
Research Article
Analysis of the Heterogeneity of the Tumor Microenvironment
and the Prognosis and Immunotherapy Response of Different
Immune Subtypes in Hepatocellular Carcinoma

Jian Hu ,1 Feifei Mao ,2 Lifang Li ,3 Xiaoqian Wang ,1 Depei Cai ,4 Longmei He ,5

Qian Wu ,1 Cong Wang ,1 Ning Zhang ,1 Yanfen Ma ,1 Xia Wu ,6 Kai Qu ,7

and Xiaoqin Wang 1

1Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
710061 Shaanxi Province, China
2Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
3Emergency Department, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi Province, China
4Department of Clinical Laboratory, Xi’an Aerospace General Hospital, Xi’an, 710061 Shaanxi Province, China
5Department of Clinical Laboratory, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, 710082 Shaanxi Province, China
6Department of Clinical Laboratory, Xi’an Chest Hospital, Xi’an, 710061 Shaanxi Province, China
7Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
710061 Shaanxi Province, China

Correspondence should be addressed to Xiaoqian Wang; wangxiaoqian9510@163.com and Kai Qu; joanne8601@163.com

Received 21 January 2022; Accepted 4 March 2022; Published 29 March 2022

Academic Editor: Guo Chen

Copyright © 2022 Jian Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. The current clinical classification of hepatocellular carcinoma (HCC) cannot well predict the patient’s possible response
to the treatment plan, nor can it predict the patient’s prognosis. We use the gene expression patterns of patients with
hepatocellular carcinoma to reveal the heterogeneity of hepatocellular carcinoma and analyze the differences in prognosis and
immunotherapy response of different immune subtypes. Methods. Firstly, using the hepatocellular carcinoma expression profile
data of TCGA, combined with the single sample gene set enrichment analysis (ssGSEA) algorithm, the immune enrichment of
the patient’s tumor microenvironment was analyzed. Subsequently, the spectral clustering algorithm was used to extract
different classifications, and the cohort of hepatocellular carcinoma was divided into 3 subtypes, and the correlation between
immune subtypes and clinical characteristics and survival prognosis was established. The patient’s risk index is obtained
through the prognostic prediction model, suggesting the correlation between the risk index and various types of immune cells.
Results. We can divide the liver cancer cohort into three subtypes: stromal cell activated immune-enriched type (A-IS), general
immune-enriched type (N-IS), and non-immune-enriched type (non-IS). The 3-year survival rate of TCGA’s A-IS is higher
than that of N-IS and non-IS, and the three components are significantly different (p = 0:017). The 3-year survival rates of
ICGC’s A-IS and N-IS groups were higher than those of the non-IS group. The analysis of the correlation between the risk
index and immune cells showed that the patient’s disease risk was significantly positively correlated with cancer-associated
fibroblast (CAF) stimulated cell, activated stroma cell, and anti-PD-1 resistant cell. Conclusion. The tumor gene expression
characteristics of patients with hepatocellular carcinoma can be used as a basis for clinical patient classification. Different
immune subtypes are closely related to survival prognosis. Different immune cell states of patients may lead to different disease
risk levels. All these provide important references for the clinical identification and prognosis prediction of hepatocellular
carcinoma.
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1. Introduction

Liver cancer is still a global health challenge, which is
expected to have more than 1 million cases by 2025. Hepato-
cellular carcinoma (HCC) is the most common form of liver
cancer, accounting for 90% of cases [1, 2]. Its main risk fac-
tors include hepatitis B virus (HBV) and hepatitis C virus
(HCV) infections [3–6], and metabolic syndrome and alco-
hol intake are becoming more common risk factors [7, 8].

The classification of HCC is based on the Barcelona-
Clinical-Liver Cancer (BCLC) classification [2, 9, 10]. The
system defines five subcategories of HCC and provides spe-
cific treatment recommendations for each category, includ-
ing surgical resection, liver transplantation, radiofrequency
ablation, chemoembolization, and multikinase inhibitor
sorafenib [2]. However, the high recurrence rate of resect-
able liver cancer leads to a poor prognosis [11]. Recurrence
seriously affects the long-term survival of HCC patients
[12]. Due to the emergence of primary and secondary drug
resistance, sorafenib only works in some patients with
HCC, and its therapeutic effect is limited. Primary drug
resistance is mainly due to genetic heterogeneity [13]. To
make matters worse, almost all patients will develop second-
ary resistance to sorafenib within 6 months, and the recur-
rence rate of patients has not been significantly reduced
[14]. At present, it is generally believed that the high hetero-
geneity of HCC, including genetic heterogeneity and
immune heterogeneity, is the main reason for treatment fail-
ure [15, 16]. Among them, immune heterogeneity is one of
the main reasons why current therapies are ineffective
against most types of cancer, including HCC. Therefore, a
comprehensive and accurate understanding of the heteroge-
neity of the tumor immune microenvironment of HCC is
essential to improve the efficiency of personalized treatment
of HCC.

