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Background. -is study aimed to develop a prediction model to distinguish renal cell carcinoma (RCC) subtypes. Methods. -e
radiomic features (RFs) from 5 different computed tomography (CT) phases were used in the prediction models: noncontrast
phase (NCP), corticomedullary phase (CMP), nephrographic phase (NP), excretory phase (EP), and all-phase (ALL-P). Results.
For the ALL-P model, all of the RFs obtained from the 4 single-phase images were combined to 420 RFs. -e ALL-P model
performed the best of all models, with an accuracy of 0.80; the sensitivity and specificity for clear cell RCC (ccRCC) were 0.85 and
0.83; those for papillary RCC (pRCC) were 0.60 and 0.91; those for chromophobe RCC (cRCC) were 0.66 and 0.91, respectively.
Binary classification experiments showed for distinguishing ccRCC vs. not-ccRCC that the area under the receiver operating
characteristic curve (AUC) of the ALL-P and CMP models was 0.89, but the overall sensitivity/specificity/accuracy of the ALL-P
model was better. For cRCC vs. non-cRCC, the ALL-P model had the best performance. Conclusions. A reliable prediction model
for RCC subtypes was constructed.-e performance of the ALL-P predictionmodel was the best as compared to individual single-
phase models and the traditional prediction model.

1. Introduction

Renal cell carcinoma (RCC) is one of the 10 most common
malignant tumors in humans and the second most common
malignant tumor of the urinary tract, accounting for about
3% of total cancers and 85% of malignant renal tumors [1].
Based on the 2016 World Health Organization (WHO)
classification criteria, clear cell RCC (ccRCC), papillary RCC
(pRCC), and chromophobe RCC (cRCC) account for 95% of
all renal cancers and have a frequency of 75%, 15%, and 5%,
respectively [2]. -e biological behavior and aggressiveness
of the different RCC subtypes are different and thus are
treated differently and have a different prognosis [3]. Studies
have shown that around 94% of patients with metastatic
disease have ccRCC with a 5-year survival rate of 44% to

69%, while the 5-year survival rate of type I pRCC and cRCC
ranges from 78% to 92% [4, 5]. Currently, less aggressive
subtypes associated with a better prognosis are treated with a
nephron-sparing partial nephrectomy and certain nonsur-
gical treatments [6].

-e 2018 National Comprehensive Cancer Network
(NCCN) guidelines for the treatment of renal cancer indi-
cate that the first choice of treatment for patients with
ccRCC who have stage IV disease, have had a relapse, or are
not surgical candidates is axitinib plus pembrolizumab; the
first choice of treatment for patients with non-ccRCC is
sunitinib or participation in a clinical trial [7]. Targeted
drugs and immunotherapy are also used to treat RCC, and
the selection is based on the RCC subtype [8, 9]. As such,
accurate identification of the RCC subtype is important for

Hindawi
Journal of Oncology
Volume 2021, Article ID 6595212, 11 pages
https://doi.org/10.1155/2021/6595212

mailto:m13360022166@163.com
https://orcid.org/0000-0001-7726-9364
https://orcid.org/0000-0002-6977-2274
https://orcid.org/0000-0002-8129-1684
https://orcid.org/0000-0002-1252-5117
https://orcid.org/0000-0002-5917-7738
https://orcid.org/0000-0003-2114-9157
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6595212


selecting the most appropriate treatment and improving
outcomes.

Histopathological examination of a tissue specimen
obtained by needle biopsy or surgical biopsy of the tumor
nidus is the most accurate method for determining the RCC
subtype; however, these methods are limited by the tumor
location and their invasiveness. Noninvasive imaging
methods such as computed tomography (CT) and functional
magnetic resonance imaging (fMRI) have been studied with
respect to diagnosis RCC and subtype, but study results have
been inconsistent [10, 11].

