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In this study, we constructed the ferroptosis-related genes diagnostic and prognostic models. We analyzed the relationship
between ferroptosis and tumor mutational burden in hepatocellular carcinoma (HCC). Eighty-four ferroptosis-related genes were
analyzed by Cox regression and the least absolute shrinkage and selection operator method. Seven genes (SLC7A11, ACSL3,
ACACA, SLC1A5, G6PD, ACSL6, and VDAC2) were used to construct models. )e reliability of the model was verified by using
the data from the ICGC database. Differential genes in high and low-risk groups revealed enrichment of many immune features by
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. )e degree of ferroptosis was negatively correlated with tumor
mutational burden (i.e., the higher the degree of ferroptosis, the lower the tumor mutational burden). )e tumor mutational
burden was negatively correlated with survival. We also found that ALB, TP53, and DOCK2 may be a bridge between ferroptosis
and tumor mutational burden.)e reported models and the relationship with tumor mutational burden indicate new possibilities
for individualized treatment of HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is a liver tumor with a
poor prognosis. It is the sixth most common malignancy
worldwide [1], which occurs most often in those with
chronic liver diseases such as cirrhosis caused by hepatitis C
or B infection, primary biliary cholangitis or alcoholic
hepatitis, metabolic disorders, and ingestion of aflatoxin-
contaminated food that are all considered as risk factors
contributing to the development of HCC [2–4]. Surgery and
liver transplantation, followed by chemotherapy and ra-
diotherapy, are considered as the main treatment ap-
proaches; the treatment is usually based on the tumor stage
and size. Still, the long-term survival of patients remains
poor [5]. Resistance to targeted therapies, often caused by
the signaling pathway’s reactivation, is one of the main
reasons for poor prognosis. To complicate matters, the
reason for the high refractoriness of HCC is poorly un-
derstood [6, 7].)us, there is an urgent need to analyze HCC
from a different perspective.

Over recent years, alternative therapies have been inves-
tigated. For example, drugs that induce nonapoptotic cell death
provide new opportunities for cancer treatment and limit the
survival of drug-resistant clones [8]. Ferroptosis is a new
mechanism that can induce cancer cell death, by increasing
iron and oxidative stress [9]. Yet, the exact mechanism of
action (e.g., genes involved in ferroptosis) remains unclear.

Tumor mutational burden (TMB), defined as the
number of somatic mutations per megabase of an interro-
gated genomic sequence, varies across patients [10]. TMB
has been suggested as a new biomarker for predicting the
effect of the treatment of immune checkpoint inhibitors
(ICIs) [11–13]. Although increasing studies have shown that
TMB is important in immunotherapy, research on TMB and
ferroptosis interaction is still relatively insufficient.

In this study, we used data from open databases to
analyze the genome of HCC and thousands of molecular
targets, identify a ferroptosis-related model, and explore the
relationship with TMB in HCC. Our study may be helpful
for the diagnosis and treatment of HCC (Figure 1).
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2. Materials and Methods

2.1. Acquisition of Ferroptosis-Related Genes. In KEGG
pathway database (https://www.genome.jp/kegg/pathway.
html), we found ferroptosis-related genes according to the
ferroptosis pathway (map04216). Ferroptosis-related genes
were found in the WP_FERROPTOSIS gene set and
downloaded from GSEA database (https://www.gsea-
msigdb.org/gsea/index.jsp). As no clear gene set has yet
been found to be related to ferroptosis, we searched the
literature related to ferroptosis, carried out a comprehensive
analysis, eliminated some repetitive and unrelated genes,
and added new genes with a high correlation with
ferroptosis.

2.2. Download Transcriptome Data and Differentially
Expressed Analysis. We downloaded the expression data of
the hepatocellular liver carcinoma project rectified to
fragments per kilobase million (FPKM) and simple nucle-
otide variation data of HCC in TCGA (https://tcga-data.nci.
nih.gov/tcga/). Clinical data of the study were downloaded
from the LIHC project in TCGA. We annotated the data by
gene transfer format (GTF) files obtained from Ensembl
(http://asia.ensembl.org). )e expression data of the hepa-
tocellular carcinoma were downloaded from International
Cancer Genome Consortium (ICGC) (https://dcc.icgc.org/).
Next, we distinguished the ferroptosis-related genes, and
differentially expressed analysis was performed to screen
ferroptosis-related genes in R software (|logFC|> 0.75,
FDR< 0.05).

2.3. Establishment and Validation of a Prognostic, Predictive
Signature. We screened genes related to survival; genes
with a p value <0.05 that were considered statistically

significant by univariate Cox regression analysis were
incorporated into the subsequent LASSO Cox regression.
Finally, we built a prognostic signature. )e prognostic
risk score was determined using the coefficient and the
expression levels of the genes. Median was used to de-
termine the high-risk group and low-risk group.
Kaplan–Meier survival curves and time-dependent re-
ceptor operating characteristic (ROC) curves were per-
formed to evaluate the predictive performance of the
prognostic signature. )e RiskScore of each sample was
also visualized by R software. )en, to evaluate the
clinical application value of the constructed model, we
performed univariate and multivariate Cox regression
analyses between the RiskScore and clinicopathological
value to verify whether the model can be used as an
independent clinical prognostic predictor (<0.001 � ∗∗∗,
<0.01 � ∗∗, and <0.05 � ∗).

