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Background. As a member of the exon junction complex (EJC), RNA-bindingmotif protein 8A (RBM8A) plays a crucial role in the
maintenance of mRNA and multiple activities of an organism. Immunotherapy has been proven to be a staple type of cancer
treatment. However, the role of RBM8A and immunity across cancer types is unclear. Objective. ,is study aims to visualize the
expression, prognosis, mutations, and coexpressed gene results of RBM8A across cancer types and to explore the link between
RBM8A expression and immunity. Methods. In this study, data were collected from multiple online databases. We analyzed the
data using the HPA, UALCAN Database, COSMIC, cBioPortal, Cancer Regulome tools, Kaplan–Meier Plotter, and TIMER
website. Results. For the expression of RBM8A in normal tissues, higher expression of RBM8A was observed in immune-related
cells than in nonimmune organs. ,e expression level of RBM8A was related to tumor type. Missense mutations in RBM8A were
found in most tumors and affected the prognosis of carcinomas with coexpressed genes. RBM8A was strongly associated with
immune-infiltrating cells and immune checkpoint inhibitors, especially in LIHC. Conclusions. RBM8A is a gene worth exploring
and may be a unique immune target in the future.

1. Introduction

Cancer is an incurable disease and therefore has become a
major global cause of morbidity and mortality. ,e reported
figures for the 2018 Global Cancer Estimate have indicated
18.1 million new cancer cases and 9.6 million deaths from
cancer in 2018 [1]. Although the progress of medical
technology, specifically the combined application of mul-
tiple treatment methods, has prolonged the survival rate of
cancer patients and improved their quality of life, in order to
further benefit cancer patients, it is necessary to constantly
develop new drugs and explore more effective treatment
measures. In recent years, the emergence and application of
immunotherapy have revolutionized the treatment of many
cancers. In oncology immunotherapy, the discovery and
clinical application of checkpoint inhibitors have greatly
accelerated the process of immunotherapy. ,e cytotoxic
T lymphocyte antigen 4 (CTLA4) or programmed cell death
1 (PD-1)/PD-1 ligand 1 (PD-L1) axis is approved for use in a

variety of cancer types [2]. After clinical application, it has
been found that immune checkpoint inhibitors are not ef-
fective for all cancer populations, and some may even lead to
serious immune-related adverse events in patients [3, 4].
,erefore, immunotherapy, such as targeted therapy, re-
quires biomarkers to predict efficacy in advance. Studies [5]
have shown that immune-infiltrating cells are closely related
to immunotherapy, and hence, basic knowledge of immune-
infiltrating cells is important for the evaluation of the efficacy
of immunotherapy.

RNA-binding motif protein 8A (RBM8A), a core factor
in the exon junction complex (EJC), plays a number of roles
in mRNA metabolism [6, 7]. It is involved in nonsense-
mediated mRNA decay (NMD), mRNA translation, and the
selective splicing of apoptotic factors. It has been reported
[8] that RBM8A deficiency causes irradiated thrombocy-
topenia-absent radius (TAR) syndrome. In addition to TAR,
changes in the level of RBM8A expression can also lead to
the occurrence of some types of cancer and affect their
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prognosis. However, there are very few experimental studies
and relevant data on RBM8A and cancer, and no studies on
RBM8A and the different types of carcinomas have been
found; thus, the mechanism of action is unclear.,erefore, it
is important to expand the research on the role of RBM8A in
cancer.

In this pan-cancer study, we used a database to com-
prehensively analyze the expression, mutation, and prog-
nosis of RBM8A and obtained a series of corresponding
results. Based on the results, we used the TIMER database to
analyze the correlation between the expression of RBM8A
and immune-infiltrating cells in multiple types of cancer to
further examine the role of RBM8A in immunotherapy. We
also used the TIMER database to analyze the correlation
between RBM8A expression and immune checkpoints. Our
study found that RBM8A may interact with immune-in-
filtrating cells through signaling pathways in cancer and
simultaneously influence immune checkpoints to regulate
the occurrence of immune responses.