Radiomic features (RFs) reflect the homogeneous phe-
nomenon of the pixels in an image and can be quantitatively
analyzed [12]. By combining medical imaging, gene analysis,
and clinical data, RFs analysis can be used to extract and
analyze tumor information in a high-throughput manner
using artificial intelligence methods and provide a diagnosis
that is much more accurate than the diagnosis that can be
achieved with conventional imagingmethods [13]. Although
the RFsmethod has achieved some success for the prediction
of the RCC subtype, certain issues remain to be solved. Most
studies have used RFs obtained from 2-dimensional (2D) CT
enhancement phases; however, RFs obtained by this method
do not fully reflect tumor biological information as com-
pared to data obtained by 3D CT. In addition, most studies
have focused on 2-tier or single subtype prediction (i.e.,
benign or malignant, ccRCC or not-ccRCC, low or high
grade) and thus are not useful for predicting the subtype in
general. Lastly, most experiment datasets used in prior
studies were balanced, and this does not reflect the actual
distribution of the different subtypes.

-e purpose of this study was to develop a reliable
prediction model to distinguish RCC subtypes using 3D
multiphase enhanced CT RFs using an unbalanced dataset
reflecting the actual distribution of RCC subtypes.

2. Materials and Methods

2.1. Patients. -is study used imaging data and clinical data
retrospectively obtained from the medical records of pa-
tients with RCC treated at the Southern Medical University
hospital from January 2013 to December 2018. -is study
was approved by the Ethics Committee of Southern Medical
University, and because of the retrospective nature of the
study, the requirement of informed patient consent was
waived.

Inclusion criteria were as follows: (1) diagnosis of RCC
confirmed by histopathological examination of a tissue
specimen by 2 pathologists; (2) good CT image quality (clear
image with no artifacts); (3) no treatment prior to the CT
examination; and (4) CT performed with 4 phases: non-
contrast phase (NCP), corticomedullary phase (CMP),
nephrographic phase (NP), and excretory phase (EP). Ex-
clusion criteria were as follows: (1) two or more lesions in a
single kidney or lesion in both kidneys; (2) RCC with mixed
features (e.g., papillary and clear cell features); and (3) RCC
having most or all cysts features.

2.2. CT Acquisition. Two CT devices were used to examine
patients during the study period: a 64-multidetector spiral
CT scanner (Somatom definition CT, Siemens Medical
Solutions) and a 256-multidetector spiral CT scanner
(Brilliance ICT, Philips Medical Systems). In all patients, all
CT images were obtained during breath-holding. Scans were
performed with patients in the supine position, and the
scanning range was from the phrenic top to the lower pole of
both kidneys. CT parameters were as follows: tube volta-
ge� 120 kV, tube current� 150–320mA, layer thick-
ness� 5mm, interlayer spacing� 5mm, field of view
(FOV)� 360mm, and matrix� 512× 512. Spiral scanning
and thin-slice reconstruction were performed for images
obtained in each of the 4 phases. -e CMP, NP, and EP CT
scanning phases were begun at 30–35 s, 50–60 s, and
190–200 s, respectively, after the contrast agent was injected
into the antecubital vein. -e contrast agent used was either
Omnipaque (GE Healthcare) or Ultravist (Bayer, Schering
Pharma).-e dosage was 2ml/kg, and the agent was injected
by a high-pressure injector at a rate of 2.5ml/s, with a
maximum volume of 160ml. All images were examined on
the picture archiving and communication system (PACS) at
our hospital.

Representative enhanced CT images of RCC at different
phases are shown in Figure 1.

