and low-risk
groups to characterize the differences in the functional
pathways between the two groups. Compared with the low-
risk group, the high-risk group showed significant activation
of the ERAD pathway and ubiquitin-dependent ERAD
pathway, while in developmental cell growth, morphogen-
esis, hedgehog signaling, late estrogen response, MAPK
signaling pathway, and calcium signaling pathway were
significantly inhibited (Figure 4). )e high- and low-risk
groups manifested significant abnormalities in the devel-
opment-related pathways.We collected the six major human
developmental signaling pathways in the GSEA dataset and
quantified their scores in each Wilms tumor sample using
the ssGSEA algorithm.)e results showed that the high-risk
group was associated with Wnt/β-catenin signaling, Notch
signaling, and hedgehog signaling, compared to the low-risk
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group. )e scores of signaling, TGF-β signaling, Hippo
signaling, and ESC pluripotency pathway were low. Further,
Spearman correlation analysis showed that the risk score was
significantly negatively correlated with the ssGSEA scores of
these six developmental signaling pathways (Figure 4).

3.6. Expression of Signature Genes in Pan-Cancer. We
downloaded 33 types of TCGA cancers from UCSC Xena to
examine the expression patterns of the signature genes of
adult tumors. )e signature genes were significantly
downregulated in most tumors. Apart from DEFB1 and
TMPRSS2, which were upregulated in KICH, the other genes
were significantly downregulated in KICH, KIRC, and KIRP.
At the same time, the expression of AQP2, CLDN19, DEFB1,
KCNJ1, NAT8, and UMOD in the normal tissues of KICH,
KIRC, and KIRP was much higher than that in the normal
tissues of other tumors.)erefore, these may be unique signs
of renal origin (Figure 5).

3.7. Methylation of Signature Genes Was Explored in Adult
Renal Cancer. To further clarify the reasons for the general
low expression of the above-mentioned signature genes in
adult renal tumors, we used the genes of the query signature,
AQP2, CLDN19, DEFB1, KCNJ1, NAT8, HMGCS2, and
TMPRSS2 (the average beta value for “UMOD” is not

available for the majority of the samples in KICH, KIRC, and
KIRP; KICH has no normal methylation data). )e meth-
ylation modification results of KIRC and KIRP show that the
methylation level of the promoter region of AQP2, CLDN19,
DEFB1, KCNJ1, HMGCS2, and TMPRSS2 is elevated
compared to the normal samples, which indicates their
hypermethylation. )e methylation level in the promoter
region of NAT8 was significantly reduced, which indicates
hypomethylation (Figure 6). At the same time, we compared
the methylation modification levels of the high- and low-risk
groups in the TARGETdataset and found that in addition to
TMPRSS2, for the low-risk group, the high-risk group had a
higher level of methylation modifications. )e mRNA ex-
pression levels of AQP2, CLDN19, and DEFB1 were sig-
nificantly negatively correlated with the methylation
modifications, while the mRNA expression levels of
TMPRSS2 and UMOD were significantly positively corre-
lated with the methylation modifications, while the rela-
tionship between the mRNA expression level of other genes
and the methylation modifications remains nebulous
(Figure 7).

3.8. Prediction of the Sensitivity of SignatureGenes inCellMiner
Database. To further explore the possibility of clinical ap-
plication of the signature genes and promote a more precise

Screening 1121 differentially expressed 
genes in TARGET

Screening 267 differentially expressed
genes in GSE73209

Building a risk model for 8 common 
differentially expressed genes 

Functional enrichment analysis between
high- and low-risk groups

Screening 2566 differentially
expressed genes in GSE66405

Methylation analysis for genes 
of signature in the model

Prediction of immunotherapy and
chemotherapy between high- and

low-risk groups

The expression of signature in the 
model verified in adult renal tumors

Obtaining 48 common 
differentially expressed genes 

Random survival forest

Prediction of sensitive chemotherapeutic 
agents of genes of signature in the mode

Figure 1: Flow chart of this study.
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treatment, we used the CellMiner database to evaluate the
impact of the target genes on drug sensitivity. Drug sensi-
tivity was measured using the Z score. )e higher the score,
the more sensitive the cells were to the drug treatment
(Figure 8). Our results showed that the expression of AQP2
and CLDN19 was increased, which is associated with the
sensitivity to imiquimod. )e increased expression of
DEFB1 is associated with the sensitivity to carboplatin and
idarubicin, while the increased expression of TMPRSS2 and
HNGCS2 is associated with resistance to cisplatin.