2.4. Gene Cluster and Ferroptosis Score. )e principal
component analysis was used to group genes and samples.
Boruta package was used to find feature genes from fer-
roptosis-related genes. A group genes and B group genes
were scored in each group by principal component analysis
using the following formula:

Ferroptosis score (Fer score): score of A group − score of groupB.

(1)

2.5. Analyzing the Gene Ontology and the Kyoto Encyclopedia
of Genes and Genomes. To study the function of related
genes, clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2
package visualization were performed in R software.
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Figure 1: )e workflow of this study.
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3. Results

3.1. A Prognosis Model of Ferroptosis-Related Genes.
Eighty-four ferroptosis-related genes were found. Forty-two
differentially expressed genes (DEGs) were screened
according to the difference in their expression between
cancer and normal tissues (|logFC|> 0.75, FDR< 0.05).
)irty-three genes from the 81 genes were obtained by single
factor Cox at the same time (Figure 2(a)), after which we
analyzed the intersection of these two groups (Figure 2(b))
and obtained 19 ferroptosis-related genes (Figure 2(c)). We
analyzed these genes by the least absolute shrinkage and
selection operator. We constructed a model in the TCGA
database and validated the prognosis model in the ICGC
database based on these seven genes (SLC7A11, ACSL3,
ACACA, SLC1A5, G6PD, ACSL6, and VDAC2). )e sur-
vival probability of the high-risk group was significantly
lower than that of the low-risk group in the TCGA and
ICGC database (Figures 3(a) and 3(b)). )e AUC of ROCs
curve was higher than 0.7 in the first year (Figures 3(c) and
3(d)). )e RiskScore and SurvStat of each sample are shown
in Figures 3(e)–3(h)).

Next, we performed a series of univariate (Figures 3(i)
and 3(j)) and multivariate Cox analyses (Figures 3(k) and
3(l)) to investigate the relationship between the risk of
hepatocellular carcinoma and clinicopathological charac-
teristics. )e clinical stage and risk score showed statistical
differences and were presented as independent prognostic
predictors. We obtained a series of differential genes
according to the high and low-risk groups of patients and
analyzed the Gene Ontology (GO) (Figure 3(m)) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Figure 3(n)) for these differential genes.

3.2. Principal Component Analysis of the Ferroptosis-Related
Genes. Next, we used ferroptosis-related related genes to
type the gene expression matrix downloaded from the
TCGA database and 81 ferroptosis-related genes
(Figure 4(a)). We found a significant difference in survival
probability between the two groups (Figure 4(b)), after
which we performed a series of chi-square tests to investigate
the relationship between the risk of prognosis, gene cluster,
and clinicopathological characteristics (Figure 4(c)).

3.3. Looking for and Analyzing Feature Ferroptosis-Related
Genes. An optimal cutoff point (−3.335958) was obtained
according to the Fer score of different samples and samples
were divided into the low and high-score groups.
Kaplan–Meier analysis showed that patients in the low-score
group had a shorter survival time than those in the high-
score group (p< 0.001) (Figure 5(a)). Next, we analyzed the
Gene Ontology (Figures 5(b) and 5(c)) in groups A and B of
these feature genes. We described the gene cluster, Fer score
group, and clinical characteristics of the samples by Sankey
diagram (Figures 5(d)–5(k)). Finally, a series of differential
genes were obtained according to the high and low-score
groups of patients, and Gene Ontology (Figure 5(l)) and the

Kyoto Encyclopedia of Genes and Genomes (Figure 5(m))
were analyzed for these differential genes.

3.4. Verification of Fer Score in Clinical Features. We studied
the correlation between different groups and clinicopatho-
logical features, where N stage (Figures 6(a) and 6(b)) and
gender (Figures 6(c) and 6(d)) showed statistical differences.
Kaplan–Meier analysis revealed that survival probability was
different in patients younger than 65 years old (Figure 6(e))
and male patients (Figure 6(f)), as well as between high and
low Fer score groups. )e survival of different tumor grades
(Figures 6(g) and 6(h)), clinical stages (Figures 6(i) and 6(j)),
and Tstage (Figures 6(k) and 6(l)) was significantly related to
different groups.

3.5. �e Effect of Ferroptosis on Tumor Mutational Burden.
We found that the high Fer score group was associated with a
lower tumor mutational burden than the low Fer score
group (Figure 7(a)). Next, we described the association
between Fer score and tumor mutational burden based on
gene cluster (Figure 7(b)). )ere was a negative correlation
between Fer score and tumor mutational burden (R� −0.24,
p< 0.001). We got the optimal cutoff point according to the
TMB point of samples and grouped the samples according to
the cutoff point. Our results revealed that the survival
probability of the high tumor mutational burden group was
significantly lower than that of the low tumor mutational
burden group (Figure 7(c)). We also conducted a combined
survival analysis of Fer score and tumor mutational burden.
We discovered that the survival probability of the high
tumor mutational burden and low Fer score group was the
lowest, while the survival probability of the low tumor
mutational burden and high Fer score group was the highest
(Figure 7(d)). We described the different gene mutations
form in the high (Figure 7(e)) and low (Figure 7(f)) Fer score
groups and studied the differences of wild type andmutation
of different genes in the high and low Fer score groups by
using the chi-square test. Our results revealed that the
mutation of ALB (p � 0.047), TP53 (p � 0.002), and
DOCK2 (p � 0.012) was significantly different between high
and low Fer score groups.