2.3. RFs Segmentation. All patient images extracted from the
PACS were anonymized. A CT image from each phase with a
layer thickness of 5mm was chosen for analysis. CT images
were required to have a windowwidth of 300 to 400HU and a
window level of 45 to 65HU. Each image was segmented with
ITK-SNAP software (http://www.itk-snap.org) indepen-
dently by 2 radiologists with 10 and 15 years of experience,
respectively, in the diagnosis of abdominal imaging. Because
NCP images do not clearly show lesion boundaries, seg-
mentation of the CMP was used to represent that of the NCP
image. A 3D volume of tumor tissue was selected as the region
of interest (ROI). -e ROI was manually drawn along the
irregular contour of the tumor and was kept approximately
2mm from the margin of the tumor to reduce interference by
adjacent tissues, such as fat or normal renal tissue [14]. An
example of image segmentation is shown in Figure 2.

2.4. RFs Extraction. -e PyRadiomics computing platform
[13], which uses a large panel of engineered hard-coded
features algorithms, was used for the extraction and pro-
cessing of RFs from medical images. In brief, a segmented
image was loaded and preprocessed, bad RFs were filtered,
and finally, the numbers of RFs were calculated and grouped
into different feature classes. To ensure the stability and
reproducibility of the results, the interclass correlation co-
efficient (ICC) was calculated with respect to the RFs ex-
amined by the 2 radiologists. RFs with an ICC> 0.80 were
regarded as being in good agreement and retained for
further analysis.
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2.5. RF Selection and Model Construction. -e ensemble
learning bagging method was used to classify the different
RCC subtypes. -e LASSO regression method was chosen as
the feature selection model basic learner [15]. Ten basic
learners were set, and each basic learner processed 1,000, 5-
fold cross-validations. -e 5-fold cross-validation method
combines bootstrap and traditional validation (training set
vs. validation set). In each trial/model, the whole dataset is
randomly divided into a training set (80% of samples) and a
validation set (20% of samples). All samples are then in turn
allocated into the training set and validation set in one
complete 5-fold cross-validation. -e bootstrap method
reduces the influence of a small sample size by performing a
large number of simulations, which achieves a consistent
estimation. All trained models with an R2 decision coeffi-
cient >0.8 were retained. -e distribution of imaging fea-
tures was analyzed, and themost significant imaging features
(frequency cutoff� 0.2) were selected (Figure 3(a)). -e

selected features were used as the input features in their own
final classification model.

-eOne-vs.-Rest (OvR: also referred to as One-vs.-All or
OvA) method was used as the basic learner to refit the final
prediction models of single-phase and all-phase studies
(NCP/CMP/NP/EP/ALL-P). Fivefold and external stratified
cross-validation was used to assess the performance of the
classification models with the quantitative indices of the area
under the receiver operating characteristic curve (AUC),
sensitivity, specificity, positive predictive value, negative
predictive value, accuracy, precision, and f1 score. -e
performance of the models (AUC) was expressed as a mean
value of 1000 times 5-fold-cross-validation.

A flow chart of the subtype prediction model is shown in
Figure 3(b). -is method was used to construct a 3-category
classification prediction model for the ccRCC, pRCC, and
cRCC subtypes. In order to more intuitively illustrate the
discrimination of each subtype using the RFs model, binary

A B C D

(a)

A B C D

(b)

A B C D

(c)

Figure 1: Enhanced computed tomography (CT) images of different subtypes of renal carcinoma in different phases. (a) Clear cell renal cell
carcinoma; (b) papillary renal cell carcinoma; (c) chromophobe renal cell carcinoma. (A) Noncontrast phase; (B) corticomedullary phase;
(C) nephrographic phase; (D) excretory phase.
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classification prediction of the different RCC subtypes was
also performed, i.e., ccRCC/not-ccRCC, pRCC/not-pRCC,
and cRCC/not-cRCC.