In recent years, analysis and research based on HCC
high-throughput data expression profile have been devoted
to unraveling the molecular characteristics of HCC hetero-
geneity [17–20]. Although researchers have stratified clinical
samples based on molecular markers, they have not yet fully
clarified the correlation between the new subtypes and clinic
pathological characteristics. Recently, researchers have
divided HCC patients into three subgroups from the per-
spective of metabolism, namely, metabolic subgroup (S-
Mb), microenvironment disorder subgroup (S-Me), and
proliferation subgroup. Among them, the S-Me subtype
enriched in proteins involved in immunity and inflamma-
tion and has a worse prognosis than S-Mb [21].

We evaluated the expression profile characteristics,
immune enrichment characteristics, matrix enrichment
characteristics, prognostic value, and other information of
the HCC cohort, aiming to characterize the molecular char-
acteristics of HCC by developing immune and matrix-
related gene expression profiles. Comprehensive analysis
was performed using the metadata set of 371 HCC human
samples from The Cancer Genome Atlas (TCGA), and
GSE144269 (n = 70), GSE14520_cohort1 (n = 22),
GSE14520_cohort2 (n = 225), GSE25097_GPL10687 (n =
268), GSE36376_GPL10558 (n = 240), and ICGC_LIRI_JP

(n = 232) data sets are used to verify the enrichment of
immune-related molecules.

All samples are associated with clinical information, and
the correlation between patient subtype and survival rate is
verified in the ICGC data set. Three subtypes of HCC have
been preliminarily identified: stromal cell-activated
immune-enriched type (A-IS), general immune-enriched
type (N-IS), and non-immune-enriched type (non-IS).
Then, we analyzed the metadata set of immune activity char-
acteristics, clinical characteristics, and prognostic value. Sub-
class A-IS shows active stromal enrichment, high
immunological activity, and good prognosis. The subtype
N-IS exhibits normal stromal activity, average middle
immune activity, and normal survival. The subtype non-IS
shows low matrix enrichment, low immune-related enrich-
ment, and poor prognosis. In this study, a new classification
of HCC was established based on the gene expression profile
of immunity and matrix, thereby further revealing the diver-
sity of human HCC.

2. Results

2.1. Classification of Gene Expression Patterns in Patients
Presenting with Hepatocellular Carcinoma. We applied the
spectral clustering algorithm to extract expression patterns
from liver cancer samples in TCGA cohort, based on the
expression profile data of TCGA (Figure 1(a)). At the same
time, we used t-Distributed Stochastic Neighbor Embedding
(tSNE) to show the subgroups among samples (Figure 1(b)).
Based on the above classification, we further analyzed the
immune enrichment situation of the tumor microenviron-
ment of each subgroup through the single sample gene set
enrichment analysis (ssGSEA) algorithm. The immune-
related gene set comes from the following references
(Table 1).

The analysis results showed that there was a subtype
with immune-related genetic enrichment (IS) in the cohort,
and the rest were non-IS types, that is, types with less
immune infiltration (Figure 1(c)). We found that patients
with immune-enriched subtypes were significantly enriched
in the characteristics of identifying immune cells or immune
responses (p < 0:05). In addition, even in the presence of
massive immune cells, stromal cells play an essential role
in tumor immune escape. Therefore, we further dissected
the enrichment of stromal cells in the gene expression profile
of immune enrichment subtypes. Likewise, we found that
there are features of activated stromal response in the cohort
by ssGSEA (Figure 1(c)). Overall, we divided hepatocellular
carcinoma cohort into three subtypes: A-IS, N-IS, and
non-IS.

2.2. Validation of Immune Subtype Classification of Cohort
Patients. As shown below, the three subtypes have the fol-
lowing immune differences (Figure 2(a)). Compared with
non-IS and N-IS (Figure 2(a), blue box), A-IS subtypes
showed significant enrichment in identifying immune cells
or immune response characteristics (all p < 0:01) including
B cells, immune enrichment score, macrophages, mast cells,
and Th1 cells. We further compared the differentially
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Figure 1: Continued.
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expressed genes of IS (including A-IS and N-IS) and non-IS
subtypes, mainly using the limma algorithm and p < 0:05 as
the criterion for significant differences (Table S1). At the
same time, the genes with significant differences between
A-IS and N-IS subtypes were compared (Table S2). We
found that representative genes with significant differences
are closely related to immune recognition and immune
response. In order to verify the accuracy and consistency
of the analysis method, we use the same strategy to verify
it in other independent data. Our verification strategy is to
select the top 50 genes that are differentially upregulated to
construct a gene set and use the ssGSEA algorithm to
predict the enrichment of other data. In addition, we
selected cells with significant differences in immunological
activity for verification. The analysis results were shown
below including the GSE144269 data set (Figure 2(b), n =
70), the GSE14520_cohort1_test data set (Figure 2(c), n =