2. Material and Methods

2.1. �e Human Protein Atlas (HPA). HPA (http://www.
proteinatlas.org) is a database that allows us to study the
function of proteins in greater detail. ,e HPA database uses
transcriptomics and proteomics technologies to study
protein expression in different human tissues and organs at
the RNA and protein levels [9]. In this article, we used this
database to determine the level of RBM8A mRNA expres-
sion in human tissues.

2.2. UALCAN Database. UALCAN (http://ualcan.path.uab.
edu) is an online site for analyzing and mining types of can-
cer associated with ,e Cancer Genome Atlas (TCGA) data-
base, which helps medical workers analyze the levels of gene
expression and obtain survival analysis, correlation analysis,
gene promoter methylation data analysis, etc. ,erefore, the
UALCANweb portal is extremely helpful in accelerating cancer
research [10]. In this study, we used the UALCAN database to
obtain data from the TCGA database and compared the ex-
pression of RBM8A mRNA in tumors and normal tissues.

2.3. Catalog of Somatic Mutations in Cancer (COSMIC).
COSMIC (https://cancer.sanger.ac.uk/cosmic/) is a database
system designed to provide information about somatic
mutations in types of human cancer in a single system and
make them easily accessible. COSMIC describes coding gene
point mutations, millions of coding mutations, noncoding
mutations, genomic rearrangements, fusion genes, copy
number abnormalities, and gene expression variants across
the human genome [11]. In this study, COSMIC was used to
show the mutations of RBM8A in human cancers, and the
results are depicted in pie charts.

2.4. �e cBio Cancer Genomics Portal (cBioPortal). ,e cBio
Cancer Genomics Portal (http://cbioportal.org) is an open
platform for interactive research of all-round cancer genomics

datasets in the context of clinical data and biological pathways
[12]. We used cBioPortal to analyze RBM8A in TCGA pan-
cancer data to identify coexpressed genes.

2.5. �e Cancer Regulome Tools. ,e Cancer Regulome
(http://explorer.cancerregulome.org/) is a web-based tool
that provides data from TCGA. We used cBioPortal to
analyze RBM8A in TCGA pan-cancer data to identify
coexpressed genes. Spearman’s correlation was used to verify
the correlation between these two genes. P values>−log10.

2.6. Kaplan–Meier Plotter. ,e Kaplan–Meier Plotter (http://
kmplot.com/analysis/) is an online tool based on the databases
fromGEO, EGA, and TCGA. Across cancer types, the samples
were divided into high and low groups according to the
median value of gene expression, and K–M survival analysis
was performed by the Kaplan–Meier Plotter [13]. In this study,
we explored the effect of RBM8A expression onOS in different
cancer types. Hazard ratios with 95% confidence intervals and
log-rank P values were calculated simultaneously.

2.7. Tumor Immune Estimation Resource (TIMER). TIMER
(http://timer.cistrome.org/) provides comprehensive anal-
ysis and visualization functions of tumor-infiltrating im-
mune cells [14, 15]. We analyzed the relationship of RBM8A
expression with 6 types of infiltrating immune cells (CD4+
T cells, CD8+ Tcells, macrophages, B cells, neutrophils, and
dendritic cells) in some types of cancer. We also studied the
correlation between RBM8A expression and PD-1, PD-L1,
and CTLA4 in specific types of cancer via TIMER2.0.

3. Results

3.1. RBM8AmRNA in Normal Tissues. RBM8A is present in
different human tissues. As shown in the results of the
Consensus dataset and HPA dataset in Figure 1, compared
with other normal tissues, we observed higher expression of
RBM8A in B cells, T cells, NK cells, dendritic cells, gran-
ulocytes, and monocytes. ,erefore, we believe that RBM8A
is more highly expressed in immune-related cells than in
nonimmune organs.