2.6. Traditional Prediction Method. A radiologist with 10
years of experience in the interpretation of abdominal im-
aging evaluated each case based on traditional imaging
studies and clinical data. Data extracted from the medical
records and imaging studies included patient age, sex, and
clinical symptoms, tumor side (left or right), tumor location
(inside: the tumor was completely within the contour of the
kidney, middle: the tumor was more than 50% inside the
contour of the kidney, outside: the tumor was more than
50% outside the contour of the kidney), the presence of
cystic components and calcifications, and TNM stage. -e
maximum diameter of the tumor and the CT attenuation of
the solid portion of the tumor at the maximum diameter
were measured. -e 5-fold cross-validation method was
used to establish a logistic regression equation to predict the
RCC subtype by selecting variables with a p< 0.05. -e
logistic regression model composed of the aforementioned
data served as a control model. -e performance of the
model is expressed as an average value.

2.7. Statistical Analysis. Statistical analyses were conducted
using SPSS version 22.0 software. -e nonparametric
Kruskal-Wallis H test was used for the comparison mea-
surement data that did not conform to a normal distribution,
and the χ2 test was used for the examination of classification
variables (those with a value of p< 0.05). Python was used to

draw the ROC curves and prepare the confusion matrix (i.e.,
a display of model prediction results) of the models.
Comparisons of ROC curves and AUC of multiple models
were performed using the Delong test of MedCalc software.

3. Results

3.1. Patients. Data of 261 patients with RCC were included
in the analysis, and characteristics are summarized in Ta-
ble 1. Of them, 162 cases were scanned by a 64-multidetector
spiral CT scanner while 99 cases were scanned by a 256-
multidetector spiral CT scanner. Patient groups with the 3
different RCC subtypes were not significantly different with
respect to age (p � 0.786), tumor side (p � 0.946), tumor
diameter (p � 0.708), symptoms (p � 0.385), tumor growth
(p � 0.879), tumor calcifications (p � 0.195), T stage
(p � 0.748), M stage (p � 0.073), TNM stage (p � 0.195),
and NCP lesion attenuation (p � 0.185).

3.2. RF Extraction and Selection. A total of 105 RFs were
extracted from the 3D multiphase enhanced CT images of
each phase of each patient. -e RF features were categorized
as follows: (1) first-order statistics, (2) shape-based (3D)
features, and (3) texture features. Of the 105 RFs, there were
18 first-order statistics features, 13 shape-based (3D) fea-
tures, and 74 texture features (23 gray level cooccurrence
matrix (GLCM) features, 16 gray level size zone matrix
(GLSZM) features, 16 gray level run length matrix (GLRLM)
features, 14 gray level dependence matrix (GLDM) features,
and 5 neighboring gray-tone difference matrix (NGTDM)

Figure 2: Computed tomography (CT) image segmentation in a corticomedullary phase enhanced CT scan.
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Figure 3: (a) Flow chart of the feature selection based on the ensemble learning bagging method. (b) Flow chart of the model construction
based on the ensemble learning bagging method.
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features). Based on the ensemble learning stratified bagging
method and the LASSO regression algorithm, RFs that were
significant in each of the 4 single-phase (NCP, CMP, NP, and
EP) images were used to create amodel for each of the 4 phases,
respectively. In addition, an all-phase model (ALL-P) was
produced by reextracting the features of all 4 phases together.

-e RFs of every model and p values are shown in
Supplemental Table 1.

3.3. PredictionPerformance. -e average performance of the
RF models and the traditional prediction model for pre-
dicting the RCC subtype is shown in Tables 2 and 3. -e
ALL-P model performed the best of all models, with an
average accuracy of 0.80. Using the ALL-P model, the av-
erage sensitivity and specificity for ccRCC were 0.85 and
0.83; those for pRCC were 0.60 and 0.91; those for cRCC
were 0.66 and 0.91, respectively.

Table 1: Characteristics of patients and renal lesions.

