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Background. Endometrial cancer is among the most common malignant tumors threatening the health of women. Recently,
immunity and long noncoding RNA (lncRNA) have been widely examined in oncology and shown to play important roles in
oncology. Here, we searched for immune-related lncRNAs as prognostic biomarkers to predict the outcome of patients with
endometrial cancer. Methods. RNA sequencing data for 575 endometrial cancer samples and immune-related genes were
downloaded from -e Cancer Genome Atlas (TCGA) database and gene set enrichment analysis (GSEA) gene sets, respectively.
Immune-related lncRNAs showing a coexpression relationship with immune-related genes were obtained, and Cox regression
analysis was performed to construct the prognostic model. Survival, independent prognostic, and clinical correlation analyses
were performed to evaluate the prognostic model. Immune infiltration of endometrial cancer samples was also evaluated.
Functional annotation of 12 immune-related lncRNAs was performed using GSEA software. Prognostic nomogram and survival
analysis for independent prognostic risk factors were performed to evaluate the prognostic model and calculate the survival time
based on the prognostic model. Results. Twelve immune-related lncRNAs (ELN-AS1, AC103563.7, PCAT19, AF131215.5,
LINC01871, AC084117.1, NRAV, SCARNA9, AL049539.1, POC1B-AS1, AC108134.4, and AC019080.5) were obtained, and a
prognostic model was constructed.-e survival rate in the high-risk group was significantly lower than that in the low-risk group.
Patient age, pathological grade, the International Federation of Gynecology and Obstetrics (FIGO) stage, and risk status were the
risk factors. -e 12 immune-related lncRNAs correlated with patient age, pathological grade, and FIGO stage. Principal
component analysis and functional annotation showed that the high-risk and low-risk groups separated better, and the immune
status of the high-risk and low-risk groups differed. Nomogram and receiver operating characteristic (ROC) curves effectively
predicted the prognosis of endometrial cancer. Additionally, age, pathological grade, FIGO stage, and risk status were all related to
patient survival. Conclusion. We identified 12 immune-related lncRNAs affecting the prognosis of endometrial cancer, which may
be useful as therapeutic targets and molecular biomarkers.

1. Introduction

Endometrial cancer is one of the most common malignant
tumors in women. However, the mechanisms underlying
endometrial cancer occurrence and development are un-
known. Recent studies indicated that hypertension, diabetes,
obesity, and estrogen replacement therapy are risk factors
for endometrial cancer [1–4]. -e main clinical manifesta-
tion of endometrial cancer is postmenopausal vaginal
bleeding [5]. Currently, the main treatment methods are
surgery, chemotherapy, radiotherapy, and neoadjuvant

therapy [6–9]. In general, the prognosis of endometrial
cancer is good; however, some patients with higher FIGO
stages have a poor prognosis [10–12].

Long noncoding RNAs (lncRNAs) are more than 200
nucleotides in length and were recently shown to dynami-
cally regulate gene expression at multiple levels [13–18].
LncRNAs play many roles such as in the growth and de-
velopment of the body [19], as well as occurrence and de-
velopment of many diseases, such as cardiovascular diseases
[20, 21], neurodegenerative diseases [22], and malignant
tumors [23].
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Recently, tumor immunotherapy has gained attention.
Immune cells and molecules are complex components in the
tumor microenvironment and can promote or inhibit ma-
lignant tumor progression. -e immune response in the
tumor microenvironment has an important effect on tumor
proliferation, invasion, and metastasis [24–29]. Many
studies have focused on the immune response in the tumor
microenvironment to regulate tumor progression. For ex-
ample, in breast and colon cancer and melanoma models, by
reprograming the tumor-associated macrophage population
to a proinflammatory phenotype and increasing tumor
immunogenicity, anti-MARCO monoclonal antibodies can
inhibit tumor progression [30].

In this study, we explored the transcriptome data of
endometrial cancer samples in the TCGA database. Im-
mune-related lncRNAs coexpressed with immune-related
genes were identified, and a prognostic nomogram was
constructed to predict the overall survival rate. -ese
lncRNAs show potential as therapeutic targets and molec-
ular biomarkers of endometrial cancer.

