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Adjuvant radiotherapy is one of the main treatment methods for breast cancer, but its clinical benefit depends largely on the
characteristics of the patient.,is study aimed to explore the relationship between the expression of zinc finger (ZNF) gene family
proteins and the radiosensitivity of breast cancer patients. Clinical and gene expression data on a total of 976 breast cancer samples
were obtained from ,e Cancer Genome Atlas (TCGA) database. ZNF gene expression was dichotomized into groups with a
higher or lower level than the median level of expression. Univariate and multivariate Cox regression analyses were used to
evaluate the relationship between ZNF gene expression levels and radiosensitivity. ,e Molecular Taxonomy Data of the In-
ternational Federation of Breast Cancer (METABRIC) database was used for validation. ,e results revealed that 4 ZNF genes
were possible radiosensitivity markers. High expression of ZNF644 and low expression levels of the other 3 genes (ZNF341,
ZNF541, and ZNF653) were related to the radiosensitivity of breast cancer. Hierarchical cluster, Cox, and CoxBoost analysis based
on these 4 ZNF genes indicated that patients with a favorable 4-gene signature had better overall survival on radiotherapy. ,us,
this 4-gene signature may have value for selecting those patients most likely to benefit from radiotherapy. ZNF gene clusters could
act as radiosensitivity signatures for breast cancer patients and may be involved in determining the radiosensitivity of cancer.

1. Introduction

Breast cancer ranks as the fifth cause of cancer death overall
and is the most commonly diagnosed cancer and the leading
cause of cancer death in women [1, 2]. In 2018, there were
about 2.1 million newly diagnosed female breast cancer
patients worldwide, accounting for nearly a quarter of fe-
male cancer cases [2]. Treatment for breast cancer includes
surgery, chemotherapy, and radiotherapy. A series of studies
have confirmed that radiotherapy can effectively reduce the
risk of local and overall recurrence and can improve overall

survival [3–6]. ,us, after breast-conserving surgery, ra-
diotherapy reduced the recurrence rate by half and mortality
by about one-sixth [7]. However, not all breast cancer pa-
tients benefit from radiotherapy. Although well tolerated by
most breast cancer patients, some patients may experience
breast or chest wall pain during and after radiotherapy, and
the known late side effects of radiotherapy include rib
fractures, heart disease, and lymphedema [8, 9].,e absolute
benefit of radiotherapy depends largely on the characteristics
of the patient. Identifying factors related to individual ra-
diosensitivity will optimize adjuvant radiotherapy and
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reduce the severity of normal tissue responses. Predicting
tumor response to radiotherapy is one of the main problems
of cancer treatment.

Until now, multigene signatures constructed based on
mRNA [10, 11], lncRNA [12, 13], or miRNA [14] expression
levels have been extensively studied to provide prognostic
and predictive information for breast cancer treatment. For
instance, the 9-mRNA signature can distinguish patients
with different risks for overall survival and further predict
the survival probability of patients [10]. ,e genome in-
stability-derived lncRNA signature was used as an inde-
pendent prognostic marker to stratify risk subgroups for
patients with breast cancer [13]. A GI-derived three miRNA
signature was used as a minimally invasive predictor of risk
and unfavorable prognosis in breast cancer [14]. Most of the
existing signatures can predict overall survival or local re-
currence, but few signatures can predict the benefit of
treatment. Although prognostic biomarkers can determine
which patients will have a poor outcome and may require
intensive treatment, they cannot determine which specific
treatment should be given or whether the desired results can
be obtained from these treatments. ,e development of
predictive models has more clinical value [15].

Nowadays, many methods have been developed to
combine gene therapy or molecular therapy with radio-
therapy to predict which patients may be sensitive to and
benefit from radiotherapy. Previous studies have shown that
gene expression patterns can predict the intrinsic radio-
sensitivity of cells. Gene signatures have been identified and
validated for predicting the radiosensitivity of many cancer
types including gastric cancer [16], breast cancer [17], and
glioma [18]. A 31-gene cluster related to cell cycle, cell
adhesion, and cell junctions was found to have the potential
to predict the radiosensitivity of cancer cells [19]. A ra-
diosensitivity molecular signature [radiosensitivity index
(RSI)] was clinically validated in 4 independent datasets
(breast, rectal, esophageal, and head and neck) [20, 21]. Gene
signatures can be used as predictive biomarkers to identify
radiosensitive patients and optimize adjuvant radiotherapy.