RCC
p

ccRCC (n� 209) pRCC (n� 25) cRCC (n� 29)
Sex 0.024
Male 136 (65.6%) 18 (72%) 12 (41.4%)
Female 71 (34.4%) 7 (28%) 17 (58.6%)

Age 52 52 54 0.786
Side 0.946
Right 114 (55%) 10 (40%) 13 (44.8%)
Left 93 (45%) 15 (60%) 16 (55.2%)

Diameter 45.07 45.23 47.36 0.708
Symptoms 0.385

− 91 (44%) 10 (40%) 17 (58.6)
+ 116 (56%) 15 (60%) 12 (41.4)

Growth 0.879
Outside 70 (33.5%) 7 (28%) 10 (34.5%)
Middle 90 (43.5%) 10 (40%) 13 (44.8%)
Inside 47 (23.0%) 8 (32%) 6 (20.7%)

Cystic 0.031
− 46 (22.5%) 14 (56) 20 (69%)
+ 161 (91.6%) 11 (44%) 9 (31%)

Calcification 0.195
− 162 (78.2%) 21 (84%) 27 (93.1%)
+ 42 (22.8%) 4 (16%) 2 (6.9%)

T stage 0.748
T1 144 (69.5%) 15 (60%) 21 (72.4%)
T2 25 (12.1%) 5 (20%) 6 (20.7%)
T3 17 (8.2%) 2 (8%) 1 (3.4%)
T4 21 (10.2%) 3 (12%) 1 (3.4%)

N stage <0.001
N0 186 (89.8%) 19 (76%) 28 (96.6%)
N1 22 (10.2%) 6 (24%) 1 (3.4%)

M stage 0.073
M0 194 (93.7%) 23 (92%) 27 (93.1%)
M1 13 (6.2%) 2 (8%) 2 (6.9%)

TNM 0.195
I 130 (62.8%) 13 (52%) 20 (69%)
II 26 (12.6%) 2 (8%) 6 (20.7%)
III 13 (6.3%) 6 (24%) 2 (6.9%)
IV 28 (18.3%) 4 (16%) 1 (3.4%)

Lesion attenuation
NCP 33.89 35.35 26.61 0.185
CMP 105.31 53.61 85.21 <0.001
NP 86.98 61.9 77.81 <0.001
EP 69.93 60.71 65.95 <0.001

CMP, corticomedullary phase; EP, excretory phase; NCP, noncontrast phase; NP, nephrographic phase. Data are presented as numbers (percentage) or
median. Lesion attenuation is reported as Hounsfield units. p values were calculated by T test, Kruskal-Wallis test, and χ2 test.

6 Journal of Oncology



-e traditional prediction model used data of sex, lesion
cystic features, N stage, and lesion attenuation in the CMP,
NP, and EP phases, and variables with a value of p< 0.05
were included in the logistic regression model. -e average
accuracy of the traditional prediction model was 0.81; the
average sensitivity and specificity for ccRCC were 0.97 and
0.30; those for pRCC were 0.21 and 0.97; those for cRCC
were 0.12 and 0.97, respectively.

-e results of single RCC subtype binary classification
(ccRCC/not-ccRCC; pRCC/not-pRCC; cRCC/not-
ccRCC) using RF models and the traditional model are
shown in Table 4 and Figure 4. In the classification of
ccRCC vs. not-ccRCC, the average performance of the
ALL-P and CMP models was the best (both, AUC � 0.89)
and better than the average performance of the traditional
prediction model (AUC � 0.79). -e performance of the
ALL-P and CMP models was not statistically different
(p � 0.98), and the performance of both models was
significantly better than that of the traditional model
(both, p< 0.001).

In the classification of pRCC vs. not-pRCC, the average
performance of the ALL-P was the best (AUC� 0.85), fol-
lowed by the CMP model (AUC� 0.83), and then the tra-
ditional prediction model (AUC� 0.80). However, the
performance of the 3 models was not significantly different
(p � 0.09, p � 0.13). -e overall average accuracy of the
traditional model was the highest. In the classification of
cRCC vs. not-cRCC, the average performance of the ALL-P
model was the best (AUC� 0.89), and this was significantly
better than that of the NP model (AUC� 0.82) and the
traditional prediction model (AUC� 0.73)
(p � 0.03, p< 0.001, respectively).