3.2. Expression Level of RBM8A mRNA in Pan-Cancer. To
detect the mRNA expression level of RBM8A in diverse
carcinoma types, the UALCAN database was used to obtain
the relevant data. As shown in Figure 2, compared with that
in the corresponding normal groups, RBM8A expression
was higher in breast invasive carcinoma (BRCA), bladder
urothelial carcinoma (BLCA), cervical squamous cell car-
cinoma (CESC), cholangiocarcinoma (CHOL), colon ade-
nocarcinoma (COAD), head and neck squamous cell
carcinoma (HNSC), esophageal carcinoma (ESCA), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), uterine
corpus endometrial carcinoma (UCEC), and stomach ade-
nocarcinoma (STAD). Lower expression of RBM8A was
observed in kidney chromophobe (KICH), kidney renal
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papillary cell carcinoma (KIRP), kidney renal clear cell
carcinoma (KIRC), and thyroid carcinoma (THCA).
However, no significant differences were found in prostate
adenocarcinoma (PRAD), glioblastoma multiforme (GBM),
pancreatic adenocarcinoma (PAAD), pheochromocytoma
and paraganglioma (PCPG), sarcoma (SARC), rectum ad-
enocarcinoma (READ), or thymoma (THYM).

3.3. RBM8A Mutations in Pan-Cancer. COSMIC provided
information on RBM8A mutations in various types of
cancer, which included substitution missense mutations,
synonymous mutations, and nonsense mutations, and the
results are depicted in pie charts. ,ere are no substitution
mutations in the adrenal gland or ovary. As shown in
Figure 3, missense mutations were found in bone cancer
(1%), breast cancer (4%), endometrium (5%), kidney (3%),
large intestine (5%), liver cancer (2%), lung cancer (6%),
esophagus (1%), pancreas (1%), skin (6%), stomach (1%),
upper aerodigestive tract (1%), and urinary tract (5%).
Synonymous substitution mutations appeared in the central
nervous system (1%), endometrium (1%), hematopoietic
system (2%), liver (1%), pancreas (1%), peritoneum (1%),
skin (3%), stomach (1%), and urinary tract (1%). Nonsense

substitutions were found in the large intestine (1%) and liver
(1%). Frameshift insertion was only observed in the kidney
(1%). G>Tmutations were found in bone (1%), breast (2%),
endometrium (2%), large intestine (3%), liver (1%),
esophagus (1%), pancreas (2%), skin (2%), stomach (1%),
and urinary tract (6%). G>A mutations were found in the
breast (1%), endometrium (1%), large intestine (1%), kidney
(1%), liver (1%), lung (1%), skin (1%), and urinary tract (1%).
C>Amutations were found in the breast (1%), endometrium
(1%), kidney (1%), lung (1%), peritoneum (1%), skin (4%),
stomach (1%), and upper aerodigestive tract (1%). C>T
mutations were found in the central nervous system (1%),
endometrium (1%), hematopoietic system (1%), lung (1%),
and skin (2%). A>Cmutation was found in the endometrium
(1%) and liver (1%). A>G mutations were found in the
kidney (1%), large intestine (2%), and lung (2%). Other types
of mutations occur sporadically in different forms of cancer.

As shown in Figure 4, the TCGA database contained a
high level of RBM8A mutation in the following types of
cancer: bladder cancer, liver cancer, lung cancer, breast
cancer, uterine cancer, pancreas, melanoma, head neck,
stomach, colorectal cancer, ccRCC, and pRCC. ,rough
cBioPortal, 44 mutation sites were detected, and they were
located between amino acids 0 and 174 (Figure 5).
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Figure 1: Expression profile for RBM8A mRNA in human different tissues displayed by HPA (Human Protein Atlas). (a) Consensus
dataset; (b) HPA dataset.
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3.4. Genome-Wide Association of RBM8A mRNA in Cancer.
Based on the association among genes, somatic copy
number, DNA methylation, somatic mutation, and protein
level, circus diagrams were drawn to display the interrelation