Alterations in the transcriptome are a common feature
of human cancer. In many cases, transcriptional disorders
are caused by changes in expression levels or transcription
factor activity [22]. Zinc finger (ZNF) proteins are the largest
family of transcriptional regulators in mammals. ,e classic
zinc finger protein family includes three categories, which
are known as the BTB domain (Broad-complex, Tramtrack,
and Bric-a-brac), the Krüppel-associated box (KRAB), and
the newly defined SCAN domain, also known as the leucine-
rich domain [23]. ,e functions of zinc finger proteins are
extremely diverse, such as DNA recognition, RNA pack-
aging, protein folding and assembly, lipid binding, tran-
scriptional activation, and regulation of apoptosis [24–26].
Several family members mediate various different functions
in tumor pathobiology. ZNF750 and ZNF545 have been
identified as tumor suppressors [27, 28]. ZNF750 induces
cell cycle arrest in the G0/G1 phase and regulates the tumor
vascular microenvironment to inhibit oral squamous cell
carcinoma’s malignant progression. ZNF545 inhibits breast
tumor cell proliferation by inducing apoptosis.

Downregulation of ZNF121 and ZNF259 expression may
inhibit cell proliferation and increase the proportion of
apoptotic cells [29, 30]. ,e overexpression of ZNF genes is
related to poor prognosis and lymph node metastasis
[31–34]. Taken together, these studies indicate that ZNF
genes may function as oncogenes involved in the occurrence
and progression of cancer.

So far, no reports have appeared on correlations between
ZNF genes and the radiosensitivity of breast cancer patients.
In the present study, we used ,e Cancer Genome Atlas
(TCGA) database to analyze the relationship between ZNF
protein family genes and the radiosensitivity of breast
cancer. Data from theMolecular Taxonomy of Breast Cancer
International Consortium (METABRIC) database were
employed for independent external validation. ,is study
suggests new targets for the subsequent development of
therapies for breast cancer.

2. Materials and Methods

2.1. Study Samples. Clinical information and ZNF gene
expression data of patients with breast cancer were down-
loaded from ,e Cancer Genome Atlas (TCGA; http://
cancergenome.nih.gov/) via the R package TCGA assem-
bler [35]. First, we eliminated patients without survival time
data or survival status to select only those with clear survival
information. In addition, we excluded samples of male
breast cancer, patients with no radiotherapy data records,
and those with less than 5 days of survival. Second, nor-
malized read counts for the mRNA sequence data were
downloaded. We eliminated genes with a maximum ex-
pression value <10 because they were barely expressed.
Genes with zero expression rates in >50% of cases were also
removed. ,ird, we merged the expression dataset and
clinical dataset according to the patient’s barcode number to
obtain 511 gene expression profiles of 976 patients for the
next phase of the analysis. ,e specific process of cleaning
the clinical data is shown in Figure 1. Data from the Mo-
lecular Taxonomy of Breast Cancer International Consor-
tium (METABRIC) database (http://www.cbioportal.org/)
were obtained via the cBioPortal to perform the validation
analysis. ,e GSE31863 dataset was available from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/).

2.2. Analysis Method. In the present study, radiosensitive
patients were defined as a group of patients who had better
overall survival after receiving radiotherapy compared with
those who did not receive radiotherapy. Radiosensitivity
genes were defined as those identifying patients responding
to radiotherapy [16, 36]. ZNF genes were screened for
further analysis by using two-step Cox regression analysis.
,e effect of radiotherapy on the overall survival of breast
cancer was related to the expression levels of these ZNF
genes. For example, if a gene related to radiosensitivity was
expressed at a high level, patients who received radiotherapy
had longer survival than patients who did not receive ra-
diotherapy. For the low expression level of this gene, there
were no significant survival differences between the two
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groups; thus, it is concluded that high expression of this gene
was associated with radiosensitivity. ,e selected genes were
determined based on the corresponding risk ratio and ad-
justed P value and those with significant interaction effects
were selected for further analysis.

,e distribution of expressed ZNF genes was skewed
(Figure S1). According to the median expression value of
each ZNF gene, the patients were divided into high and low
expression subgroups. ,e Kaplan–Meier method was used
to estimate survival time for the two subgroups, and the two-
sided log-rank test was applied to determine statistical
significance. Univariate and multivariate proportional
hazard regression models were used to analyze the rela-
tionships between gene expression levels and radiosensi-
tivity. Statistical analysis was performed in R version 3.6.3
using the packages “survival” and “rms.” ,e Benjami-
ni–Hochberg method was used to perform multiple cor-
rections. P< 0.05 was considered statistically significant.
Missing values were multiply imputed using the R package
“mice.” Hierarchical cluster analysis was performed by using
R the package “heatmap.” ,e CoxBoost algorithm used the
R package CoxBoost (https://github.com/binderh/
CoxBoost) [37]. Random survival forests (RSF) algorithm
used the R package “randomForestSRC.” ,e data analysis
process is also summarized in Figure 1.