4. Discussion

Treatment of RCC is challenging because RCC is genetically
diverse, and the different subtypes have different prognoses
and respond differently to treatments. Even after staging and
grading control, ccRCC has a worse prognosis than pRCC
and cRCC [16, 17]. It has been reported that 5-year tumor-
specific survival rates (CSS) for TNM stage I, II, III, and IV
ccRCC patients (1987–1998) were 91%, 74%, 67%, and 32%,
respectively [18]. -e pRCC has a good prognosis and more
than 75% of cases can be treated by nephron-sparing surgery
[19]. -e cRCC usually has the best prognosis, with a 5-year
relapse-free survival of 89.3% and a 10-year CSS of 88.9%
[20]. -us, to accurately treat RCC and optimize outcomes,
it is necessary to correctly determine the RCC subtype [21].

RFs analysis is widely used in the diagnosis of lung,
breast, liver, and colorectal cancers, but relatively few studies
have explored its use with respect to RCC [22]. In this study,
we use 3D RFs which can represent tumor heterogeneity
much better than 2D RFs because the whole tumor is an-
alyzed, rather than only a single slice. Prior study has in-
dicated that whole tumor analysis provides a better
representation of tumor heterogeneity than when repre-
sentative slices are examined [23]. In this study, we devel-
oped models to distinguish between the 3 most common
RCC subtypes based on RFs and found that the ALL-P RF
model, which contains complete information regarding
tumor blood flow and dynamically reflects tumor hetero-
geneity, provided the best predictive value and was markedly
better than that of the traditional prediction model. Im-
portantly, most prior studies of RCC have focused on dis-
tinguishing RCC subtypes from benign tumors and were
only based on single-phase RFs. Commonly used machine
learning models include Decision Tree, Random Forest,
Support VectorMachine (SVM), Artificial Neural Networks,
Clustering Analysis, Deep Learning, and Bayesian Learning.
-e logistic regression model is the most common classi-
fication model due to its high stability. -e SVM models
were the most commonmethod to differentiate renal tumors
using CT radiomics [24, 25]. In previous studies [26, 27],
sample data were divided into a training set and test set once
time, which would lead to result errors due to sampling
division. Kocak et al. [28] have reported that CMP CT
images provide muchmore valuable texture parameters than
NCP images to predict RCC subtypes. Hodgdon et al. [29]
reported that CT texture analysis of NP can be used to
distinguish fat-poor angiomyolipoma (fp-AML) and ccRCC.
Coy et al. [30] have reported that the best classification result
for ccRCC and oncocytoma on multiphase CTwas obtained
in EP. Zhou et al. have [31] reported that the radiomic
features from the unenhanced, corticomedullary phase, and
nephrographic phase can effectively distinguish the four
nuclear grades. A combination of the Random Forest model,
merging radiomic features, and clinical characteristics
achieved good predictive performance in the internal test set
and external test set.

In this study, the LASSO regression method was used to
analyze the distributions of RFs in different phases in order
to determine which RFs were most important. -is is

Table 2: Confusion matrix of the radiomic feature prediction
models and traditional prediction method for the classification of
the 3 RCC subtypes.

Test set ccRCC Pathology pRCC cRCC

NCP
ccRCC 129 13 9
pRCC 38 6 3
cRCC 40 6 17

CMP
ccRCC 165 4 3
pRCC 17 10 9
cRCC 25 11 17

NP
ccRCC 159 11 10
pRCC 34 4 6
cRCC 14 10 13

EP
ccRCC 146 9 8
pRCC 31 8 10
cRCC 30 8 11

ALL-P
ccRCC 175 5 4
pRCC 16 15 6
cRCC 16 5 19

Traditional
ccRCC 201 18 20
pRCC 3 3 3
cRCC 3 4 6

ALL-P, all-phase; CMP, corticomedullary phase; cRCC, chromophobe cell
renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; EP, excretory
phase; NCP, noncontrast phase; NP, nephrographic phase; pRCC, papillary
cell renal cell carcinoma. Data indicate the number of lesions.
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somewhat different from the traditional method because
when the lasso is used to select the features, many will have p