22), the GSE14520_cohort2_train samples (Figure 2(d), n
= 225), the GSE25097_GPL10687 samples (Figure 2(e), n
= 268), GSE36376_GPL10558 (Figure 2(f), n = 240) data
set, and ICGC_LIRI_JP samples (Figure 2(g), n = 232). In
the Mongolian hepatocellular carcinoma (HCC) patient
cohort, we found that compared with the HCC1 patient
population, immune and stromal enrichment was common
in the HCC2 patient population (Figure 2(b)). Each subject
in the HCC2 panel has hepatitis virus HDV and HBV
infection [22]. Studies have shown that HDV RNA pattern
recognition can activate immunity [23], and it has also
been reported that L-HDAg, consisting of 214 amino acids,
can directly induce IFN signaling [24]. Moreover, HBV-
HDV coinfection shows a strong immune response [23].
xCell-aDC, B cells, immune enrichment score, myeloid-
derived suppressor cells (MDSC), activated stroma, and
other immune- and stromal-related features represented in
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Figure 1: Classification of gene expression patterns in patients presenting with hepatocellular carcinoma. (a) Classification of gene
expression patterns of hepatocellular carcinoma patients. The spectral clustering algorithm is used to extract expression patterns from
hepatocellular carcinoma samples in TCGA cohort. According to different expression patterns, patients can be divided into 8 subgroups
including HCC1, HCC2, HCC3, HCC4, HCC5, HCC6, HCC7, and HCC8. SpC stands for spectral clustering. (b) The plot shows the
tSNE clustering of different subsets, and the distribution of each subtype is relatively concentrated. (c) The ssGSEA algorithm reveals the
immune enrichment of the tumor microenvironment of each subtype, and divides all patients into three subgroups based on immunity
and stromal-related features. The latest taxa included stromal cell-activated immune-enriched subtype (A-IS), normal immune-enriched
subtype (N-IS) and non-immune-enriched subtype (non-IS).
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most of HCC2 in GSE14520_cohort1 (Figure 2(c)).
Similarly, certain subgroups of GSE14520_cohort2, mainly
including HCC1 (pink box) and HCC3 (blue box), arose
the enrichment of immune and stromal signatures
(Figure 2(d)). HCC3, HCC5, HCC6 and HCC7 in the
GSE25097_GPL10687 cohort showed biomarker
enrichment on the immune and stoma response (Figure 2
(e)). Certain subgroups in the ICGC_LIRI_JP cohort,
mainly including HCC6, HCC4, and HCC7, have
enrichment of immune and stromal features (Figure 2(f)).
However, in the GSE36376_GPL10558 (Figure 2(e))
cohort, multiple subtypes have patients with both immune-
and matrix-related enrichment and nonenriched. It
suggests that the existing HCC classification method
cannot cover all patients. Our research strategy might
provide more references for the clinical classification of
HCC patients.

2.3. Differences in Immune Subtypes Are Related to Clinical
Features and Survival Prognosis. We have preliminarily
determined that different patient subsets have differences
in immune- and matrix-related signatures. So, whether or
what clinical information might be associated with immune
alterations? Firstly, we collected and sorted out the clinical
information of all patients within three immune subtypes
(Table 2). The statistical results showed that clinical indica-
tors such as age_at_initial_pathologic_diagnosis, neo-
plasm_histologic_grade, and vascular_tumor_cell_type in
different subgroups are strikingly different among three sub-
populations (p < 0:01). The value of albumin_result_upper_
limit of the A-IS subgroup is significantly larger than that of
the N-IS and non-IS subgroups, since the age at initial path-

ologic diagnosis has differential survival advantages in fibro-
lamellar hepatocellular carcinoma (FLHCC) and
hepatocellular carcinoma (HCC) [25]. And, the albumin/
globulin ratio can provide guidance for the postoperative
prognosis and survival prediction of HCC patients [26].
Therefore, prognostic inquiry among all subtypes matters
hugely. Fortunately, we found that the three-year survival
of A-IS was higher than that of N-IS and non-IS, and there
is significance of intergroup variations (p value < 0.05) in
TCGA cohort (Figure 3(a)). Nevertheless, the five-year sur-
vival of A-IS was not improving in the same cohort
(Figure 3(b)). Similarly, the three-year (Figure 3(c)) and
ten-year (Figure 3(d)) survival of patients in the ICGC
cohort was compared in detail, which exhibited similar
trends; that is, A-IS and N-IS have higher survival than
non-IS.