3. Results

3.1. Clinical Information and Survival Analysis. Clinical
information on the 976 breast cancer patients included in the
TCGA database is summarized in Table S1. Of these patients,
557 received radiotherapy. Multivariate analysis showed that
receiving radiotherapy did not result in a statistically sig-
nificant overall survival (OS) benefit when the whole patient

cohort was analyzed (P� 0.068). ,e only clinical factors
associated with the overall survival of these breast cancer
patients were age (P< 0.001), pathological stage (P< 0.001),
and having received chemotherapy (P � 0.025). A total of
1798 breast cancer patients is included in the METABRIC
database, with 1094 patients receiving radiotherapy. After
univariate and multivariate Cox regression analysis, radio-
therapy was still related to the overall survival of breast
cancer patients (Table S2). In the GSE31863 dataset, a total of
121 patients (66 patients receiving radiotherapy) were in-
cluded in this study (Table S3). Univariate Cox regression
analysis showed that there was no significant correlation
between radiotherapy and the OS of breast cancer patients
(P � 0.127), but in multivariate Cox regression analysis,
radiotherapy showed a survival benefit (P � 0.03).

3.2. Radiosensitive ZNF Gene Development. Based on the
detailed procedure shown in Figure 1, we analyzed the effects
of radiotherapy on the overall survival of breast cancer pa-
tients with high and low levels of ZNF gene expression.
According to the corresponding risk ratio and adjusted P

value, the high expression of 253 ZNF genes and the low
expression of a further 106 ZNF genes were informative for
the outcome of radiotherapy. Of these, the expression levels of
51 genes were related to the overall survival of breast cancer
patients receiving radiotherapy (Tables S4 and S5).,ere were
40 overlapping ZNF genes in the METABRIC database for
validation. Univariate Cox regression analysis showed that the
expression levels of 7 genes were related to radiosensitivity
(Table S6). Multivariate Cox regression analysis of the two
databases showed that high expression of ZNF644 and low
expression of ZNF341, ZNF541, and ZNF653 were associated
with radiosensitivity of breast cancer.

1097 patients for clinical
information

Expression data:1214 patients
with 520 ZNF genes

• Remove patients with missing survival
 and radiotherapy information
• Remove male patients
• Remove patients with survival time less
 than 5 days

976 patients with 511 ZNF genes
expression profiles

• Remove normal tissue
• Remove the gene with a maximum
 expression value <10
• Remove genes with proportion of
 zero expression >50%

Radiosensitive genes

Hierarchical clustering analysis

Screening ZNF genes

validate
METABRIC data

High expression
level of genes

associated with
radiosensitivity

Low expression
level of genes

associated with
radiosensitivity

High (RT vs NRT) :HR<1 & P.adjust<0.05
Low (RT vs NRT) :HR>1 & P.adjust<0.05

or P.adjust>0.05

Low (RT vs NRT) : HR<1 & P.adjust<0.05
High (RT vs NRT) : HR>1 & P.adjust<0.05

or P.adjust>0.05 

RT (high vs low) :HR<1 & P value <0.05 RT (high vs low) : HR>1 & P value <0.05

Univariate cox regression analysis Univariate cox regression analysis

Univariate/Multivariate cox regression analysis Univariate/Multivariate cox regression analysis

Radiosensitivity signature

Figure 1: ,e workflow of data cleaning and analysis steps.
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Figure 2 depicts a comparison of the Kaplan–Meier
curves between radiotherapy and gene expression levels.
When ZNF644 was expressed at a high level, patients who
received radiotherapy had a longer survival time than those
who did not receive radiotherapy. However, in patients with
low ZNF644 expression, there were no significant survival
differences between those receiving or not receiving ra-
diotherapy. Among patients who did receive radiotherapy,
those with high ZNF644 expression had significantly longer
survival than patients with low level expression. For the
other 3 genes, the results were the opposite; i.e., high ex-
pression resulted in no significant survival differences be-
tween patients receiving or not receiving radiotherapy but
when these genes were expressed at low levels, patients
receiving radiotherapy had a survival advantage. ,us, of
patients receiving radiotherapy, those with low expression of
these genes had significantly longer survival than patients
with high expression. Figure 2 shows the results of univariate
analysis of the TCGA data, and Figure 3 shows the results of
univariate analysis of the METABRIC data which are
consistent with these. ,us, similar conclusions can be
drawn from the analyses in Figures 2 and 3.