between RBM8A and other genes by using Regulome Ex-
plorer. In accordance with the data from TCGA, RBM8A
was correlated with other genes that could be detected in
adrenocortical carcinoma, breast invasive carcinoma,
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Figure 2: RBM8A mRNA was evaluated in human cancers compared with normal tissues (UALCAN).
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Figure 3: Pie chart showing the percentage of the different mutation types of RBM8A in human cancers (COSMIC). (a) Mutation types of
RBM8A. (b) Substitution mutations of RBM8A.
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bladder carcinoma, breast invasive carcinoma, endometrial
carcinoma, esophageal carcinoma, gastric carcinoma, glio-
blastoma, kidney clear cell carcinoma, lung adenocarci-
noma, lower-grade glioma, lung squamous cell carcinoma,
prostate carcinoma, and thyroid carcinoma (Figure 6).
Detailed data are recorded in Supplementary Tables S1–S14.

3.5.RBM8Aand theSurvivalRateofCancer. ,e relationship
between RBM8A gene expression and overall survival (OS)
was evaluated by the Kaplan–Meier method combined with
the log-rank test. According to the Kaplan–Meier analysis
results (Figure 7), higher levels of RBM8A mRNA indicated
worse overall survival in esophageal adenocarcinoma
(P� 0.029), kidney renal papillary cell carcinoma (P� 0.044),

liver hepatocellular carcinoma (P� 0.0085), pancreatic
ductal adenocarcinoma (P� 0.013), pheochromocytoma and
paraganglioma (P� 0.042), and sarcoma (P� 0.0076).
However, the opposite result was observed in bladder car-
cinoma (P� 0.0012), cervical squamous cell carcinoma
(P� 0.0046), kidney renal clear cell carcinoma (P� 0.00092),
lung adenocarcinoma (P� 0.036), and testicular germ cell
tumor (P� 0.038). ,e expression of the RBM8A mRNA
level had no significant influence in breast cancer (P� 0.48),
head neck squamous cell carcinoma (P� 0.32), esophageal
squamous cell carcinoma (P� 0.082), ovarian cancer
(P� 0.05), stomach adenocarcinoma (P� 0.25), rectum ad-
enocarcinoma (P� 0.36), thymoma (P� 0.28), thyroid car-
cinoma (P� 0.2), or uterine corpus endometrial carcinoma
(P� 0.088).
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Figure 4: RBM8A mutation level in the TCGA pan-cancer database (cBioPortal).
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3.6. Correlations between RBM8A Expression and Immune
Cells and Immune Checkpoint Inhibitors in TIMER. ,e
connection between RBM8A expression and immune in-
filtration was determined through TIMER. We analyzed
RBM8A expression with the abundance of all six types of
immune-infiltrating cells, including CD4+ T cells, CD8+
Tcells, macrophages, B cells, neutrophils, and dendritic cells.
,e correlation between gene expression and immune in-
filtration was estimated by the Pearson correlation test.
Based on the above analysis results of RBM8A expression in
cancer and survival prognosis, we finally selected 7 types of
cancer to analyze the relationship between RBM8A and
immune infiltration cells in TIMER, which were ESCA,
LIHC, and KIRP to represent cancers with worse survival
and BLCA, CESC, KIRC, and LUAD to represent cancers
with good survival when RBM8A had a high level of ex-
pression. As shown in Figure 8, for LIHC, the level of
RBM8A expression had significant positive interactions with
the infiltration levels of B cells (R� 0.375, P� 5.48e− 13),
CD8+ T cells (R� 0.144, P� 7.50e− 03), CD4+ T cells
(R� 0.294, P� 2.65e− 08), macrophages (R� 0.345,
P� 4.74e− 11), neutrophils (R� 0.243, P� 5.21e− 06), and
dendritic cells (R� 0.444, P� 4.63e− 18). In addition, in

KIRP, BLCA, KIRC, and LUAD, the connection between the
RBM8A expression level and immune-infiltrating cells was
almost the same as that of LIHC. However, for ESCA and
CESC, the RBM8A expression level had no relation with the
above immune infiltration cells. Next, we used TIMER to
explore the correlation between the mutation of RBM8A and
immune-infiltrating cells across multiple types of cancer.
,e results showed that the RBM8A mutant gene had no
significance with the 6 infiltrated cells in the pan-cancers
(Supplementary Figures S1–S6 and Supplementary
Tables S15–S20).