4. Discussion

)e etiology of Wilms tumor remains unclear; however, it
may be influenced by genetic changes. For example, some
genetic biomarkers associated withWilms tumors have been
identified in approximately 1/3 of all Wilms tumors include
WT1, CTNNB1, and WTX mutations or the loss of het-
erozygosity of the 1p, 1q, 11p15, and 16q chromosomes [10]
affecting the normal embryonic development of the geni-
tourinary tract. )erefore, Wilms tumor can also be clas-
sified as a developmental disease. In this study, we used
machine learning methods to screen the differentially
expressed genes from multiple datasets and identified eight
genes that affect the survival of patients with Wilms tumor.
Further, the risk model constructed can also classify patients

with Wilms tumor into groups of significantly different risk,
to effectively predict prognosis, demonstrating that the risk
score is an independent prognostic factor for Wilms tumor.
Further verification of GSEA and pan-cancer signature gene
expression demonstrates that the signature genes are spe-
cifically of kidney origin and are associated with pathways
that regulate human development. In particular, develop-
mental cell growth is involved in morphogenesis, hedgehog
signaling, Wnt/β-catenin signaling, and Notch signaling.
Our results showed that as the risk score increased, the
corresponding ssGSEA score of development-related path-
ways decreased; that is, the risk score is significantly neg-
atively correlated with the development-related pathways. It
has been reported that an excessive activation of develop-
ment-related pathways, such as Wnt/β-catenin signaling
[11–13] and hedgehog signaling [14], can lead to the pro-
gression or metastasis of Wilms tumors. Our results also
demonstrated that compared with normal tissues, in patients
with Wilms tumor, whether in high- or low-risk groups,
Wnt/β-catenin, Notch, hedgehog, and hippo signaling
pathways have different degrees of activation. However, the
low-risk group patients had a higher degree of activation of
the abovementioned pathways than the high-risk group
patients.)erefore, it is difficult to associate the activation of
these pathways with an absolute prognosis equivalent of
Wilms tumor. We believe that in the high-risk group, the
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Figure 2: Identification of differential genes in Wilms tumor. (a) Venn diagram, (b) error rate, and variation importance of the 48
differentially expressed genes using dimensionality reduction analysis of random survival forest. (c) Target genes with a relative
importance> 0.3 of the random survival forest. Heat map of the eight differentially expressed genes finally identified in normal and tumor
tissues in (d) TARGET, (e) GSE66405, and (f) GSE73209.

Table 1: )e coefficients, p value, Z score, raw importance, and relative importance of these eight genes.

Gene Coef z p Raw importance Relative importance
UMOD 0.5919 1.612 0.1071 0.02239931 0.57317073
TMPRSS2 −0.02884 −0.048 0.9614 0.01098428 0.35772358
NAT8 0.76363 2.174 0.0297 0.01378419 0.41056911
KCNJ1 −0.59586 −1.271 0.2036 0.01270730 0.39024390
HMGCS2 −0.16687 −0.467 0.6403 0.045014 1
DEFB1 −0.66439 −1.755 0.0793 0.01550722 0.44308943
CLDN19 0.05435 0.158 0.8741 0.01076889 0.35365854
AQP2 −0.39844 −1.396 0.1628 0.00818436 0.30487805
Coef: coefficient; p: p value; z: Z score.
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Figure 3: Clinical characteristics and immunochemical predictive analysis of the risk model. (a) Analysis of the Kaplan–Meier survival
curve based on the risk model. (b) Univariate and (c) multivariate analysis of the risk score and clinical characteristics. (d) )e high- and
low-risk group responsiveness to treatment is based on the data of the immune response of melanoma patients who had recently received
checkpoint blockade treatment against cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death receptor 1 (PD-1). (e) )e
chemical prediction response of the high- and low-risk group patients is based on the trained model used on the GDSC cell line dataset.
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Figure 4: Continued.
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Figure 4: Gene set enrichment analysis. (a–h) Gene set enrichment analysis of the high- and low-risk groups. (i) Heat map of the ssGSEA
scores in six developmental pathways of the high- and low-risk groups. (j–o) Correlation analysis of the risk score and ssGSEA score of each
developmental pathway. NES: normalized enrichment score. ∗p< 0.05 and ∗∗p< 0.01.
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regulation of the activated ERAD pathway, the ubiquitin-
dependent ERAD pathway, may be one of the main un-
derlying reasons for the occurrence of Wilms tumors.

ERAD consists of a series of spatiotemporal coupled
activities that mediate the recognition of proteins, cyto-
plasmic delocalization (also called reversal), and the ER-
dependent ubiquitin-dependent proteasomal degradation of
selected proteins, at physiological levels. In this state, ERAD
maintains the quality of the secreted proteome by degrading
proteins with mutations, transcription and translation er-
rors, or inability to assemble into natural oligomers.
However, an overly strict ERAD system can have cata-
strophic consequences. )e ΔF508 mutant form of the cystic
fibrosis transmembrane conductance regulator (CFTR), the
most common cause of cystic fibrosis, is retained, despite its
local function being effectively degraded by ERAD [15, 16].
)e inability of proteins to mature and transport to the
plasma membrane can lead to severe chloride transport
defects, which manifest as the thickening of mucus in the
lungs, pancreas, and other organs. Pharmacological treat-
ment can selectively damage ERAD and promote the
maturation of functional mutant proteins, which can be
effective against cystic fibrosis and other diseases associated
with protein maturity changes [17].