2.4. Prognostic Prediction Model Based on Signatures of
Tumor Microenvironment. In order to clarify the molecular
markers related to the prognosis of HCC patients, we
screened the characteristic genes of immune subtypes, com-
bined with the random forest algorithm to construct a pre-
dictive model. We took TCGA data as the training set and
filter to the following signatures. At the same time, the risk
coefficient (β value) of Cox multiple regression is introduced
to predict the risk coefficient of each patient. We calculated
the risk score (risk score) of each patient based on the
expression of the 96-gene panel and the multiple Cox regres-
sion coefficient (Table 3). These 96 genes were enriched in
the calcium signaling pathway and neuroactive ligand-
receptor interaction pathway, which have been known to
be involved in the HCC. The risk index is used to analyze

Table 1: Immune-related signatures and references.

Signature name Reference

Immune enrichment score Yoshihara et al. Nat Commun. 2013 [37]

6-gene IFN-γ signature Chow et al. J Clin Oncol. 2016 (suppl) [56]

Activated stroma Moffitt et al. Nat Genet. 2015 [43]

Immune cell subsets Cancer Genome Atlas Network. Cell. 2015 [57]

T cells Bindea et al. Immunity. 2013 [58]

CD8 T cells Bindea et al. Immunity. 2013 [58]

T. NK. metagene Alistar et al. Genome Med. 2014 [59]

B-cell cluster Iglesia et al. Clin Cancer Res. 2014 [60]

Macrophages Bindea et al. Immunity. 2013 [58]

Cytotoxic cells Bindea et al. Immunity. 2013 [58]

Immunophenoscore Charoentong et al. Cell Rep. 2017 [61]

T cell-inflamed GEP Cristescu et al. Science. 2018 [36]

Expanded immune signature Ayers et al. J Clin Invest. 2017 [62]

TGF-β-associated ECM Chakravarthy et al. Nat Commun. 2018 [35]

MDSC Yaddanapudi et al. Cancer Immunol Res. 2016 [63]

CAF Calon et al. Cancer Cell. 2012 [64]

TAM M2/M1 Beyer et al. PLoS One. 2012 [65]

CD8 T cell exhaustion Giordano et al. EMBO J. 2015 [66]

T cell exhaustion early/late stage Philip et al. Nature 2017 [67]

Nivolumab responsive Riaz et al. Cell. 2017 [68]
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Figure 2: Continued.
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Figure 2: Validation of immune subtype classification of cohort patients. (a) Comparison of the striking differences in the immune
microenvironment of the three subtypes. The red box represents non-immune-enriched subtype (non-IS), the blue box represents stromal cell-
activated immune-enriched subtype (A-IS), and the green box represents normal immune-enriched subtype (N-IS). Anti-PD-1 resistant, B cell,
immune enrichment score, macrophages, and other immune characteristics were significantly different among three subgroups (ANOVA
test, p < 0:01). (b) The ssGSEA algorithm was performed on the GSE144269 data set (n = 70). Th1 cells, CD8 T cell exhaustion, MDSC,
expanded immune signature, and other immune signatures were enriched in HCC2 subtypes instead of HCC1. (c) The ssGSEA algorithm
was performed on the GSE14520 (cohort1_test) data set (n = 22). Compared with HCC1, majority of HCC2 subjects showed an enrichment
of immune and stromal-related features. It specifically included B cells, immune enrichment score, MDSC, macrophages, and other
signatures. (d) Molecular marker enrichment of patients in the GSE14520 (cohort2_train) data set (n = 225). Among existing clusters, HCC3
subclass showed strong immunity and stroma enrichment, followed by HCC1. (e) Enrichment of immune and stromal marker in subjects
from the GSE25097_GPL10687 data set (n = 268). Among existing clusters, HCC3 subclass showed strong immunity and stroma enrichment,
followed by HCC5 and HCC6. (f) Enrichment of immune and stromal marker in subjects from the GSE25097_GPL10558 data set (n = 240).
Among existing clusters, HCC1 and HCC6 subclass showed moderate immunity and stroma enrichment. (g) Enrichment of immune and
stromal marker in subjects from the ICGC_LIRI_JP data set (n = 232). Among existing clusters, HCC6 subclass showed strong immunity and
stroma enrichment, followed by HCC4 and HCC7. (h) A stack barplot for percentage of patients in non-IS, A-IS, and N-IS subtypes among
the data sets.
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Figure 3: Continued.
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Figure 3: Differences in immune subtypes are related to clinical features and survival prognosis. (a) Comparison of 3-year survival among
subgroups in TCGA cohort. The survival of patients was significantly different (p = 0:017) among the three types, and the survival of the A-
IS subgroup (yellow line) was higher than that of N-IS (blue line) and non-IS (red line). (b) Comparison of 5-year survival rate of TCGA
cohort. The analysis results showed that there was no significant difference among subtypes (p = 0:23). (c) Comparison of 3-year survival
rate of the ICGC cohort. The survival was different among subgroups, and the survival of the A-IS subgroup (yellow line) was slightly
higher than that of N-IS (blue line) and much higher than that of non-IS (red line). (d) Comparison of 6-year survival rates of ICGC
patients. Compared with N-IS and non-IS subtypes (5 years), the overall survival of A-IS (6 years) is longer.

