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Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a leading cause of cancer-related death
worldwide.*is study aimed to establish a reliable prognostic model for HCC using histological grades and the expression levels of
related genes. *e histological grade of a tumor provides prognostic information. *e expression data of HCC samples were
downloaded from *e Cancer Genome Atlas (TCGA) database. We employed the univariate and multivariate Cox regression
analyses, as well as the least absolute shrinkage and selection operator (LASSO) regression to establish the prognostic model. After
verification of the proposed model using data downloaded from the International Cancer Genome Consortium (ICGC) database,
we found that the model was highly reliable, and it was revealed that the prognosis in the high-risk group was significantly worse
than that in the low-risk group. Next, we explored the correlation of RiskScore with patients’ clinicopathological characteristics,
and we found that the RiskScore could be used as an independent prognostic factor, which further confirmed the reliability of our
model. In summary, the proposed model could accurately predict the prognosis of HCC patients, assisting clinicians to study the
roles of different histological grades of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
type of cancer and the fourth leading cause of cancer-related
deaths worldwide [1]. *e major risk factors for HCC in-
clude viral hepatitis B virus (HBV), hepatitis C virus (HCV),
and hepatitis D virus (HDV) and environmental (dietary
aflatoxin and iron overload) factors [2–4]. A large number of
therapeutic methods have been presented for HCC. Nev-
ertheless, patients’ long-term survival remains poor. *us,
there is an urgent need to analyze HCC from a different
perspective. Advancements in protein profiling are signifi-
cant to identify the molecular mechanisms of HCC [5].

Different histological grades affect the treatment and
prognosis of HCC patients, highlighting the important role
of histological grades [6]. Kurebayashi et al. found that the
immune-high subtype was associated with high-grade HCC
[7]. Lin et al. demonstrated amide proton transfer-weighted

imaging is a significant imaging biomarker, complementing
diffusion-weighted imaging for the more accurate and
comprehensive characterization of HCC [8]. Ameli et al.
reported that volumetric apparent diffusion coefficient and
volumetric venous enhancement could predict the grade of
tumor differentiation in HCC [9]. Wang et al. found that the
expression level of STAT4 was correlated with the histo-
logical grade of HCC [10]. Tsai et al. pointed out that a higher
expression level of EMMPRIN was significantly associated
with the histological grade of HCC [11]. However, few
studies have analyzed the differences in gene expression
levels in different histological grades of HCC.

In the present study, we collected data from public
databases to establish a prognostic model using histological
grades of HCC and the expression levels of related genes, and
the model could well predict the prognosis of HCC patients,
providing new insights into the study of different histo-
logical grades of HCC.
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2. Methods

2.1. Data Collection. *e expression data (type: FPKM) and
clinical data of HCC samples were obtained from *e
Cancer Genome Atlas (TCGA) database. *e test dataset of
gene expression and clinical trait data (the Liver Cancer-
RIKEN JP) were downloaded from the International Cancer
Genome Consortium (ICGC) database. Gene transfer for-
mat (GTF) files were downloaded from Ensemble for gene
annotation.

2.2. Establishment and Validation of the Model.
Differentially expressed genes (DEGs) were identified by the
“Limma” package in R programming language (ver. 4.0.0).
*e least absolute shrinkage and selection operator (LASSO)
regression with 10-time cross-validation was used to choose
the penalty regularization parameter. *e coefficient of each
gene was forced to shrink to zero, which eliminated the
correlation between the selected genes and prevented the
model from being overfitting. *e data were analyzed by
“survival,” “glmnet,” and “survminer” packages in R pro-
gramming language. *e “survivalROC” and “survival”
packages were employed to draw receiver operating char-
acteristic (ROC) curves and survival curves, respectively.

2.3. Gene Set Enrichment Analysis (GSEA). GSEA was uti-
lized in this study to compare the differences in survival
among different risk-dependent groups in TCGA cohort. An
annotated gene set file (c2.cp.kegg.v7.0.symbols.gmt) was
selected as the reference. *e threshold of q value <0.05 was
considered as well.

2.4. �e Analysis of ImmuneScore. *e results of deconvo-
lution of tumor-infiltrating immune components were ob-
tained using data collected from the TCGA database that
were analyzed by CIBERSORT. *e “StromalScore,”
“ImmuneScore,” and “ESTIMATEScore” were calculated for
each sample by the “estimate” package. *e correlations
among these indices were analyzed by Spearman’s corre-
lation analysis.