Based on the results of RBM8A and the immune-infil-
trating cells, we chose LIHC, KIRP, BLCA, KIRC, and LUAD
to explore the correlation and significance of RBM8A and
immune checkpoint inhibitors, such as PD-L1 and CTLA4.
According to the images created by TIMER (Figure 9), it is
obvious that in LIHC, the RBM8A expression level had
significant positive interactions with PD-L1 (R� 0.362,
P� 4.09e− 12) and CTLA4 (R� 0.303, P� 9.14− 09). In
addition, in KIRP and BLCA, the results of the correlation
between RBM8A and PD-L1 showed a similar trend as
LIHC, whereas no correlation between RBM8A and CTLA4
was found in the two types of cancer. Finally, we found that

Variable types
Gene expression
DNA methylation
Somatic copy number

MicroRNA expression
Somatic mutation
Protein level RPPA

Adrenocortical carcinoma Bladder carcinoma Breast invasive carcinoma Colorectal carcinoma Endometrial carcinoma

Esophageal carcinoma Gastric carcinoma Gliobastoma Kidney clear cell carcinoma Lower grade glioma

Lung adenocarcinoma Lung squamous cell carcinoma Prostate carcinoma Thyroid carcinoma

Figure 6: ,e correlation between RBM8A and other genes from the TCGA database (Regulome program).
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no significant links were observed in KIRC and LUAD.
,erefore, we speculate that RBM8A may be a promising
target in cancer immunotherapy, especially in LIHC.

4. Discussion

4.1. Structure andBiological Action of RBM8A. ,e processes
of gene expression are involved in a range of biological
activities, including transcription, RNA splicing, translation,
and posttranslational modification of proteins [16].,e exon
junction complex (EJC) is mainly connected to newly spliced
mRNA, coordinating exonuclear transport, translational
control, and nonsense-mediated mRNA decay (NMD), thus
acting on the process of gene expression [17]. RNA-binding
motif protein 8A (RBM8A), also known as Y14, is a member
of the RNA-binding motif protein family. It is widely
expressed in cells and mainly localized in the nucleoplasm.
RBM8A and MAGOH form a heterodimer, which is an
important part of the tetrameric core of the EJC [18].
RBM8A plays an important role in mRNA metabolism.
First, RBM8A-MAGOH polymerase activates NMD, elim-
inates mRNA containing nonsense mutations due to ab-
normal splicing, and enables normal transcriptional
translation of tumor suppressor genes. Second, RBM8A
connects EJC-related factors and directly regulates the al-
ternative splicing function of genes, such as specifically
regulating the alternative splicing of apoptotic factors; by
regulating the alternative splicing of apoptotic factors,
RBM8A can enhance or weaken the expression of proap-
optotic isomers. Based on the above functional basis,
RBM8A is combined with other mRNA regulators to reg-
ulate cell activity and the cell cycle by splicing and coupling

NMD [19–21]. It has been reported that RBM8A deficiency
leads to G2/M phase arrest and cell apoptosis. RBM8A
depletion results in cumulative DNA damage and reduced
cell viability and proliferation capacity [22, 23].