13Journal of Oncology



Table 3: Genes in the signature of survival prediction model.

Features Multi_beta Multi_HR Multi_95%_CI_for_HR Multi_p.value

ACRV1 0.284056 1.32851 0.974712-1.81072 0.0722009

AXDND1 0.666513 1.94743 1.493-2.54019 8.83E-07

B3GALT2 -1.88552 0.15175 0.0940178-0.244934 1.17E-14

ATP6V0D2 -0.266228 0.766265 0.628065-0.934874 0.00869992

ACPT -0.532479 0.587148 0.465202-0.74106 7.36E-06

BRDT 0.890815 2.43711 1.7581-3.37837 8.98E-08

C10orf90 -0.321027 0.725404 0.590832-0.890626 0.00216696

BCO2 -0.606966 0.545002 0.369291-0.804318 0.00223885

ADAM32 0.740927 2.09788 1.61513-2.72492 2.81E-08

APOC4 -0.44861 0.638515 0.492737-0.827422 0.000692331

BSND 0.177579 1.19432 0.979831-1.45577 0.0787091

C12orf56 0.651933 1.91925 1.47251-2.50152 1.42E-06

C3orf36 -0.51696 0.596331 0.471639-0.753988 1.57E-05

CCNJL 0.807457 2.2422 1.47032-3.41929 0.000176535

DRD1 -0.731418 0.481226 0.373178-0.620558 1.72E-08

BAI2 1.06687 2.90626 1.99042-4.24349 3.31E-08

ERMN -1.53079 0.216365 0.146571-0.319394 1.32E-14

ADAM12 3.4097 30.2563 12.0407-76.0287 4.08E-13

ADRA1A -0.520536 0.594202 0.462577-0.763281 4.62E-05

GPR17 0.60065 1.8233 1.45229-2.2891 2.29E-07

HOXD10 0.174129 1.19021 0.989576-1.43152 0.0644995

C6orf223 -0.451106 0.636924 0.515442-0.787036 2.94E-05

SPAG6 -0.237856 0.788316 0.663102-0.937174 0.0070345

ACADL -1.0514 0.349449 0.253158-0.482365 1.63E-10

CACNA1G -0.410589 0.663259 0.532399-0.826285 0.000250567

CCDC36 0.37175 1.45027 1.14484-1.83719 0.00206295

CLEC2L 0.659235 1.93331 1.54772-2.41497 6.31E-09

CRISPLD1 -1.56237 0.209639 0.139785-0.314403 4.17E-14

FAM163B 0.347517 1.41555 1.09563-1.82888 0.00784528

HAVCR1 -0.281462 0.754679 0.62655-0.909011 0.0030281

MAMDC2 -1.1539 0.315405 0.204155-0.487279 2.00E-07

SFTPD 0.383284 1.46709 1.16916-1.84095 0.000934926

TKTL1 0.302278 1.35294 1.11067-1.64806 0.0026775

PPP2R2C -0.546543 0.578948 0.46423-0.722013 1.23E-06

RTL1 0.444023 1.55897 1.22861-1.97815 0.000257703

TMC2 0.228553 1.25678 1.00585-1.57031 0.0442939

CYP19A1 0.410575 1.50768 1.23172-1.84548 6.88E-05

EPO 0.440563 1.55358 1.24005-1.94638 0.000127753

NKPD1 -0.297478 0.742689 0.575869-0.957833 0.0219126

SLC4A10 0.390634 1.47792 1.1312-1.9309 0.00418663

C15orf43 0.345474 1.41266 1.13902-1.75205 0.00166174

CLDN18 -0.545319 0.579657 0.462226-0.726921 2.34E-06

DPYSL4 1.17553 3.23985 2.29182-4.58003 2.82E-11

GNG4 0.383981 1.46812 1.16163-1.85547 0.0013088

GPM6A 0.777221 2.17542 1.57699-3.00094 2.19E-06

GPR18 -0.660017 0.516843 0.358506-0.74511 0.000405541

MYOCD -0.409451 0.664015 0.474862-0.928514 0.0166865

NAV2.AS4 0.368257 1.44521 1.16618-1.791 0.000766567
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Table 3: Continued.