3. Results

3.1. �e Prognostic Model in TCGA Cohort. According to
patients’ age, 371 HCC patients were divided into A (G1-G2)
and B (G3-G4) groups. We identified 2308 DEGs in the B
group (log fold-change (FC)> 1, P valueadj<0.05). We
screened 1340 genes by univariate Cox regression analysis in
TCGA cohort. We used LASSO regression and multivariate
Cox regression analyses to narrow the number of genes, and
finally, 7 genes could be achieved to optimize the model
(Figure 1(a)), and the RiskScore of each sample was cal-
culated as follows: RiskScore � TXNRD1∗0.0104 + ANX-
A10∗− 0.0167+LSM10∗0.0336+TMEM41B∗0.0526+CAD∗
0.0570+ALAS1∗ − 0.0046 + EIF1B∗0.0412. *e median
RiskScore was used to distinguish high- and low-risk groups.
*e prognosis in the high-risk group was significantly worse
than that in the low-risk group (Figure 1(b)). *e values of

area under ROC curve (AUC) at 0.5-, 1-, and 3-year survival
were 0.803, 0.834, and 0.775, respectively (Figure 1(c)). *e
heatmap showed that the expression levels of TXNRD1,
LSM10, TMEM41B, CAD, and EIF1B in the high-risk group
were higher than those in the low-risk group, while opposite
results achieved for the expression levels of ANXA10 and
ALAS1 (Figure 1(d)). Besides, the risk of death in HCC
patients was elevated with the increase of RiskScore
(Figures 1(e) and 1(f )).

3.2. Validation of the Prognostic Model in the ICGC Cohort.
*e accuracy of the prognostic model was validated in 231
HCC samples from the ICGC cohort. *e values of AUC at
0.5-, 1-, and 3-year survival were 0.717, 0.713, and 0.807 in
the ICGC cohort, respectively (Figure 2(a)), confirming the
reliability of the proposed prognostic model. In addition, we
also found that the prognosis in the high-risk group was
significantly worse than that in the low-risk group in the
ICGC cohort (Figure 2(b)). *ese results are consistent with
those achieved in TCGA cohort.

3.3. Identification of the Gene Sets in the Low-Risk Group.
According to the risk score in different groups, we detected
the significant gene sets by GSEA. In the low-risk group, 8
gene sets were found (FDR (q value)<0.001), including
COMPLEMENT_AND_COAGULATION_CASCADES,
DRUG_METABOLISM_CYTOCHROME_P450, TRYP-
TOPHAN_METABOLISM, RETINOL_METABOLISM,
FATTY_ACID_METABOLISM, PRIMARY_BILE_A-
CID_BIOSYNTHESIS, VALINE_LEUCINE_AND_ISO-
LEUCINE_DEGRADATION, and GLYCINE_SERINE_
AND_THREONINE_METABOLISM (Figure 3). In the
high-risk group, no gene set was identified (FDR (q
value) <0.05)

3.4. �e RiskScore Could be an Independent Prognostic
Indicator. We analyzed the relationship between the Risk-
Score and patients’ clinicopathological characteristics (age,
gender, histological grade, clinical stage, and TNM). Uni-
variate Cox regression analysis of clinicopathological fea-
tures showed that P values of stage, T stage, and RiskScore
were <0.001 and HR was >1 (Figure 4(a)). Multivariate Cox
regression analysis of clinicopathological features revealed
that P values of RiskScore and M stage were <0.05 and HR
was >1 (Figure 4(b)).

3.5. �e Correlation of RiskScore with Patients’ Clinicopath-
ological Characteristics. We found that there were signifi-
cant differences in T stage between the high-risk and low-
risk groups (Figures 5(a) and 5(b)). *e survival rate was
significantly different in different ages, genders, and TNM
stages (Figure 5(c)).

3.6. Relationship between RiskScore and ImmuneScore.
We estimated the ImmuneScore of each patient by “esti-
mate” package. Besides, we estimated the infiltration of
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Figure 1: Continued.
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immune cells in each patient and selected 52 samples with
significant differences. We found that there was a significant
negative correlation between RiskScore and StromalScore

(Figure 6(a)). We also noted that there was a positive cor-
relation between RiskScore and the number of eosinophils,
as well as was a negative correlation between RiskScore and
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Figure 1: Constructing the prognostic model. (a) *e results of multivariate cox regression analysis. (b) Comparison of survival data
between the high-risk group and low-risk group. (c) *e ROC curves in TCGA cohort. (d) *e expression levels of TXNRD1, ANXA10,
LSM10, TMEM41B, CAD, ALAS1, and EIF1B in the two groups. (e, f ) *e survival rates of patients with different RiskScores.
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Figure 2: Validation of the prognostic model in ICGC cohort. (a)*e ROC curves in ICGC cohort. (b) Comparison of survival data between
the two groups.
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the number of naive B cells (Figures 6(b) and 6(c)). Finally,
we found a positive correlation between RiskScore and the
expression levels of immune checkpoint inhibitors (CTLA4
and PDCD1) (Figures 6(d) and 6(e)).

4. Discussion

At present, HCC is recognized as a type of cancer with a poor
prognosis worldwide, and its effective treatment has
markedly attracted scholars’ attention. To date, several cli-
nicians have attempted to develop the prognostic models for
HCC. To our knowledge, the histological grade influences

the treatment and prognosis of HCC patients. In the present
study, we differentiated histological grades of HCC, iden-
tified DEGs in the two groups, constructed a prognostic
model using DEGs, and verified it in the external database.