Multivariate analysis was also performed adjusting for
age, pathological stage, ER, PR, HER, histological type, and
chemotherapy (Figure 4). ,e four identified ZNF genes
with the potential to select patients who are most likely to
benefit from radiotherapy were shown to be independent of
clinical variables.

3.3. Correlation of ZNF Radiosensitive Genes. ,e results of
the correlation analysis are depicted in Figures 5(a) and 6(a)
showing an interesting correlation pattern. ZNF644 ex-
pression was negatively correlated with the other 3 genes
(ZNF341, ZNF541, and ZNF653), which were positively
correlated with each other.

3.4. Cluster and Survival Analysis. We further extracted
expression patterns of these 4 genes for hierarchical cluster
analysis (Figure 5(b)). ,e patients were classified into two
groups according to this hierarchical cluster analysis. ,e
red bar represents clustered radiosensitive (RS) patients
(n� 623), and the black bar represents clustered radio-
resistant (RR) patients (n� 353). Patients in the RS group
had significantly longer survival after receiving radiotherapy
than patients who did not receive radiotherapy (P< 0.001)
(Figure 5(c)). In contrast, radiotherapy did not improve the
overall survival in the RR group (P � 0.68) (Figure 5(d)).
Among the patients receiving radiotherapy, the survival of
patients in the RS group was significantly longer than that in
the RR group (P � 0.003) (Figure 5(e)). ,e results of the
hierarchical cluster and univariate Cox regression analysis of
the validation data are shown in Figure 6. Subsequently,
multivariate analysis was further performed to assess the
effect of radiotherapy on overall survival for the clusters of
RS and RR patients. Table 1 summarizes the raw and ad-
justed HR and P values by univariate and multivariate Cox
regression analysis. Similarly, the univariate and multivar-
iate Cox regression analysis results of the METABRIC data

were consistent with the above outcome. Patients in the
GSE31683 dataset were separated into clustered RS and RR
groups (Figure S3). In the cluster RS group, patients who
received radiotherapy tended to have better recurrence-free
survival than those who did not (P � 0.045). By contrast,
radiotherapy did not show an RFS benefit in the clustered RR
group (P � 0.6). However, there was no significant im-
provement in RFS after radiotherapy in the RS group
(P � 0.32).

3.5. Cox PredictionModel. Among patients with TCGA data
who received radiotherapy, a 4-mRNA ZNF gene signature
comprising ZNF644, ZNF341, ZNF541, and ZNF653 was
established. ,us, the risk score� (−0.61414∗ expression
level of ZNF644) + (0.21667∗ expression level of
ZNF341) + (−0.14907∗ expression level of ZNF541)
+ (−0.06819∗ expression level of ZNF653). ,e coefficients
were assessed by multivariate regression analysis based on
these 4 genes (Table S6). Patients could be divided into low-
and high-risk groups based on the median risk score. Hence,
the low-risk group was classified as the RS group, which had
a higher survival rate after radiotherapy, while the high-risk
group was classified as the RR group, which had a poorer
outcome after radiotherapy (Figure 7(a)). In the RS group,
patients who received radiation therapy had better overall
survival than those who did not (Figure 7(b)). In contrast,
radiotherapy did not improve overall survival in the RR
group (Figure 7(c)). METABRIC data were used to validate
this signature, with the result shown in Figures 7(d)–7(f).
Multivariate Cox regression analysis showed that this
signature was a predictive factor independent of other
clinical factors (Figure 8). According to Cox regression
analysis, the significant interaction between this 4-gene-
based signature and radiotherapy indicates that it may have
predictive value for identifying those patients who will
benefit from radiotherapy. Patients in the GSE31863 dataset
were separated into RS and RR groups using the cut-off
established above (Figure S4). In the RS group, the RFS of
patients who received radiotherapy did not improve sig-
nificantly compared with patients who did not receive
radiotherapy (P � 0.082). Besides, among radiotherapy pa-
tients, the RFS of RS patients was not significantly higher
than that of RR patients (P � 0.73). KM plot showed that this
gene signature did not have significant interaction with
radiotherapy for predicting RFS.