4.2. RBM8A Affects the Occurrence and Development of
Malignant Tumors. As Figure 1 shows, compared to normal
human tissues, RBM8A is more highly expressed in most
immune cell types, including dendritic cells (DCs), B cells,
T cells, and human tissues. In view of the existence and
characteristics of RBM8A, RBM8A is considered to be a new
proto-oncogene. In addition to normal tissues and immune
cells, many studies have found that RBM8A is highly
expressed in certain cancer tissues. Using public sequencing
data, Lin et al.’s team [24] analyzed the expression of
RBM8A in HCC and its potential role in the regulatory
network. ,ey found that the RBM8AmRNA level and copy
number variation (CNV) in HCC were significantly higher
than those in normal liver tissue, and the RBM8A gene was
often amplified in HCC. Functional network analysis
showed that in HCC, the expression of RBM8Awas involved
in ribosomal signal transduction, RNA transport, mRNA
monitoring, and spliceosome signaling and regulated DNA
replication, repair, and cell cycle progression through
cancer-related kinases. Consistent with the results of Lin
et al.’s team, Liang et al.’s team [25, 26] also found that
RBM8A was highly expressed in HCC tumor tissues and
further proved that RBM8A promoted the migration and
invasion of tumor cells in HCC by activating the epithelial-
mesenchymal transformation signaling pathway. In addition
to liver cancer, studies have also reported that the expression
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Figure 9: ,e relationship between RBM8A and immunity (PD-L1 and CTLA4) in different cancers (TIMER).
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level of RBM8A in gastric cancer and colon adenocarcinoma
is higher than that in adjacent tissues, and its expression level
is positively correlated with tumor size, depth of invasion,
and lymph node metastasis; RBM8A can also be used as an
independent prognostic factor that affects the overall sur-
vival rate of patients [27, 28]. To study the correlation be-
tween the gene expression profile of primary cervical tumor
tissue and lymph nodes, Kim et al. [29] screened patients
with primary cervical cancer and found that RBM8A was
highly expressed in lymph node metastatic lesions compared
with those without cervical cancer lymph nodemetastasis. In
addition to the above types of cancer, there are studies
reporting that the expression of RBM8A is also upregulated
in pleural mesothelioma and non-small-cell lung cancer
tumor tissues [30, 31]. In recent years, an increasing number
of studies have been conducted on RBM8A and cancers, but
no integrative pan-cancer analysis of RBM8A has been
found thus far. In this pan-cancer study, we analyzed the
expression, mutation, and prognosis of RBM8A using public
sequencing data. As shown in Figure 2, we found that
RBM8A was highly expressed in BLCA, CHOL, COAD,
ESCA, HNSC, and UCEC from the database. Our
Kaplan–Meier analysis results show that high expression
levels of RBM8A mRNA imply worse overall survival in
ESCA, KIRP, LIHC, PAAD, PCPG, and SARC. Our research
results are consistent with the current research results,
further indicating that changes in the expression of the
RBM8A gene are closely related to the occurrence of ma-
lignant tumors. RBM8A can be used as a biomarker to
predict tumor occurrence and metastasis.

In addition to changes in the expression level of the
RBM8A gene, this study also found that RBM8A mutations
exist in most cancers. ,e rates of different mutational
processes vary among tumors and cancer types. In the life
cycle of human cells, gene mutations are constantly accu-
mulating. Some mutations will not change cell function, and
some will cause the original anticancer function of genes to
promote oncogenesis [32]. ,e most important question,
then, is whether mutations in RBM8A can affect the de-
velopment of cancer. ,e current studies are still superficial,
and the relationship between RBM8A mutation and cancer
and the mechanism of action have not been clearly de-
scribed. ,erefore, more extensive and in-depth studies are
needed to determine the significance of the RBM8A mu-
tation in oncogenesis.