Features Multi_beta Multi_HR Multi_95%_CI_for_HR Multi_p.value

PGA5 0.648481 1.91263 1.4807-2.47057 6.85E-07

SLC35F3 0.229401 1.25785 1.07694-1.46914 0.00378439

SOX8 -0.482409 0.617294 0.443993-0.858238 0.00411509

CD79A -2.0343 0.130772 0.073325-0.233227 5.52E-12

HOXC6 0.250183 1.28426 1.07384-1.53591 0.0061387

MAGEA10 -0.87019 0.418872 0.317794-0.552099 6.58E-10

NKAIN1 -0.316253 0.728875 0.602838-0.881263 0.00109518

NKX3.2 0.497165 1.64405 1.28246-2.1076 8.74E-05

POU3F2 -0.604137 0.546546 0.428564-0.697007 1.12E-06

PSAPL1 -0.189652 0.827247 0.692495-0.988221 0.0365659

RCOR2 -0.505268 0.603344 0.455672-0.798872 0.000418987

TRAT1 1.94154 6.96945 3.92159-12.3861 3.65E-11

UBASH3A -2.19459 0.111404 0.0547494-0.226683 1.41E-09

CDH10 0.579573 1.78528 1.39972-2.27703 3.03E-06

CHRND 0.165047 1.17945 1.00318-1.38669 0.0456736

CLEC17A -0.482991 0.616935 0.468195-0.812928 0.000600521

COL25A1 -0.198214 0.820195 0.673116-0.99941 0.0493201

COLEC10 0.563006 1.75594 1.27602-2.41638 0.000547644

CRHBP 1.5943 4.92489 2.96712-8.17444 6.97E-10

DHH 0.719224 2.05284 1.44977-2.90677 5.06E-05

FAM129C 0.676126 1.96625 1.41399-2.7342 5.84E-05

FAM72D 0.509919 1.66516 1.16518-2.37967 0.00512327

GABRQ 0.287478 1.33306 0.99848-1.77976 0.0512178

GPR182 -0.322767 0.724142 0.533903-0.982168 0.0379242

HOXD3 0.755311 2.12827 1.62083-2.79459 5.48E-08

IGJ 0.333382 1.39568 0.896479-2.17286 0.139915

MAGEA6 -0.372357 0.689108 0.565764-0.839343 0.000215221

MS4A1 0.565355 1.76007 1.26789-2.44331 0.00072941

OGN -0.228948 0.79537 0.647752-0.976629 0.0288351

OR13A1 0.299903 1.34973 1.10913-1.64252 0.00275417

SAA2 1.17003 3.22208 2.18463-4.75219 3.60E-09

VCX3A 0.585063 1.7951 1.36651-2.35812 2.63E-05

DLX2 -0.2672 0.76552 0.621962-0.942213 0.0116782

GFRA3 -0.263969 0.767997 0.644168-0.91563 0.00325573

KIF5A 0.319303 1.37617 1.09699-1.7264 0.00577724

MEP1A 0.354055 1.42483 1.18877-1.70777 0.000127605

PAGE2 -0.463863 0.62885 0.504242-0.78425 3.84E-05

PANX3 0.720169 2.05478 1.47722-2.85816 1.89E-05

PIP5K1B -1.29461 0.274003 0.190459-0.394195 3.03E-12

PNCK -0.505915 0.602954 0.485959-0.748116 4.29E-06

PRICKLE1 2.16419 8.70756 4.44639-17.0524 2.77E-10

RGS6 -0.611302 0.542644 0.41516-0.709275 7.67E-06

RSPO3 -0.412661 0.661887 0.493666-0.88743 0.00581211

SLC22A8 -0.259751 0.771243 0.6545-0.908811 0.00192368

SLC30A8 -0.295976 0.743806 0.565241-0.978781 0.0345933

TCF24 -0.526444 0.590702 0.448147-0.778603 0.000187066

TDRD5 0.277834 1.32027 1.11272-1.56653 0.00145269

XCR1 0.29765 1.34669 1.01721-1.78289 0.0376024
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its relationship with patient survival and to draw the K-M
survival curve (Figure 4(a)). Similarly, we use the patient’s
risk index to verify in the test set of the ICGC database
(Figure 4(b)).

Based on the patient’s immune subtypes and differences
in survival, we want to know which immune cells are related
to the patient’s disease risk. Therefore, by establishing the
correlation between the patient’s risk index and immune
cells in TCGA cohort, and taking p < 0:05 as the significant
correlation, the immune cells related to the patient’s disease
risk were screened out (Figure 4(c)).