3.6. CoxBoost Prediction Model. CoxBoost is an algorithm
that allows the implementation of boosting in conjunction
with the Cox model [38]. We used the “CoxBoost” package
to fit the Cox model (tune by CoxBoost (): step. no� 100;
penalty� 100). ,e coefficients of the selected multivariate
Cox model were set by the last step of CoxBoost (Figure S5).
Similarly, based on a combination of the gene coefficients
and gene expression count, the risk score of each patient was
calculated. Patients were divided into low- and high-risk
groups based on the median risk score. Among radiotherapy
patients, the prognosis of RS patients was significantly better
than that of RR patients (Figures S6(a) and S6(d)). In the
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Figure 2: ,e survival curves comparison of radiotherapy and ZNF gene expression levels in TCGA data. RT, radiotherapy; NRT,
nonradiotherapy.
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Figure 3: ,e survival curves comparison of radiotherapy and ZNF gene expression levels in METABRIC data. RT, radiotherapy; NRT,
nonradiotherapy.
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of radiotherapy population. (a) TCGA data, the adjusted factors are age, pathological stage, histological type, ER, PR, HER, and che-
motherapy. (b) METABRIC data, the adjusted factors are age, grade, histological type, ER, PR, HER, and chemotherapy.
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classed RS group, patients who received radiotherapy had a
longer OS rate than those who did not receive radiotherapy
(Figures S6(b) and S6(e)), but no significant difference was
observed in the classed RR group (Figures S6(c) and S6(f)).
Multivariate Cox regression analysis showed that this sig-
nature was a predictive factor independent of other clinical
factors (Figure S7). ,e results of the CoxBoost model were
similar to the results of the Cox model. KM plot showed that
this gene signature did not have significant interaction with
radiotherapy for predicting RFS (Figure S8).

3.7. Random Forests Prediction Model. To find out how
useful these genes actually are for the prediction of survival
after radiotherapy, we constructed a random survival forest
model based on these four genes to predict the survival of

patients after radiotherapy. As shown in Figure S9, the
model was symbiosis into 500 binary survival trees, and each
survival tree had 20 terminal nodes on average. ,e out-of-
bag error to verify and predict the survival outcome of the
model was 33.24%. ,e model was used to predict the
survival outcome of the METABRIC dataset, and the error
rate is 50.24%.,is model was used to predict the recurrence
of patients in the GSE31863 dataset after radiotherapy, with
an error rate of 54.54%.

3.8. Comparison with Previously Published Gene Signatures.
We compared two existing gene signatures for predicting
radiosensitivity, a 31-gene cluster and the radiation sensi-
tivity index (RSI), in the TCGA and METABRIC datasets.
Neither 31-gene signature nor RSI showed a significant
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Figure 5: TCGA data. (a) Correlation plot based on Pearson’s correlation test results to show the correlation of gene expression among the 4
ZNF family members. (b) Hierarchical clustering analysis. ,e top red and black bands denote the clustered radiosensitive (RS) and
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Table 1: Hierarchical clustering analyses.

Raw Adjusted
HR (95% CI) P value HR (95% CI) P value

TCGA data
Clustered RS (RT/NRT) 0.346 (0.210–0.570) <0.001 0.253 (0.147–0.438) <0.001
Clustered RR (RT/NRT) 1.143 (0.612–2.135) 0.676 1.411 (0.682–2.918) 0.353
RT patients (RS/RR) 0.436 (0.250–0.762) 0.004 0.437 (0.242–0.788) 0.006

METABRIC data
Clustered RS (RT/NRT) 0.734 (0.567–0.950) 0.019 0.650 (0.491–0.862) 0.003
Clustered RR (RT/NRT) 0.882 (0.767–1.014) 0.078 0.868 (0.751–1.004) 0.056
RT patients (RS/RR) 0.687 (0.565–0.835) <0.001 0.741 (0.606–0.907) 0.004

,e adjusted factors included age, pathological stage (grade), histological type, ER, PR, HER, and chemotherapy. HR, hazard ratio; 95% CI, 95% confidence
interval; RT, radiotherapy; NRT, nonradiotherapy; RS, radiosensitive; RR, radioresistant.
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interaction with radiotherapy in the two datasets. Using
hierarchical clustering based on the gene expression profile of
the 31-gene signature, we divided the total patients into two
clusters (Figures S10 and S11). Patients in the red bar were
assigned to the RS group, and the survival rate of patients after
radiotherapy was higher than that of patients without ra-
diotherapy. Conversely, in the RR groups, there was no
significant difference in survival rate between the radio-
therapy and nonradiotherapy groups. However, among ra-
diotherapy patients, the survival rate of clustered RS patients
was not significantly better than that of clustered RR patients.