values >0.05. However, a p value >0.05 only means “no
evidence of difference;” it does not mean “evidence of no
difference.” As such, the inclusion of RFs should not be
based solely on the p value, and this study illustrates that the
ensemble learning bagging method may identify useful in-
formation that is not identified using traditional statistical
methods, and that using a lasso to select features provides
good results.

In this study, the dataset that was used was small and
unbalanced, and the distribution of RCC subtypes was close
to the actual distribution reported in the literature. To avoid
issues involved in the analysis of small and/or unbalanced
datasets, the ensemble learning bagging method was used.
-e ensemble learning bagging method is a machine
learning paradigm where multiple models (often called
“basic learners” or “weak learners”) are trained to solve the
same problem, and then, the models are combined to
provide results with increased accuracy [32]. -e bagging

Table 4: Average performance of the 5 prediction models and the traditional model for single subtype binary classification in the test set.

Sensitivity Specificity Positive predictive value Negative predictive value Accuracy AUC p

ccRCC vs. not-ccRCC

NCP 0.63 0.52 0.83 0.27 0.61 0.60 <0.001
CMP 0.82 0.80 0.94 0.53 0.81 0.89 0.98
NP 0.77 0.72 0.91 0.45 0.76 0.84 0.02
EP 0.75 0.65 0.89 0.4 0.73 0.78 <0.001

ALL-P 0.83 0.85 0.96 0.57 0.84 0.89
Traditional 0.86 0.61 0.85 0.53 0.80 0.79 <0.001

pRCC vs. not-pRCC

NCP 0.48 0.73 0.16 0.93 0.70 0.60 <0.001
CMP 0.68 0.76 0.23 0.96 0.75 0.83 0.09
NP 0.4 0.75 0.14 0.92 0.72 0.67 <0.001
EP 0.48 0.73 0.16 0.93 0.70 0.67 <0.001

ALL-P 0.76 0.81 0.29 0.97 0.8 0.85
Traditional 0.84 0.67 0.17 0.91 0.89 0.80 0.13

cRCC vs. not-ccRCC

NCP 0.59 0.70 0.20 0.93 0.69 0.68 <0.001
CMP 0.83 0.74 0.29 0.97 0.75 0.80 <0.001
NP 0.76 0.78 0.31 0.96 0.78 0.82 0.03
EP 0.62 0.74 0.23 0.94 0.73 0.74 <0.001

ALL-P 0.93 0.84 0.42 0.99 0.85 0.89
Traditional 0.59 0.76 0.38 0.90 0.88 0.73 <0.001

ALL-P, all-phase; AUC, area under the receiver operating characteristic (ROC) curve; CMP, corticomedullary phase; cRCC, chromophobe cell renal cell
carcinoma; ccRCC, clear cell renal cell carcinoma; EP, excretory phase; NCP, noncontrast phase; NP, nephrographic phase; pRCC, papillary cell renal cell
carcinoma. All p values are unadjusted and were calculated in comparison with the ALL-P model.

Table 3: Average performance of the radiomic feature prediction models and traditional prediction method for the classification of 3 RCC
subtypes in the test set.