4.3. RBM8A Regulates the Role of Immune Cells in Tumors
through Signaling Pathways. ,e treatment of tumors has
always been a major challenge in the medical field. Surgery,
cytotoxic chemotherapy, molecular targeted therapy, and
antiangiogenesis therapy have been constantly changing and
improving, but there are still problems with tolerance and
efficacy. In addition to the above treatment strategies,
various forms of cancer immunotherapy, including soluble
tumor virus therapy, cancer vaccination, cytokine therapy,
adoptive transfer sex cells, and immune checkpoint inhib-
itors, have risen to prominence in the field of antitumor
research and application [33, 34]. In particular, the use of

cytotoxic T lymphocyte antigen 4 (CTLA4), programmed
cell death 1 (PD-1), and programmed cell death 1 ligand 1
(PD-L1) inhibitors in the clinic has become a landmark
breakthrough in tumor immunotherapy [35]. Because of
acquired resistance and tumor immune escape, immuno-
therapy continues to face huge difficulties in achieving a high
and sustained response rate in cancer patients. Some studies
[36] believe that the understanding of tumor
infiltrating lymphocytes (TILs) and the tumor immune
microenvironment (TIME) may improve existing immu-
notherapies, thereby enabling cancer patients to obtain
better clinical treatment effects. Immune-infiltrating cells are
an important component of the tumor microenvironment,
mainly including B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells, which have
been proven to influence the immunotherapy response and
promote tumor progression [37–39]. According to the above
pan-cancer visualization analysis results of RBM8A, the
expression of RBM8A is significant in ESCA, LIHC, KIRP,
BLCA, CESC, KIRC, and LUAD and is related to the
prognosis of these carcinomas. To further study the corre-
lation between RBM8A and immune-infiltrating cells, we
selected the above types of cancer and obtained the corre-
sponding results. Figure 8 clearly shows that RBM8A is
positively correlated with immune-infiltrating cells in LIHC,
KIRP, BLCA, KIRC, and LUAD.

,en, we used the TIMER database again to analyze the
relationships between RBM8A and PD-L1 and CTLA4 in
LIHC, KIRP, BLCA, KIRC, and LUAD. Our findings
demonstrate that RBM8A expression has significant rela-
tionships with PD-L1 in LIHC, KIRP, BLCA, and KIRC.
Additionally, RBM8A in LIHC also has significant corre-
lations with CTLA4, while RBM8A in KIRP, BLCA, and
KIRC did not have such a link. Hence, we speculate that
RBM8A influences patient survival in different cancers,
especially LIHC, by acting on tumor cells through immu-
noinfiltrating cells and immune checkpoint inhibitors.
,erefore, how does RBM8A, as a small part of an exon
junction complex, influence tumor immunotherapy?
Whether it is direct or indirect, there are no in-depth reports
exploring the relationship between immunotherapy and
RBM8A.

,e occurrence, proliferation, differentiation, anti-
apoptosis, invasion, angiogenesis, metastasis, and immune
regulation of tumors are related to various signaling path-
ways, while the abnormal activation of signaling pathways is
inseparable from the excessive activation and inhibition of a
large number of cytokines and receptors. Combined with
existing research, we conclude that RBM8A is an immu-
notherapeutic agent that acts on the signaling pathway to
regulate cancer. Signal Transducer and Activator of Tran-
scription 3 (STAT3) is a transcription factor that affects the
JAK/STAT signaling pathway. When cytokines are out of
regulation, the potential cancer-promoting potential of
STAT3 as a proto-oncogene will continue to be expressed in
cells to promote tumorigenesis [40]. Studies have confirmed
that RBM8A is a STAT3 binding partner that binds to
STAT3 through the C-terminal region of STAT3 in vivo and
enhances IL-6-induced STAT3 activation. Furthermore,
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silencing RBM8A reduced IL-6-induced STAT3 tyrosine
phosphorylation, nuclear accumulation, and the DNA-
binding activity of STAT3, as well as IL-6/STAT3-dependent
gene expression. It was demonstrated that RBM8A can
interact with STAT3 and regulate transcriptional activation
of STAT3 by affecting the phosphorylation of STAT3 ty-
rosine [41, 42]. STAT3 can be activated in tumor cells and
tumor-infiltrating immune cells to further regulate the ex-
pression of oncogenes to trigger tumor progression and
promote the inhibition of immune mediators [43]. STAT3
affects regulatory T (Treg) cells by inducing the expression of
FOXP3 [44]. IL-10 and TGF-β secreted by tumor-associated
regulatory T cells restrict the function of CD8+ effector
T cells and the maturation of DCs, thus further inhibiting
innate immunity and adaptive immunity [45, 46]. ,e
overexpression of PD-1/PD-L1 in tumor cells is significantly
related to the phosphorylation of STAT3. Targeting STAT3
can inhibit the PD-1/PD-L1 axis in an HNSCC mouse
model, thus reversing the state of immunosuppression
[47, 48]. In hepatoma cells, baicalein can restore the anti-
tumor activity of T cells by reducing the activity of STAT3
and downregulating the expression of PD-L1 induced by
IFN-c [49].,erefore, targeting STAT3 can not only directly
inhibit tumor growth but also enhance antitumor immunity.
We speculate that RBM8A plays an indirect role in tumor
immunotherapy by targeting STAT3 to enhance the tumor
immune response.