For the RSI, the 25th percentile of RSI in patients re-
ceiving radiotherapy was used as the cut-off value for di-
viding patients into RS and RR groups, as in previous studies
[21]. RSI did not show significant results in predicting ra-
diotherapy benefits in either the TCGA or METABRIC
datasets (Figure S12).

4. Discussion

Radiotherapy is one of the main methods of breast cancer
treatment, which has made substantial progress over the
years with the development of improved treatment plans
and implementation methods. However, through multi-
variate Cox regression analysis, we found that radiotherapy
was not an important clinical factor related to the overall
survival of the whole cohort of breast cancer patients in the
TCGA dataset. However, it was significantly associated with
overall survival in the METABRIC validation data. And,
radiotherapy was significantly associated with recurrence-
free survival in the GSE31863 dataset. ,erefore, we con-
cluded that not all patients can benefit from radiotherapy,
nor is the absolute benefit equal across risk groups. Due to
differences in tumor radiosensitivity, the response of cancer
patients to radiotherapy varies greatly, while serious adverse
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Figure 7: Overall survival stratified by Cox predictionmodel.,e survival curves comparison of radiotherapy and 4-gene-based signature in
(a–c) TCGA data and (d–f) METABRIC data. RT, radiotherapy; NRT, nonradiotherapy; RS, radiosensitive; RR, radioresistant.
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consequences are universal. ,erefore, the most important
issue in this respect is to be able to accurately predict which
patients will benefit from radiotherapy before beginning
treatment. In the era of precision medicine, exploring the
radiosensitivity of patients at the genetic level has attracted
widespread attention. Cancer risk and radiosensitivity are
commonly associated with deficiencies in DNA-damage
recognition, DNA repair, cell cycle checkpoint activation,
stress responses and signal transduction, premature senes-
cence pathways, and/or apoptosis [39, 40]. It is known that
hundreds of gene products are involved in determining the
radiosensitivity of cells, and this number is still increasing as
data are generated [40].,e zinc finger protein gene family is
one of the largest human gene families and plays an im-
portant role in transcriptional regulation. In this study, we
explored whether and which ZNF genes may be useful as
radiosensitivity signatures and for personalized medical
decisions.

In the present study, we analyzed female breast cancer
patient clinical and gene expression information from the
TCGA database. A total of 511 ZNF genes and 976 patients
was involved in our initial analysis. First, ZNF genes were
screened by using a two-step Cox regression analysis. ,e
main idea of this step was to determine whether patients
with lower or higher expression of ZNF genes were dif-
ferently sensitive to radiotherapy. Next, univariate and
multivariate Cox regression analysis was used to analyze the
relationship between ZNF gene expression and overall
survival in the patient cohort receiving radiotherapy. ,e
results of TCGA and METABRIC data analyses indicated
that ZNF gene signatures had statistically significant in-
teractions with radiotherapy independent of clinical vari-
ables. ,ese selected ZNF genes revealed that the effect of
radiotherapy on patients is different according to their
different levels of expression. It was assumed that some of
the patients express several of these sensitivity marker genes,
and those patients would be expected to have a relatively
high probability of survival. ,ey are referred to here as
radiosensitive patients, and accordingly, the sensitivity genes
were designated as providing a radiosensitive gene signature.
We have identified a total of 4 ZNF genes related to the
radiosensitivity of breast cancer. High expression of ZNF644
might be associated with the radiosensitivity of breast cancer
patients, and reciprocally, low expression of the other 3
genes (ZNF341, ZNF544, and ZNF653) marked patients in
the radiosensitive group. We found crossing survival curves
with significant P values, e.g., survival curves for the gene
ZNF341 (Figure 2). Landmark analyses were performed
according to a landmark point at 112 months, with the KM
survival analysis for events that occurred up to 112 months
and events that occurred between 112 months and the end of
the follow-up period. Figure S2 shows the results of the
landmark analyses of the overall survival and its compo-
nents. Among patients receiving radiotherapy, patients with
low expression of ZNF341 had significantly longer survival
than patients with a high expression before the landmark
point of 112 months. After the landmark point of 112
months, the survival rate of the low expression group was
higher than that of the high expression group, but the

difference was not statistically significant. ,e predictive
value of longer-term radiosensitivity according to ZNF341
expression needs further study.