2. Materials and Methods

2.1. Data Sources. Fragments per kilobase per million RNA
sequencing data of 575 samples were downloaded from
TCGA database (https://portal.gdc.cancer.gov/), with 23
normal samples and 552 endometrial cancer samples.
Clinical information on endometrial cancer samples was
downloaded from UCSC Xena (https://xenabrowser.net).
We downloaded the gene sets IMMUNE_RESPONSE
(systematic name: M13664), IMMUNE_SYSTEM_PRO-
CESS (systematic name: M19817), GO_NEGATIVE_R-
EGULATION_OF_ADAPTIVE_IMMUNE_RESPONSE
(systematic name: M10422), GO_NEGATIVE_R-
EGULATION_OF_IMMUNE_RESPONSE (systematic
name: M15641), and GO_T_CELL_ACTIVATIO-
N_INVOLVED_IN_IMMUNE_RESPONSE (systematic
name: M10714) from the gene set enrichment analysis
(GSEA) database (https://software.broadinstitute.org/gsea/
index.jsp). Immune-related genes were obtained from the
IMMUNE_RESPONSE (systematic name: M13664) and
IMMUNE_SYSTEM_PROCESS (systematic name: M19817)
gene sets. Functional annotation was performed using the
gene sets IMMUNE_RESPONSE (systematic name:
M13664), GO_NEGATIVE_REGULATION_OF_ADAPTI
VE_IMMUNE_RESPONSE (systematic name: M10422),
GO_NEGATIVE_REGULATION_OF_IMMUNE_RESPO
NSE (systematic name: M15641), and GO_T_CELL_AC-
TIVATION_INVOLVED_IN_IMMUNE_RESPONSE (sys
tematic name: M10714).

2.2. Acquisition of Immune-Related lncRNAs. By sorting and
analyzing the transcriptome data of the endometrial cancer
samples from TCGA database, the expression matrices of
mRNA and lncRNA of endometrial cancer samples were
obtained. Immune-related genes were obtained from the
IMMUNE_RESPONSE (systematic name: M13664) and
IMMUNE_SYSTEM_PROCESS (systematic name: M19817)

gene sets. -e immune-related gene expression matrix was
obtained by collecting and analyzing the mRNA expression
matrix and immune-related genes together using the limma
package in R software. Finally, the limma package in R
software was used to screen immune-related lncRNAs
showing a coexpression relationship with immune-related
genes, and an immune-related lncRNA expression matrix
was obtained (correlation filter� 0.5; p value filter� 0.001).

2.3. Cox Regression, Survival, Independent Prognostic, and
Clinical Correlation Analyses. By collecting and analyzing
the clinical data, univariate (p value filter� 0.01) and mul-
tivariate Cox regression analyses were performed using the
survival package in R software. -e coexpression network
was plotted using Cytoscape software (Cytoscape v. 3.7.2).
-e survival and survminer packages of R software were
used to draw the survival curves of high- and low-risk
groups. Risk curves were drawn using the pheatmap package
in R software. Univariate- and multivariate-independent
prognostic analyses were performed using the survival
package in R software, and a multi-index receiver operating
characteristic (ROC) curve was plotted using survivalROC
package in R software to evaluate the accuracy of the
constructed model. -e ggpubr package in R software was
used for clinical correlation analysis.

2.4. Immune and Stromal Scores. We used the limma and
estimate packages in R software to calculate the immune
scores and stromal scores of all samples. R software was then
used to analyze the immune scores and stromal scores of
different risk states.

2.5. Principal Component Analysis and GSEA. Principal
component analysis was performed using the limma and
scatterplot3d packages in R software. -e 12 immune-re-
lated lncRNAs were functionally annotated using GSEA
software (GSEA_4.0.2).

2.6. Prognostic Nomogram and Survival Analysis of Inde-
pendent Prognostic Risk Factors. Using the foreign, survival,
and caret packages in R software, 70% of the tumor samples
were placed into the training group and 30% into the validation
group. -e rms, foreign, and survival packages in R software
were used to perform multivariate Cox regression analysis of
the training group and calculate the C-index of the training and
validation groups. A nomogramwas constructed using the rms,
foreign, and survival packages in R software. -e survival and
timeROC packages in R software were used to construct multi-
index ROC curves for the training and validation groups. -e
survival package in R software was used to perform Kaplan-
Meier survival analysis for the training group.