p53 is a transcriptional regulatory factor that mainly
mediates tumor inhibition and regulates cell cycle arrest,
cell apoptosis, and metabolism. Lu et al. [50] found that in
different human cancer cells, the depletion of RBM8A can
lead to the arrest of G2/M phase, DNA damage, and
apoptosis. At the same time, it can induce the expression
of another splice isoform of p53 in human cells, namely,
p53β, and cause cell senescence. However, the increase or
decrease in RBM8A will increase the level of overall p53
protein. At present, the specific molecular mechanism of
the effect of RBM8A on the change in p53 is not clear. An
increasing number of studies have shown that the p53
tumor suppressor signaling pathway plays an important
role in the regulation of the tumor immune response [51].
For example, p53 affects the production and function of
Treg cells by activating the expression of FOXP3 [52]. p53
induces the expression of DD1α in normal or cancer cells,
resulting in the inactivation of T cells that recognize
autoantigens or tumor-associated antigens [53]. p53 can
also activate PD-L1 to stimulate the expression of PD-1 on
the surface of T cells, resulting in immune escape [54, 55].
,erefore, we can speculate that RBM8A indirectly reg-
ulates the tumor immune response by acting on the p53
pathway.

In some studies, it was found that the p53 pathway and
STAT3 pathway can interact with each other. For example,
blocking the IFN-Akt pathway phosphorylates STAT3,
promotes the binding of STAT3 to the p53 promoter in the
nucleus, and upregulates p53. Moreover, the loss of p53
activates the JAK2/STAT3 signaling pathway and affects
tumor growth [56, 57]. No related studies on RBM8A and
immune response regulation have been found. In view of the

above research basis and the results of mining and sum-
marizing this study in the database, we speculate that
RBM8A may act indirectly on immune checkpoints and
immune-infiltrating cells through the STAT3 signaling
pathway and p53 signaling pathway to affect tumor im-
munotherapy. At present, it is not clear whether RBM8A can
directly act on immune checkpoints and immune cells in the
body, which needs to be further explored in relevant
experiments.

5. Conclusions

In summary, our study suggested that RBM8A mRNA is
overexpressed in many types of cancer, and in combination
with many different genes, RBM8A can influence the
prognosis of cancer. RBM8A mutations are widely ob-
served in tumors, especially missense mutations. In ad-
dition, RBM8A was strongly associated with immune-
infiltrating cells and immunoassay site inhibitors, espe-
cially in LIHC, and we hypothesized that RBM8A may
affect immunity through signaling pathways. ,erefore, we
consider that RBM8A may be a promising target in cancer
immunotherapy. Although the results of RBM8A in car-
cinomas provide a deeper understanding of cancer immune
interactions and the potential models of cancer immu-
notherapy, the specific mechanisms remain to be further
studied.
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