To explore the potential relationship between the ra-
diosensitivity-associated genes, correlation coefficients be-
tween the 4 ZNF genes were calculated. ,ese results
indicated that the 3 genes may share some common features
or functions, and the 4 ZNF genes may have a synergistic
prognostic effect. Due to the limited information available, it
has not been proven possible to establish transcriptional
regulatory networks for these four genes. ,e result of hi-
erarchical cluster analysis showed that all breast cancer
patients could be divided into two groups according to their
expression of these 4 genes. Patients clustered as radio-
sensitive had significantly longer survival when compared
with nonradiosensitive patients. ,us, the 4-mRNA ZNF
signature comprising ZNF644, ZNF341, ZNF541, and
ZNF653 was established. Cox regression and CoxBoost
analysis showed that there was a significant interaction
between this signature and the overall survival of radio-
therapy. ,e random survival forest model also showed that
these four genes could predict the survival status of patients
after radiotherapy. We used clustering, Cox modeling,
CoxBoost modeling, and random survival forest methods to
demonstrate that these four genes have the value of pre-
dicting radiosensitivity in breast cancer patients. ,ese ra-
diosensitivity marker genes were designed to be predictive
because they were identified in patients who received ra-
diation therapy, using an appropriate control group of
patients who did not receive radiotherapy. Furthermore, in
the GSE31863 dataset, the RS patients did not show sig-
nificantly longer recurrence-free survival than the RR pa-
tients. However, in the cluster RS group, the radiotherapy
patients had significantly longer recurrence-free survival
than the nonradiotherapy patients. In the RS group, re-
currence-free survival was longer in radiotherapy patients
than in nonradiotherapy patients, although no significant
difference was achieved. However, this still provides evi-
dence for the radiosensitivity study of breast cancer re-
currence-free survival. Due to the limited sample size of
GSE31863, the extrapolation of this gene signature to predict
other outcomes of radiosensitivity requires further research.
In addition, by comparing with the previously developed
radiosensitivity gene signatures, we found that this ZNF
signature has obvious advantages. In both clustering and
modeling, the overall survival of RS patients after radio-
therapy was significantly higher than that of RR patients
after radiotherapy. ,ere was a significant interaction be-
tween the 4-gene signature and radiotherapy according to
the Cox regression analysis, suggesting that the ZNF sig-
nature could have predictive value. ,is ZNF signature has
the potential to select patients who are most likely to benefit
from radiotherapy.

,e zinc finger protein (KRAB-ZFP) family accounts for
at least one-third of mammalian ZNF proteins. KRAB-ZFP
contains an effector motif denoted the Krüppel-associated
box or KRAB, which seems to be unique to vertebrates
[23, 41, 42]. ,e KRAB-ZNF family is very complex, con-
taining a large number of homologous genes, gene isoforms,
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and pseudogenes [26]. ,ere are more than 800 ZNF genes
in the human genome, including 8000 ZNF domains. In-
terestingly, approximately 266 of these genes are found on
chromosome 19, of which 202 are KRAB-ZNF genes [43].
ZNF541 and ZNF653 are both located on chromosome 19.
Although all chromosomes are unique, chromosome 19 can
be considered unusual in that it possesses the highest gene
density of all human chromosomes, more than twice the
average for the whole genome. Studies have found that gene
mutations on chromosome 19 are associated with the oc-
currence of malignant tumors [44]. ,ere are few reports on
the biological functions of ZNF541 and ZNF653. Some
studies have pointed out that the aberrant expression of
ZNF644 may be a potential pathogenic factor for rheuma-
toid arthritis and strong myopia [45, 46].

ZNF341, a transcription factor with 12 Cys2His2 zinc
fingers, regulates STAT3 (signal transducer and activator of
transcription 3) and many other genes, including STAT1,
because it can bind to the STAT3 promoter and activate the
transcription of the STAT3 reporter plasmid [47]. STAT3 is
a central regulator of tumor immune tolerance. Importantly,
STAT3 can act as a negative feedback regulator, and targeted
inhibition of STAT3 can enhance the efficacy of radio-
therapy for head and neck cancer [48], lung cancer [49], and
breast cancer [50]. Studies have shown that transcription
factor ZNF341 is a positive regulator of STAT3 expression
[51]. It is known that ZNF341 transcriptionally regulates the
expression of STAT3 which seems to be necessary for the
efficient repair of damagedDNA.,erefore, based on Comet
assay results, it was hypothesized that increased radiosen-
sitivity was due to the lack of efficient DNA repair [52].
Further studies are needed to better understand how
ZNF341 regulates radiotherapy responses.