3. Discussion

The HCC ecosystem, which is mainly composed of tumor
cells and immune cells, is complex and dynamic. Due to
drug resistance or immune escape, the heterogeneity at all

levels from single cells to lesions reduces the therapeutic
effect [27]. In the past decade, many efforts have been made
to use multiregional and high-throughput analysis to study
intratumoral heterogeneity [28–30]. Most studies focus on
the genetic changes of HCC cells; this study is an attempt
to use computational biology to study the immune-related
heterogeneity of HCC at the genomic level. In this study,
we tried to construct its correlation with survival prognosis
based on the patient’s immunotype and the differential genes
screened. Our findings confirm that the prognostic survival
of A-IS is significantly higher than that of N-IS. These find-
ings are consistent with existing studies, namely, other
microenvironmental factors (for example, angiogenesis and
extracellular matrix contribute more immune heterogeneity)
[27]. Therefore, intervention in the immune status of the
HCC microenvironment may be a suitable strategy, because
such treatments may affect all lesions of the individual and

Activated stroma

CAF–stimulated

Adipocytes

CD8 T cells

CD8+ naive T−cells

CLP
Cytotoxic cells

Epithelial cells
Hepatocytes

Macrophages

Macrophages M2
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NKT
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6–gene IFN–.. signature

Correlation coefficient 0.01 0.2 0.5 0.7 1
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Figure 4: Prognostic prediction model based on signatures of tumor microenvironment. (a) Kaplan-Meier survival curve of the high- and
low-risk groups in TCGA training set. The horizontal axis represents time (unit: year); the vertical axis represents survival probability. The
low-risk group (blue line) presented a high three-year survival probability (35.12%); however, the high-risk group (yellow) presented a low
three-year survival rate (4.07%). (b) Kaplan-Meier survival curve of the high- and low-risk groups in the ICGC testing set. The low-risk
group (blue line) presented a high three-year survival probability (25.33%); however, the high-risk group (yellow) presented a low three-
year survival rate (14.29%). (c). Immune cells associated with the risk index of TCGA patients. The red line indicates a positive
correlation between the risk index and immune cells, and the gray line indicates a negative correlation between the risk index and
immune cells. The size of the circle indicates different correlation coefficients, and the larger the area of the circle, the larger the
correlation coefficient.
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may also be applicable for a group of patients. More impor-
tantly, many new tools for immunotherapy have been devel-
oped and improved. In addition, through comprehensive
analysis, we have observed that some immune cells are sig-
nificantly related to patient classification and disease risk,
providing a comprehensive new understanding of immuno-
phenotyping and risk prediction, and proposed possible tar-
gets for intervention in HCC.

Enhancing host immunity may be beneficial to the cure
of cancer. Researchers found infiltrating T cells in HCC
and discovered the enrichment of Treg cells and the deple-
tion of CD8+ T cells [31]. Studies have confirmed the
enrichment of immunosuppressive cells in patients with
HCC [32, 33]. Researchers revealed significant differences
between immune cells infiltrating HCC [34]. The similarity
of the immune microenvironment of some HCC patients
not only facilitates classification but also facilitates the
implementation of personalized treatment. In this case,
according to our new classification scheme, HCC patients
can be divided into three subtypes. More importantly, we
use an independent cohort of HCC patients to confirm the
classification results. Although there is significant heteroge-
neity in the immune status among patients, the three sub-
types of HCC are clearly identified, indicating that this
classification method can be applied to the HCC patient
population. Patients with N-IS subtype generally had normal
lymphocyte infiltration, but some patients have abundant
expression of immune-related genes. The upregulation of
features included expanded immune signature [35], T cell-
inflamed gene expression profile (GEP) [36], and immune
enrichment score [37]. T cell inflammation gene expression
profile (GEP) contains genes related to antigen presentation,
chemokine expression, cytotoxic activity, and adaptive
immune resistance [35]. They can divide cancer into differ-
ent subgroups and correspond to corresponding biological
patterns. Capturing immune-related feature sets can provide
accurate reference for reasonable construction and evalua-
tion of treatment plans [36]. Non-IS is like a “cold” tumor,
with almost no enrichment of immune- and matrix-related
molecules. For such patients, combination therapy is more
effective [38–40]. Enhanced T cell trafficking or suppression
of inhibitory MDSC may increase the response of these HCC
patients to immune checkpoint inhibitors [41, 42].

The three HCC subtypes we identified represent the clinical
situation of human patients. A-IS subtype patients have rela-
tively strong immune enrichment of stromal cell activation,
although in pancreatic ductal adenocarcinoma, compared with
patients with normal stromal subtype (N-IS), patients with acti-
vated stromal subtype samples (A-IS) have a worse survival
[43]. But in HCC patients, the situation is different; that is,
the 3-year survival performance of patients with an activated
stroma subtype is better than that of patients with a normal
stroma subtype (Figure 3(a)). However, the 5-year survival of
different patient subgroups did not differ significantly
(Figure 3(b)).

The current WHO classification of HCC highlights sub-
types with stromal characteristics [44] which include
lymphocyte-rich HCC. It is featured by lymphocyte infiltra-
tion into tumor and related to a better prognosis notably

[45]. Studies have shown that different tumor subtypes have
different types of immune microenvironments [46, 47] usu-
ally related to intratumoral heterogeneity [48]. The compo-
sition of the tumor immune microenvironment has been
analyzed by methods such as gene expression analysis,
single-cell RNA sequencing, and flow cytometry analysis
[16, 31, 48–50]. In liver cancer, studies have shown that
the number of immune cell infiltration, especially cytotoxic
T cells [51–53], and the molecular classification of the
immune microenvironment have clinicopathological signifi-
cance [16, 48, 54]. In our study, the stroma activation of
immune activity can indeed divide HCC patients into three
subgroups (Figure 1(c)), and it is significantly associated
with individuals’ survival (Figure 3(a)).