DNAmethylation at CpG dinucleotides is the most well-
characterized epigenetic marker, which has been largely

reprogrammed between different generations of mammals
[18]. Although only hundreds of imprinted genes have been
described to date, it has been demonstrated that imprinting
plays a key role in several biological processes, including
development, growth, cell cycle [19], heredity, and circu-
lation. Epigenetic analysis of cell-free DNA (cfDNA) isolated
from the blood of patients with Wilms tumor can be used to
predict tumor prognosis andmonitor responses to treatment
and can help diagnose different cancers [20–22]. Pritchard-
Jones et al. have analyzed the methylation of cfDNA
extracted from the blood of children with or without Wilms
tumor and found that the genomic region (DMR-2) close to
the PRRT1 gene was relatively highly methylated before
treatment in children with Wilms tumor. In addition, the
level of epitope mutations in this genomic region is sig-
nificantly increased following the preoperative chemother-
apy phase and maintained immediately after the operation
[23]. Similarly, of the eight signature genes in our study,
seven had abnormally high methylation levels in the priming
region in adult tumors KIRC and KIRP, while the meth-
ylation level of NAT8 in the priming region was significantly
reduced. However, this methylation modification is likely to
be the reason for their significant downregulation in tumors.
Although the TARGET dataset does not contain the
methylation data of normal samples, we compared the
mRNA and methylation data of the eight signature genes in
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Figure 5: Verification of the expression of eight differentially expressed genes in pan-cancer. (a–h) AQP2, CLDN19, DEFB1, HMGCS2,
KCNJ1, NAT8, TMPRSS2, and UMOD expression in pan-cancer; ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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the high- and low-risk groups. )e methylation modifica-
tions and mRNA expression were negatively correlated,
while at the same time, the correlation analysis between the
mRNA expression and the methylation levels also verified
that the methylation modifications of the signature genes
negatively regulate the mRNA expression.

In addition, in terms of molecular targeted therapy
prediction, our results show that the increased expression of
AQP2 and CLDN19 is associated with the sensitivity to
imiquimod, an imidazoline derivative commonly used to

treat genital warts. It was the first small-molecule immuno-
oncology drug approved by the FDA for the treatment of
basal cell carcinoma [24, 25]. Imiquimod targets toll-like
receptor 7 (TLR7), which is a pattern recognition receptor
(PRR) that binds to conserved PAMPs, such as double-
stranded RNA, lipopolysaccharide, or unmethylated CpG-
DNA. Most TLRs are expressed on the cell surface, but
TLR3, 7, 8, and 9 are mainly located in endosomes.)e small
TLR8 agonist motolimod (VTX-2337) exhibits antitumor
activity in recurrent or metastatic head and neck squamous
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Figure 6: )e methylation of the signature genes in adult renal cancer. (a–g) Methylation levels of AQP2, CLDN19, DEFB1, HMGCS2,
KCNJ1, NAT8, and TMPRSS2 in normal and tumor tissues of KIRC and KIRP. KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal
papillary cell carcinoma.
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cell carcinoma (HNSCC) by stimulating natural killer cells
and enhancing antibody-dependent cell-mediated toxicity.
Motolimod combined with cetuximab (anti-EGFR anti-
body), or conventional chemotherapy, can decrease the
number of Tregs in the tumor microenvironment and in-
crease in the number of circulating EGFR-specific CD8+
T cells. Compared with cetuximab or chemotherapy, the
progression-free survival (PFS) and overall survival rates
were increased [26, 27]. Imiquimod, motolimod, and resi-
quimod (targeting TLR7 and TLR8) are currently under-
going a series of clinical trials (NCT03276832, NCT0397626,
NCT02126579, and NCT01204684) for the treatment of
solid tumors, usually as adjuvants for vaccination.)erefore,
the development of vaccines for AQP2 can further serve the
clinical application of Wilms tumor treatments.

However, despite the risk model we constructed, which
consists of eight genes, the prognosis and clinical features,
immunology and chemotherapy, the correlation between
mRNA expression and methylation modifications, the
regulation of the developmental pathways, and the de-
velopment of molecularly targeted drugs have achieved
good predictive performance [28, 29]. Since the data on
Wilms tumors with complete follow-up information is
limited, the prognosis and clinical characteristics of pa-
tients with Wilms tumor are also limited in the TARGET
database; therefore, studies with larger samples are urgently
needed. However, our results suggest these eight gene
markers as potential prognostic biomarkers thereby pro-
viding new insights into novel therapeutic strategies for
Wilms tumors.
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Figure 7: Methylation comparison between the high- and low-risk groups and correlation analysis of the mRNA expression and
methylation level. (a–h) Comparison between the high- and low-risk groups regarding the methylation of AQP2, CLDN19, DEFB1,
HMGCS2, KCNJ1, NAT8, TMPRSS2, and UMOD. (i–p) Correlation analysis of the mRNA expression and methylation level of AQP2,
CLDN19, DEFB1, HMGCS2, KCNJ1, NAT8, TMPRSS2, and UMOD; Spearman correlation.
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5. Conclusions

Our results show that the Wilms tumor risk model con-
structed based on the eight differentially expressed genes
with a kidney origin, which were identified in multiple
datasets, can not only effectively predict the prognosis of
Wilms tumor patients but also expand the immune response
to Wilms tumors. Targeting these eight genes as a novel
treatment strategy against Wilms tumors warrants further
investigations, which may lead to the development of new
vaccine for Wilms tumor.
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