,e main limitation of our study is the use of retro-
spective cohorts. We also need some related experiments to
verify these gene signatures. Ideally, predictive biomarkers
should be tested in prospective randomized controlled trials.
However, we have verified these sensitivity signatures in two
large retrospective databases, which provide directions for
follow-up clinical studies. ,ere are no reports on associ-
ations between ZNF genes and radiosensitivity of breast
cancer patients to date. ,erefore, the mechanisms of ZNF
genes and radiosensitivity of breast cancer need further
study.

5. Conclusion

Associations between cancer radiosensitivity and ZNF
family gene expression have not been reported before. In the
present study, we explored this association by using the
TCGA and METABRIC data. According to our results,
patients with high expression of ZNF644 were sensitive to
radiotherapy, while low expression of ZNF314, ZNF544, and
ZNF653 marked those who were radiosensitive. Although
the biological mechanism responsible for these findings is
not clear, and further work is necessary, at least the present
study suggests that these 4 ZNF genes could act as radio-
sensitivity signatures for breast cancer patients. Our study
provides important clues for determining the

radiosensitivity of breast cancer and also offers a new avenue
for clinical improvement in breast cancer treatment.
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red and black bands denote the clustered radiosensitive (RS)
and radioresistant (RR) patients, respectively. (b–d) ,e
survival curves under radiotherapy and nonradiotherapy for
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model in GSE31863. (a) RS group. (b) RR group. (c) All
radiotherapy patients. RT, radiotherapy; NRT, non-
radiotherapy; RS, radiosensitive; RR, radioresistant. Figure S5:
coefficient paths for the TCGA data. Figure S6: overall sur-
vival stratified by CoxBoost prediction model. ,e survival
curves comparison of radiotherapy and 4-gene-based sig-
nature in (a–c) TCGA data and (d–f) METABRIC data. RT,
radiotherapy; NRT, nonradiotherapy; RS, radiosensitive; RR,
radioresistant. Figure S7: the HR estimation for high ex-
pression (High) vs. low expression (Low) of ZNF genes in the
CoxBoost prediction model of radiotherapy patients. (a)
TCGA data, the adjusted factors are age, pathological stage,
histological type, ER, PR, HER, and chemotherapy. (b)
METABRIC data, the adjusted factors are age, grade, histo-
logical type, ER, PR, HER, and chemotherapy. Figure S8:
recurrence-free survival stratified by CoxBoost prediction
model in GSE31863. (a) All radiotherapy patients. (b) RS
group. (c) RR group. RT, radiotherapy; NRT, non-
radiotherapy; RS, radiosensitive; RR, radioresistant. Figure S9:
a random forests prediction model. (a) Model prediction
error rate for different numbers of survival trees. ,e pre-
diction results of the random survival forest model on the (b)
TCGA dataset, (c) METABRIC dataset, and (d) GSE31863.
Figure S10: TCGA data. (a) Hierarchical clustering analysis
based on 31 genes. ,e top red and black bands denote the
clustered radiosensitive (RS) and radioresistant (RR) patients,
respectively. (b–d) ,e survival curves under radiotherapy
and nonradiotherapy for both clustered radiosensitive (RS)
and radioresistant (RR) patients. Figure S11: METABRIC
data. (a) Hierarchical clustering analysis based on 31 genes.
,e top red and black bands denote the clustered radio-
sensitive (RS) and radioresistant (RR) patients, respectively.
(b–d) ,e survival curves under radiotherapy and non-
radiotherapy for both clustered radiosensitive (RS) and
radioresistant (RR) patients. Figure S12: overall survival
stratified by RSI. ,e survival curves comparison of radio-
therapy and 4-gene-based signature in (a–c) TCGA data and
(d–f) METABRIC data. RT, radiotherapy; NRT, non-
radiotherapy; RS, radiosensitive; RR, radioresistant. Table S1:
univariate and multivariate Cox regression analysis of breast
cancer clinical indicators and total survival in the TCGA data.
Table S2: univariate and multivariate Cox regression analysis
of breast cancer clinical indicators and total survival in the
METABRIC data. Table S3: univariate Cox regression analysis
of radiotherapy patients and nonradiotherapy patients in ZNF
genes high/low expression subgroups in the TCGAdata. Table
S4: univariate Cox regression analysis of ZNF genes ex-
pression and overall survival in the radiotherapy patients in
the TCGA data. Table S5: univariate Cox regression analysis
of radiotherapy patients and nonradiotherapy patients in ZNF
genes high/low expression subgroups in theMETABRIC data.
Table S6: multivariate Cox regression analysis of ZNF644,
ZNF341, ZNF541, and ZNF653 genes in radiotherapy patients
with TCGA data. (Supplementary Materials)
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