We downloaded HCC data from the TCGA database.
We employed the univariate and multivariate Cox regres-
sion analyses, as well as the LASSO regression to establish
the prognostic model. After verification of the proposed
model using data downloaded from ICGC cohort, we found
that the model was highly reliable, and it was revealed that
the prognosis in the high-risk group was significantly worse
than that in the low-risk group. Next, we explored the
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Figure 3: *e gene sets in the low-risk group could be enriched in metabolic pathways.
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Figure 4: *e relationship between RiskScore and patients’ clinicopathological characteristics. Univariate cox regression analysis (a) and
multivariate cox regression analysis (b) of patients’ clinicopathological features.
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Figure 5: (a)*e correlation of RiskScore with patients’ clinicopathological characteristics. (b) *e distribution of RiskScore in the two
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correlation of RiskScore with patients’ clinicopathological
characteristics, and we found that the RiskScore could be
used as an independent prognostic factor, which further
confirmed the reliability of our model. *e microenviron-
ment is a complex and dynamic system involving extra-
cellular matrix (ECM) components, soluble factors, and
stromal cells, whose distribution and composition vary in
space and time [12]. *e present study revealed that there
was a significant negative correlation between StromalScore
and RiskScore.*erefore, regulating the expressions of some
genes in our model to cause epigenetic changes in stromal
cells may be a new idea for the treatment of HCC. Eosin-
ophils can secrete a variety of substances to affect tumor cells
[13]. Carretero et al. pointed out that eosinophils orchestrate
cancer rejection by normalizing tumor vessels and en-
hancing infiltration of CD8+ T cells [14]. Productive hu-
moral responses require that naive B cells and their
differentiated progeny move among distinct microenvi-
ronments [15]. We, in the current research, found the
significant correlation between RiskScore and the number of
eosinophils and naive B cells. *e role of expression levels of

PDCD1 and CTLA4 in immunotherapy has been widely
studied. Our study found that there was a significant positive
correlation between RiskScore and the expression levels of
PDCD1 and CTLA4.

Gao et al. demonstrated that enhanced expression of
TXNRD1 is associated with advanced tumor progression
and metastasis of HCC [16]. Kudin et al. pointed out that the
increased expression of TXNRD1 is associated with gen-
eralized epilepsy in human [17]. Fu et al. found that
TXNRD1 is an unfavorable prognostic factor for patients
with HCC [18]. Sun et al. reported that ANXA10 promotes
the progression of perihilar cholangiocarcinoma and facil-
itated metastasis by promoting the epithelial-mesenchymal
transition (EMT) process via the PLA2G4A/PGE2/STAT3
pathway [19]. Hung et al. demonstrated that Cul4A could
regulate the degradation of ANXA10 through interaction
with ANXA10 and ubiquitination in lung cancer cells [20].
Neoplasms mainly arise from a single cell of origin, and
tumor progression results from acquired genetic variability
within the original clone, allowing sequential selection of
more aggressive sublines [21]. Huffmann et al. confirmed
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Figure 6: *e relationship between RiskScore and ImmuneScore. (a) *e RiskScore could be significantly negatively correlated with
StromalScore. (b, c) *e RiskScore could be positively correlated with the number of eosinophils and that could be significantly negatively
correlated with the number of näıve B cells. (d, e) *e RiskScore could be significantly positively correlated with the expression levels of
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that a transmembrane protein, TMEM41B, is required for
infection by members of the Flaviviridae [22]. Moretti et al.
found that TMEM41B is a novel regulator of autophagy and
lipidmobilization [23]. Zhao et al. demonstrated that ALAS1
has antitumor effects on colorectal cancer cells [24]. Peyer
et al. described ALAS1 as a new direct target of the bile acid-
activated nuclear receptor farnesoid X receptor [25].

Our model was established based on the results of sta-
tistical analysis [26]. Although the model was validated in
the external database and its reliability was confirmed,
utilization of further advanced statistical analyses can im-
prove its reliability. We still need to verify the relationships
between the 7 genes in the model by biological experiments,
so as to find the potential relationship between the ex-
pression levels of these genes and the histological grade of
HCC. Due to the limitations of data collection from public
databases, it is highly essential to perform a prospective
research to further confirm the proposed prognostic model.
*e proposed model could accurately predict the prognosis
of HCC patients, assisting clinicians to study different
histological grades of HCC.

Abbreviations:

HCC: Hepatocellular carcinoma
FPKM: Fragments per kilo base million
TCGA: *e Cancer Genome Atlas
ICGC: International Cancer Genome Consortium
GTF: Gene transfer format
DEGs: Differentially expressed genes
GSEA: Gene set enrichment analysis.
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