2.7. Data Statistics. -e statistical analysis was performed
using R software (R-3.6.1), strawberry-Perl-5.30.0.1. p values
<0.05 were considered to indicate statistically significant
results.
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3. Results

3.1. Immune-Related lncRNAs Associated with Prognosis.
To identify immune-related lncRNAs associated with
prognosis, 332 immune-related genes were selected from the
GSEA data sets. -rough data collection and analysis, we
identified 137 immune-related genes and 363 immune-re-
lated lncRNAs showing a coexpression relationship with
these immune-related genes. Next, univariate Cox regres-
sion analysis of all immune-related lncRNAs was performed,
and a Forest plot was obtained (Figure 1(a)). As shown in
Figure 1, green columns indicate protective lncRNAs
[hazard ratio (HR)< 1], and red column indicates risk-as-
sociated lncRNAs (HR> 1). Next, 34 lncRNAs were sub-
jected to multivariate Cox regression analysis, and 12
immune-related lncRNAs associated with prognosis were
obtained (Table 1): ELN-AS1, AC103563.7, PCAT19,
AF131215.5, LINC01871, AC084117.1, NRAV, SCARNA9,
AL049539.1, POC1B-AS1, AC108134.4, and AC019080.5.
Based on the median of risk scores, all endometrial cancer
samples were divided into high- and low-risk groups: risk
score� (expression level of ELN-AS1× 0.229) + (expression
level of AC103563.7× 0.313) + (expression level of PCAT19
× −0.277) + (expression level of AF131215.5× 0.252)
+ (expression level of LINC01871 × −0.357) + (expression
level of AC084117.1× 0.449) + (expression level of NRAV ×

−0.433) + (expression level of SCARNA9 × −0.339) +
(expression level of AL049539.1× 0.476) + (expression level
of POC1B-AS1 × −0.758) + (expression level of AC108134.4
× −0.262) + (expression level of AC019080.5× 0.899). Fi-
nally, an immune-related lncRNA-immune-related gene
network was constructed using Cytoscape software
(Figure 1(b)).

3.2. Survival Analysis and Risk Curves. To compare the
survival rates of different risk statuses based on grouping
results, survival analysis was performed, and survival curves
were obtained (Figure 2(a)). As shown in Figure 2, the
survival rate of the high-risk group was lower than that of the
low-risk group. Risk curves for the high- and low-risk
groups were obtained (Figures 2(b) and 2(c)). -e results
showed that the risk score of the high-risk group was higher
than that of the low-risk group, and the survival time of the
high-risk group was shorter than that of the low-risk group.
Next, a heat map was drawn to compare the expression levels
of the 12 immune-related lncRNAs with different risk sta-
tuses (Figure 2(d)). As shown in Figure 2, the expression
levels of AC103563.7, AF131215.5, AC084117.1, and
AL049539.1 in the high-risk group were higher than those in
the low-risk group, and the expression levels of NRAV, ELN-
AS1, PCAT19, AC108134.4, LINC01871, and SCARNA9 in
the low-risk group were higher than those in the high-risk
group. Survival curves were then plotted for the 12 immune-
related lncRNAs to analyze the effects of these lncRNAs on
survival (Figures 2(e)–2(h) and Supplementary Figure 1). As
shown in Figure 2, the overall survival rate associated with
LINC01871, AC108134.4, and POC1B-AS1 in the low-ex-
pression group was lower than that in the high-expression

group. -e overall survival rate associated with AC019080.5
in the low-expression group was higher than that in the
high-expression group (p< 0.05).

3.3. IndependentPrognostic andClinicalCorrelationAnalyses.
To analyze the impact of the patients’ age, pathological grade,
and FIGO stage on prognosis, we performed univariate and
multivariate independent prognostic analyses of clinical data
(Figures 3(a) and 3(b)). -e results showed that patients’ age,
pathological grade, and FIGO stage were associated with
prognosis and were risk factors for endometrial cancer. Older
patients had a higher pathological grade and FIGO stage and
poorer prognosis. We then constructed a multi-index ROC
curve to evaluate the accuracy of all models (Figure 3(c)). As
shown in Figure 3, risk score (area under the curve (AUC)�

0.709), age (AUC� 0.614), grade (AUC� 0.652), and stage
(AUC� 0.709) indicated that the constructed model was
accurate. Clinical correlation analysis was performed for the
12 immune-related lncRNAs and patients’ age, pathological
grade, and FIGO stage (Figures 3(d)–3(f)). As shown in
Figure 3, AC103563.7, AL049539.1, ELN-AS1, NRAV, and
POC1B-AS1 were associated with age, pathological grade, and
FIGO stage; AC108134.4 and PCAT19 with pathological
grade and FIGO stage; and AF131215.5 and SCARNA9 with
pathological grade.