4. Methods

4.1. Project and Sample. Data sets of 371 liver hepatocellular
carcinoma donors were downloaded from TCGA database
with detailed clinical information (https://xenabrowser
.net/datapages/?dataset=TCGA-LIHC). The independent
data sets used for verification come from the GSE144269
data set (n = 70) (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE144269), the GSE14520_cohort1_
test data set (n = 22), the GSE14520_cohort2_train sam-
ples (n = 225) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE14520), the GSE25097_GPL10687 sam-
ples (n = 268) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE25097), the GSE36376_GPL10558
(n = 240) (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE36376) data set, and ICGC_LIRI_JP samples
(n = 232) (https://dcc.icgc.org/projects/LIRI-JP).

4.2. Bioinformatics Analysis

(1) ssGSEA algorithm: use the R package “GSVA (version
1.30.0),” and use ssGSEA to explore the HCC expres-
sion profile data of TCGA-LIHC cohort, and analyze
the immune enrichment of each patient’s tumor
microenvironment. According to the immune enrich-
ment status and stroma status of HCC samples, they
are divided into A-IS, N-IS, and non-IS subtypes.
According to the ssGSEA score obtained by each sam-
ple, the spectral clustering algorithm is used to extract
different classifications. In addition, the R package
“limma (version 3.41.18)” was used to analyze immu-
noenriched and non-immune-enriched patients, as
well as the significantly different genes of stromal cell
enrichment and nonmatrix enrichment, and p < 0:05
was taken as the significant difference

(2) The unsupervised clustering of the data set was per-
formed mainly based on tSNE which is embedded in
t-distributed random neighborhoods [55]. In this
study, we use tSNE to show the different subgroups
of TCGA-LIHC cohort

(3) We performed Kaplan-Meier survival analysis on the
samples and plotted survival curves. Survival analysis
divided the samples into high-index groups and low-
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index groups based on the median. Data visualiza-
tion is mainly done in the R environment (version
4.1.0). Kaplan-Meier survival analysis relies on the
use of the “survival (version 3.1-8)” package. The
ROC curve is drawn based on the “survivalROC
(version 1.0.3)” package

(4) Prognosis prediction model establishment process:
(a) use the training set to perform unit Cox regres-
sion on each gene to initially screen disease-related
genes; (b) after obtaining all Cox significant genes
in all units, perform 1000X LASSO regression to cal-
culate the frequency of each gene and rank it; (c)
according to the sorting result of the previous step,
build the gene set incrementally. Use each gene set
to perform multiple Cox regression to get the contri-
bution of each gene; (d) obtain the optimal gene set
according to the gene contribution degree, and per-
form multiple Cox regression analysis on these
genes. Finally, we determined the regression coeffi-
cient of each gene; (e) calculate the death risk score
of each patient through regression coefficients; (f)
the death risk score model is tested in the training
set (comparing the predicted situation with the
actual situation); (g) the same model is tested in
the independent testing set at the beginning (com-
parison of the predicted situation with the actual
situation)

(5) Construct the optimal multivariate Cox model based
on the LASSO algorithm. This analysis uses the
LASSO algorithm for gene screening: in the field of
statistics and machine learning, LASSO algorithm
(least absolute shrinkage and selection operator, also
translated as minimum absolute shrinkage and selec-
tion operator, LASSO algorithm) is a regression
analysis method that simultaneously performs fea-
ture selection and regularization (mathematics). It
is aimed at enhancing the predictive accuracy and
interpretability of statistical models. LASSO adopts
the linear regression method of L1-regularization,
so that the weight of some learned features is 0, so
as to achieve the purpose of sparseness, selection of
variables, and construction of the best model. The
characteristic of LASSO regression is to perform var-
iable selection and regularization while fitting a gen-
eralized linear model. Therefore, regardless of
whether the target dependent variable (dependent/
response variable) is continuous, binary, or discrete,
it can be modeled by LASSO regression and then
predicted

(6) We use the random forest algorithm to select the
best gene model based on the Cox multiple regres-
sion model and finally draw the unit Cox regression
model forest diagram based on the gene panel as fol-
lows: we calculate the risk score (risk score) of each
patient based on the expression of the gene panel
and the multiple regression coefficient. The formula
is as follows:

Risk score = 〠
n

i=1
βi ∗ xi: ð1Þ

where xi represents the expression level of each gene in the
panel and βi is the multivariate Cox regression beta value
(multi_beta) corresponding to each gene
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