4. Discussion

Several drugs have been found to induce ferroptosis, such
as erastin [14], sulfasalazine [15], artemisinin [16], sor-
afenib [17], and capecitabine [18–21]. A number of genes
associated with ferroptosis have also been reported. In this
study, we found 81 ferroptosis-related genes from data-
bases. )e ferroptosis-related genes with a different ex-
pression and the survival-related genes obtained by single
factor Cox regression analysis were taken as the intersec-
tion in the TCGA group. Next, we analyzed these genes by
LASSO analysis and calculated the risk score for each
patient according to the median risk score of the TCGA
group, TCGA group, and ICGC group. Finally, patients
were divided into high-risk group and low-risk group (risk
score � SLC7A11 ∗ 0.1674 + ACSL3 ∗ 0.0001 +
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Figure 2: Establishing the prognosis model. (a) Selecting prognostic genes by single factor Cox analysis. (b) )e Venn diagram of the
intersection of DEGs and prognostic genes. (c) )e correlation of 19 ferroptosis-related genes (cutoff� 0.2).
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Figure 3: Continued.
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(m) (n)

Figure 3: To verify the reliability of the prognosis model, patients in the high-risk group experienced a shorter survival time tested by the
Kaplan Meier test (a, b), the ROC curves (c, d), the RiskScore, and SurvStat of each sample (e–h). Risk score presented as an independent
prognostic predictor by univariate (i, j) and multivariate (k, l) Cox analyses in TCGA and ICGC groups. )e GO (m) and KEGG (n) of the
differential genes are according to high and low-risk groups of patients.
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Figure 4: Analyzing ferroptosis-related genes by principal component analysis. (a) Consensus clustering matrix for k� 2. (b) Kaplan–Meier
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pendent prognostic predictor to investigate the
relationship between the risk of hepatocellular carcinoma
and clinicopathological characteristics. Different genes
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FDR < 0.05), and the Gene Ontology and the Kyoto En-
cyclopedia of Genes and Genomes were analyzed for these
differential genes.
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Figure 5: Confirming and analyzing feature ferroptosis-related genes. (a) Kaplan–Meier curves of survival in high and low Fer score groups.
(b, c) GO of feature genes in A and B clusters. (d–k) )e Sankey diagram of gene cluster, Fer score group, and clinical characteristics of the
samples. (l, m) )e GO and KEGG of DEGs in high and low-score groups.
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DOCK2 may be a bridge between ferroptosis and tumor
mutational burden. ALB encodes albumin protein, which
regulates the colloidal osmotic pressure of blood [22]. ALB is
widely known as a prognostic indicator of gastric cancer.
TP53 is a well-known tumor suppressor gene involved in
regulating the cell cycle and negative regulation of cell di-
vision by a series of genes [23, 24]. Recent studies have found
that TP53 can have a role in the process of ferroptosis
[25, 26]. Numerous studies have taken TP53 as a marker
gene of ferroptosis. DOCK2 encodes the dedicator of cy-
tokinesis 2 protein, which is mainly expressed in peripheral

blood immune-related cells and is involved in changes of
cytoskeleton proteins when chemokines act on lymphocytes
[27, 28].

In summary, we constructed a model consisting of seven
ferroptosis-related genes, which have a great predictive value
in HCC. )ese models and the relationship with tumor
mutational burden indicate new possibilities for individu-
alized treatment of HCC patients.

)is study has a few limitations. )e dataset used for the
analysis was not relatively sufficient as it was downloaded
from TCGA and ICGC. In addition, due to the lack of
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corresponding tissue samples and follow-up clinical data,
our theory is difficult to be verified in the current situation.
However, verification from different perspectives was used
to confirm the findings of this study. Based on these analyses,
we assume that our model is meaningful despite the lack of
clinical validation data. )erefore, we will continue to seek
clinical samples and expand the sample scale for future tests.
We hope that our study can have a pivotal role in the
treatment of liver cancer.

5. Conclusion

)is study has a few limitations. )e dataset used for the
analysis was not relatively sufficient as it was downloaded
from TCGA and ICGC. In addition, due to the lack of
corresponding tissue samples and follow-up clinical data,
our theory is difficult to be verified in the current situation.
However, verification from different perspectives was used
to confirm the findings of this study. Based on these analyses,
we assume that our model is meaningful despite the lack of
clinical validation data. )erefore, we will continue to seek
clinical samples and expand the sample scale for future tests.
We hope that our study can have a pivotal role in the
treatment of liver cancer.
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