3.4. Immune Scores and Stromal Scores. To compare tumor
microenvironment differences for different risk statuses
using the ESTIMATE algorithm, the ESTIMATE, immune,
and stromal scores of all samples were calculated.-e results
showed that the ESTIMATE scores ranged from −3166.978
to 3990.147, immune scores ranged from −1359.509 to
3614.677, and stromal scores ranged from −2224.623 to
860.431. Next, we drew box plots of these scores for different
risk statuses (Figures 4(a)–4(c)). -e average ESTIMATE
scores, immune scores, and stromal scores of the high-risk
group were lower than those of the low-risk group.

3.5. Principal Component and Gene Set Enrichment Analyses.
Principal component analyses of the expressions of all
immune-related lncRNAs and 12 immune-related lncRNAs
associated with prognosis were performed to determine
whether there were differences in the distribution between
the high- and low-risk groups (Figures 5(a) and 5(b)). As
shown in Figure 5, the high- and low-risk groups showed
better separations, and the immune statuses of these groups
differed. Next, GSEA was performed on the 12 immune-
related lncRNAs (Figures 5(c)–5(f )). As shown in Figure 5,
compared with the high-risk group, the low-risk group was
enriched in the gene sets IMMUNE_RESPONSE (systematic
name: M13664), GO_NEGATIVE_REGULATION_OF_
ADAPTIVE_IMMUNE_RESPONSE (systematic name:
M10422), GO_NEGATIVE_REGULATION_OF_IMMU
NE_RESPONSE (systematic name: M15641), and GO_T_-
CELL_ACTIVATION_INVOLVED_IN_IMMUNE_RES-
PONSE (systematic name: M10714). -ese immune-related
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Figure 1: Immune-related lncRNAs associated with prognosis. (a) Forest plot of univariate Cox regression analysis. -e p value, hazard
ratio, and 95% confidence intervals of immune-related genes are shown. Red and green indicate risk-associated (HR> 1) and protective
(HR< 1) lncRNAs, respectively. (b) Immune-related lncRNA-immune-related gene network. Green and red represent immune-related
genes and 12 immune-related lncRNAs, respectively.
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Table 1: Multivariate Cox regression analysis of 12 immune-related lncRNAs.

LncRNA Coefficient HR HR.95L HR.95H p value
ELN-AS1 0.229 1.257 0.963 1.640 0.092
AC103563.7 0.313 1.367 1.018 1.836 0.038
PCAT19 −0.277 0.758 0.564 1.018 0.065
AF131215.5 0.252 1.287 0.924 1.794 0.136
LINC01871 −0.357 0.700 0.560 0.873 0.002
AC084117.1 0.449 1.567 1.065 2.307 0.023
NRAV −0.433 0.648 0.407 1.034 0.069
SCARNA9 −0.339 0.712 0.575 0.883 0.002
AL049539.1 0.476 1.610 1.041 2.488 0.032
POC1B-AS1 −0.758 0.469 0.203 1.083 0.076
AC108134.4 −0.262 0.770 0.552 1.073 0.122
AC019080.5 0.899 2.457 1.352 4.464 0.003
Regression coefficients, p value, hazard ratio, and 95% confidence interval of immune-related lncRNAs are shown.
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Figure 2: Continued.
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Figure 3: Independent prognostic analysis and clinical correlation analysis. (a) Forest plot of univariate independent prognostic analysis.
-e p value, hazard ratios, and 95% confidence intervals are shown. Red and green indicate risk-related (HR> 1) and protective (HR< 1)
factors, respectively. (b) Forest plot of multivariate independent prognostic analysis. -e p value, hazard ratios, and 95% confidence
intervals are shown. Red and green indicate risk-related (HR> 1) and protective (HR< 1) factors, respectively. (c) Plot of multi-index ROC
curve showing risk score (AUC� 0.709), age (AUC� 0.614), grade (AUC� 0.652), and stage (AUC� 0.709). (d) LncRNA expression levels in
patients aged below (red) or above (blue) 65 years. (e) LncRNA expression levels in different pathological grades. (f ) LncRNA expression
levels in different FIGO stages. ∗∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. ns, p > 0.05.
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Figure 4: Immune scores and stromal scores. (a) Distribution of ESTIMATE scores of different risk statuses. Boxplot shows a significant
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lncRNAs may be associated with regulation of the immune
response.