Sensitivity Specificity Precision f1 score Accuracy

NCP
ccRCC 0.62 0.59 0.85 0.72

0.58pRCC 0.24 0.83 0.13 0.17
cRCC 0.59 0.80 0.27 0.37

CMP
ccRCC 0.80 0.89 0.96 0.87

0.73pRCC 0.40 0.89 0.28 0.41
cRCC 0.59 0.93 0.32 0.33

NP
ccRCC 0.77 0.61 0.88 0.82

0.67pRCC 0.16 0.83 0.09 0.39
cRCC 0.45 0.89 0.35 0.12

EP
ccRCC 0.7 0.69 0.90 0.79

0.63pRCC 0.32 0.83 0.16 0.22
cRCC 0.38 0.84 0.22 0.28

ALL-P
ccRCC 0.85 0.83 0.95 0.88

0.80pRCC 0.60 0.91 0.41 0.49
cRCC 0.66 0.91 0.48 0.56

Traditional
ccRCC 0.97 0.30 0.84 0.90

0.81pRCC 0.21 0.97 0.46 0.29
cRCC 0.12 0.97 0.33 0.18

ALL-P, all-phase; CMP, corticomedullary phase; cRCC, chromophobe cell renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; EP, excretory phase;
NCP, noncontrast phase; NP, nephrographic phase; pRCC, papillary cell renal cell carcinoma.
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method uses the bootstrap method [33] to make certain that
the selection of all the samples in the dataset has the same
probability and the same distribution. Using the LASSO
regression algorithm as the base learner simplifies the
complexity of a prediction model and can determine which
features are most important in the prediction model.

Subsequently, the One-vs.-Rest logistic regression algorithm
method and external layered cross-validation were used to
refit the prediction models, which ensured the reliability of
the prediction result.

Results of the comparison of the predictive performance
of the 5 RFs models and the traditional prediction model
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Figure 4: Receiver operating characteristic (ROC) curves of the 3 subtype prediction models and traditional prediction model from the
single subtype binary classification experiments. (a) ROC curves of ccRCC prediction models and the traditional model in the single subtype
binary classification experiments. (b) ROC curves of cRCC prediction models and the traditional model in the single subtype binary
classification experiments. (c) ROC curves of pRCC prediction models and the traditional model in the single subtype binary classification
experiments. cRCC, chromophobe cell renal cell carcinoma; ccRCC, clear cell renal cell carcinoma; pRCC, papillary cell renal cell carcinoma.
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indicated that the ALL-P performed the best with respect to
distinguishing between the 3 RCC subtypes. -e ALL-P
model exhibited the highest sensitivity and specificity for
each RCC subtype. Although the AUC of the traditional
model was slightly higher than that of the ALL-Pmodel (0.81
vs. 0.80), the traditional model exhibited very low sensitivity
for predicting cRCC and pRCC and very low specificity for
predicting ccRCC. As such, the traditional model offered
little value for the prediction of pRCC and cRCC subtype,
which is due to the unbalanced subtype distribution.

Binary classification experiments showed for dis-
tinguishing ccRCC vs. not-ccRCC that the area under the
receiver operating characteristic curve (AUC) of the ALL-P
and CMP models was 0.89, but the overall sensitivity/spec-
ificity/accuracy of the ALL-P model was better; for pRCC vs.
not-pRCC, the AUC of the ALL-P was the highest
(AUC� 0.85). However, there was no significant difference
with the traditional prediction model (AUC� 0.80)
(p � 0.13); the overall accuracy of the traditional model was
the highest; for cRCC vs. non-cRCC, the ALL-Pmodel offered
statistically better performance than the other models.

-ere are several limitations of this study that should be
considered. First, the dataset was relatively small; however,
methods of analysis were used to account for this. In future
research, we plan to study this topic with a larger dataset.
Second, only a linear basic learner was used; the use of
different learners which may better suit RCC subtype data
may improve the prediction performance. -ird, this study
used a retrospectively obtained dataset; validation of the
method in a prospective study is necessary to determine the
true predictive performance of the method.

5. Conclusions

In conclusion, we constructed a reliable prediction model
based on 3D multiphase enhanced CT image features to
predict the 3 most common RCC subtypes.-e performance
of the ALL-P prediction model was the best as compared to
individual single-phase models and the traditional predic-
tion model. -is noninvasive prediction model may help
guide treatment decisions and precise treatment.
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