3.6. Prognostic Nomogram for Overall Survival Rate. To
further evaluate the effect of the model constructed based
on the 12 immune-related lncRNAs on prognosis, we used
the patient’s risk status based on these lncRNAs as an
independent risk factor affecting prognosis and divided all
samples into training (70%) and validation (30%) groups.
Multivariate Cox regression analysis using training
samples was performed to analyze the effects of patient’s
age, pathological grade, FIGO stage, and risk status on
prognosis (Table 2). -e age, FIGO stage, and risk status
were all associated with prognosis. A prognostic nomo-
gram that integrated all significant independent factors
affecting overall survival was constructed to predict the
survival rate (Figure 6(a)). A multi-index ROC curve
using the training samples was drawn to evaluate model

accuracy (Figure 6(b)). -e results showed the 3-year
survival (AUC � 0.808) and 5-year survival (AUC � 0.831)
rates. -e C-index of the training group was 0.794
(standard error ± 0.029). -erefore, the prognostic no-
mogram showed good accuracy. Next, we used the veri-
fication samples to draw a multi-index ROC curve to
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Figure 5: Principal component and gene set enrichment analyses. (a) Principal component analysis between low- and high-risk groups
based on all immune-related lncRNAs. Red and green indicate high- and low-risk groups, respectively. (b) Principal component analysis
between low- and high-risk groups based on 12 immune-related lncRNAs associated with prognosis. Red and green indicate high- and low-
risk groups, respectively. ((c)–(f)) GSEA indicates significant enrichment in immune-related phenotypes in low-risk patients.

Table 2: Multivariate Cox regression analysis of clinical
characteristics.

Variable Coefficient HR Lower.95 Upper.95 p value
Age ≥65
years 0.727 2.069 1.158 3.697 0.014

Grade 2 1.131 3.097 0.676 14.201 0.146
Grade 3 0.976 2.654 0.604 11.665 0.196
Stage II 0.726 2.067 0.881 4.847 0.095
Stage III 1.173 3.231 1.687 6.188 p≤ 0.001
Stage IV 1.517 4.559 2.006 10.358 p≤ 0.001
High-risk
group 1.064 2.897 1.402 5.986 0.004
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evaluate the stability of the prognostic nomogram
(Figure 6(c)). As shown in Figure 5, the 3-year survival
(AUC � 0.834) and 5-year survival (AUC � 0.843) were
larger than the AUC values of the training samples, and
the C-index was 0.818 (standard error ± 0.036), which was
larger than that of the training samples. -erefore, the
prognostic nomogram showed good stability.

Age ≥65 years was compared to age <65 years; Grade 2
and Grade 3 were compared to Grade 1; Stage II, Stage III,
and Stage IV were compared to Stage I; and high-risk group
was compared to low-risk group. Regression coefficients, p

values, hazard ratios, and 95% confidence intervals of the
clinical characteristics are shown.

3.7. Survival Analysis for Independent Prognostic Risk Factors.
To analyze the effects of age, pathological grade, FIGO stage,
and risk status on overall survival, each risk factor was sub-
jected to Kaplan-Meier survival analysis, and survival curves
were drawn (Figures 7(a)–7(d)). As shown in Figure 7, age,
pathological grade, FIGO stage, and risk status based on the 12
immune-related lncRNAs affected patient prognosis (p< 0.05).
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Figure 6: Prognostic nomogram for overall survival rate. (a) Survival nomogram (to use the nomogram, an individual patient’s value is
located on each variable axis, and a line is drawn upward to determine the number of points received for each variable value. -e sum of
these numbers is located on the Total Points axis, and a line is drawn downward to the survival axes to determine the likelihood of 3-year or
5-year survival). (b) Multi-index ROC curve of training samples. Red and blue indicate 3-year and 5-year survival, respectively. (c) Multi-
index ROC curve of validation samples. Red and blue indicate 3-year and 5-year survival, respectively.
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4. Discussion

Recent studies showed that the immune system has a dual
effect on tumor progression. -e immune components in
the tumor microenvironment can both promote or inhibit
the progression of malignant tumors [31]. Infiltrating im-
mune cells, cytokines secreted by immune cells in the tumor

microenvironment, and chemokines are involved in tumor
progression [32–34]. In recent years, with widespread ap-
plication of the immune checkpoint inhibitors PD-1/PD-L1
and CTLA-4, an increasing number of studies have been
devoted to suppressing the progress of tumors by regulating
the immune components in the tumor microenvironment
[35–37]. For example, by regulating mitotic checkpoints and
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Figure 7: Survival analysis of independent prognostic risk factors. (a) Survival curves of patients below or above 65 years. (b) Survival curves
of groups in Grade 1, Grade 2, and Grade 3. (c) Survival curves of groups in Stages I–IV. (d) Survival curves of patients in high- and low-risk
groups divided based on 12 immune-related lncRNAs.
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chromosome stability, TIF1c inhibits tumor progression
[38]. Recently, epigenetic regulation was shown to play a
vital role in the occurrence and development of tumors, such
as regulating tumor resistance, proliferation, metastasis, and
epithelial-mesenchymal transition [39–44]. Interestingly,
prognostic model based on epigenetic regulation was con-
structed to predict patient prognosis, such as a prognostic
model based on nine ferroptosis-related genes (ALOX15,
CISD1, CS, GCLC, GPX4, SLC7A11, EMC2, G6PD, and
ACSF2) that could predict the prognosis of breast cancer
[45]. LncRNAs also play an important role in epigenetic
regulation; these molecules have complex functions and
regulate the occurrence and development of malignant tu-
mors through various mechanisms. For example, by
inhibiting CUL4A-mediated LATS1 ubiquitination and
increasing YAPS127 phosphorylation, lncRNA uc.134 can
inhibit the progression of liver cancer [46]. In gastric cancer,
low-expression lncRNA LINC00261 can inhibit tumor
metastasis via regulating epithelial-mesenchymal transition
[47]. In liver cancer, by degrading HNRNPA2B1 via ubiq-
uitination, which reduces the stability of p52 and p65
mRNAs, and inhibiting the NF-κB signaling pathway in
hepatocellular carcinoma cells, lncRNA miR503HG inhibits
tumor metastasis [48].

LncRNAs also affect tumor progression by regulating
immune components in the tumor microenvironment. For
example, in lung and breast cancer, lncRNA NKILA can
upregulate the sensitivity of tumor-specific cytotoxic
T lymphocytes and type 1 helper T cells to activation-in-
duced cell death by inhibiting NF-κB activity, thereby fa-
cilitating immune escape [49]. In colorectal cancer, by
regulating SATB2, lncRNA SATB2-AS1 can regulate the
transcription of type 1 helper Tcell chemokines and immune
cell density in the tumor microenvironment, thus sup-
pressing tumor metastasis [50].

However, it is relatively unknown whether lncRNAs
modulate endometrial cancer progression via the regulation
of immune components in the tumor microenvironment. In
the present work, the expression matrix of immune-related
lncRNAs was analyzed by collecting immune gene sets from
the GSEA database and information on endometrial cancer
samples from TCGA database. Univariate and multifactorial
Cox regression analyses were performed, and 12 immune-
related lncRNAs were identified as having an important
influence on endometrial cancer: ELN-AS1, AC103563.7,
PCAT19, AF131215.5, LINC01871, AC084117.1, NRAV,
SCARNA9, AL049539.1, POC1B-AS1, AC108134.4, and
AC019080.5.

Among the 12 immune-related lncRNAs, PCAT19 level
is downregulated in non-small cell lung carcinoma and
regulates the development of prostate cancer [51–53]. By
modulating the miR-182/PDK4 axis, PCAT19 promotes the
proliferation of laryngeal carcinoma cells [54]. SCARNA9
level is downregulated in cervical cancer [55]. Nevertheless,
the specific functions of ELN-AS1, AC103563.7,
AF131215.5, LINC01871, AC08417.1, NRAV, AL049539.1,
POC1B-AS1, AC108134.4, and AC019080.5 in the tumor
microenvironment remain unknown. -ese lncRNAs may
affect the occurrence and development of endometrial

cancer by regulating immune components in the tumor
microenvironment. However, to understand the respective
functions, further experimental validation is required. -e
12 immune-related lncRNAs may represent new molecular
biomarkers and therapeutic targets for endometrial cancer.

5. Conclusion

By sorting and analyzing the transcriptome information of
endometrial cancer samples from TCGA database, we
identified 12 immune-related lncRNAs. -ese molecules
may play important regulatory roles in the occurrence and
development of endometrial cancer and represent potential
therapeutic targets. However, their specific roles and
mechanisms require further experimental validation.
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