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Background. M2 macrophages play an important role in cancers. However, the role of M2 macrophages has not been clarified in
lung squamous cell carcinoma. Methods. All the open-accessed data were downloaded from The Cancer Genome Atlas database.
All the analysis was performed in the R software. The CIBERSORT algorithm was utilized to quantify the immune cell infiltration
in the tumor microenvironment. LASSO regression and multivariate Cox regression analysis were carried out for the creation of
the prognostic model. Pathway enrichment analysis was performed using the single sample Gene Set Enrichment Analysis
(ssGSEA) and clueGO algorithm. Results. In our study, we comprehensively explored the role of M2 macrophages and its
related genes in LUSC patients. We found that the patients with high M2 macrophage infiltration tend to have a worse
prognosis. Also, some oncogenetic pathways were activated in the patients with high M2 macrophage infiltration. Further, a
prognosis model based on six M2 macrophage-related genes was established, including TRIM58, VIPR2, CTNNA3, KIAA0408,
CLEC4G, and MATN4, which showed a good prognosis prediction efficiency in both training and validation cohort. Pathway
enrichment analysis showed that the pathway of allograft rejection, bile acid metabolism, coagulation, inflammatory response,
IL6/JAK/STAT3 signaling, hedgehog signaling, peroxisome, and myogenesis were significantly activated in the high-risk
patients. Based on the results of an investigation of immune infiltration, risk score was found to have a positive correlation
with M2 macrophages and resting CD4+ memory T cells, but a negative correlation with follicular helper T cells, M1
macrophages, and Tregs. In addition, we discovered that patients in high-risk groups may respond better to immunotherapy
than individuals in lower-risk groups. However, low-risk patients might be more sensitive to cisplatin. Conclusions. Our model
is a powerful tool to predict LUSC patient prognosis and could indicate the sensitivity of immunotherapy and chemotherapy.

1. Introduction

Lung cancer is a common malignant tumor globally and is
approximately responsible for 2 million new cases and 1.5
million cancer-related deaths each year [1]. The incidence
of lung cancer is related to several pathogenesis factors,
including environmental exposure, smoking, lifestyle, and
genetic predisposition [2]. Non-small-cell lung cancer
(NSCLC) is the most frequently pathological subtype of lung

cancer, mainly consisting of lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) [3, 4]. For the
moment, surgery resection is still the best option for early-
stage lung cancer. However, the overall survival rate for
advanced lung cancer remains unsatisfactory, despite immu-
notherapy and targeted therapy providing some therapeutic
benefits [5, 6]. Consequently, in order to diagnose and treat
LUAD, it is essential to discover new molecular markers that
are both effective and innovative.
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Tumor cells are affected by various factors in the tumor
microenvironment, rather than being isolated individuals
[7]. Macrophages are a member of the tumor microenviron-
ment and have been reported to affect tumor progression
through intercellular interactions, secretion of cytokines,
and other effects [8]. Generally speaking, macrophages are
classified into three groups: M0, M1, and M2 types, of which
M1 and M2 are different from M0 macrophages [8]. M2
macrophages have been widely reported to be involved in
tumor development [9]. For example, Lan and colleagues
found that the M2 macrophage-derived exosomes miR-21-
5p and miR-155-5p could significantly promote cancer cell
invasion and are potential therapeutic targets for colon can-
cer [10]. Weng and colleagues found that the polarization
process of M2 macrophages could be induced by the
MCT-1/miR-34a/IL-6/IL-6R axis, therefore facilitating
breast cancer progression [11]. Wang and colleagues
revealed that tumor-derived exosome miR-301a was induced
by hypoxia and can mediate M2 Macrophage polarization
through PTEN/PI3Kγ pathway to enhance pancreatic cancer
metastasis [12]. Therefore, it is meaningful to explore the
underlying role of M2 macrophages and its related mole-
cules in lung cancer.

In our study, we aimed to develop a novel prognostic
model for LUSC patients. We comprehensively explored
the role of M2 macrophages and its related genes in LUSC
patients. Meanwhile, a prognosis model based on six M2
macrophage-related genes was established, including
TRIM58, VIPR2, CTNNA3, KIAA0408, CLEC4G, and
MATN4, which showed a good prognosis prediction effi-
ciency. In order to investigate the underlying clinical and
biological differences that exist between patients with a high
risk and patients with a low risk, clinical correlation, route
enrichment, and immune infiltration studies were carried
out. In addition, we discovered that patients in high-risk
groups may respond better to immunotherapy than individ-
uals in lower-risk groups. However, low-risk patients might
be more sensitive to cisplatin.

2. Materials and Methods

2.1. Data Acquisition. The open-accessed data of LUSC
patients were obtained from TCGA datasets. Detailed, the
transcriptional profile data were in “STAR-Counts” form
and were integrated with R code. Clinical information of
each patient were downloaded in “bcr-xml” form. All data
were preprocessed before data analysis.

2.2. Immune Cell Infiltration and Identification of M2
Macrophage-Related Genes. The CIBERSORT algorithm
was utilized to quantify the immune cell infiltration in the
tumor microenvironment [13]. The CIBERSORT port is a
general calculation method, which is used to quantify the
immune cell fraction from the tissue gene expression profile,
and can accurately estimate the immune component of
tumor biopsy. Limma package was used to perform differen-
tially expressed genes (DEGs) analysis between patients high
and low M2 macrophage infiltration with the threshold of j

logFCj > 1 and P < 0:05. The DEGs above were defined as
M2 macrophage-related genes.

2.3. Pathway Enrichment and Genomic Analysis. Pathway
enrichment analysis was performed using the single sample
Gene Set Enrichment Analysis (ssGSEA) and clueGO algo-
rithm to explore the underlying biological differences
between two specific groups [14]. The reference pathway
set was Hallmark. The TMB, MSI, and tumor stemness
scores were obtained from TCGA.

2.4. Prognosis Model Construction. In the first step of the
process, patients were randomly assigned to either the train-
ing or validation cohort. A univariate Cox regression analy-
sis was carried out in order to locate the genes associated
with the prognosis. After that, LASSO regression and multi-
variate Cox regression analysis were carried out for the cre-
ation of the prognostic model with the formula of
“-
risk score = geneA ∗ Coef A + gene B ∗ Coef B +⋯+geneN
∗ Coef N” [15, 16]. For the purpose of model evaluation,
Kaplan-Meier survival curves and Receiver Operating Char-
acteristic (ROC) curves were utilized.

2.5. Immunotherapy and Drug Sensitivity Assays. The Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was
used to measure the efficacy of immunotherapy for patients
with LUSC [17]. The Genomics of Drug Sensitivity in Can-
cer database served as the basis for the drug sensitivity anal-
ysis that was carried out [18].

2.6. Statistical Analysis. All the statistical analyses were per-
formed using the R software v4.0.0. For the data that had a
normal distribution, a Student T-test was carried out. When
analyzing data with a nonnormal distribution, the Mann–
Whitney U test was utilized. P < 0:05 was considered statis-
tically significant.

3. Results

3.1. Quantification of M2 Macrophages in LUSC. In the
patients with LUSC, the infiltration level of M2 macrophages
was measured using the CIBERSORT method (Figure 1(a)).
KM survival curves showed that the patients with high M2
macrophage infiltration tend to have a worse prognosis
(Figure 1(b)). Limma package was used to perform differen-
tially expressed gene (DEG) analysis between patients high
and low M2 macrophage infiltration with the threshold of j
logFCj > 1 and P < 0:05. A total of 81 downregulated genes
and 38 upregulated genes were defined as M2 macrophage-
related genes (Figure S1). Pathway enrichment analysis
showed that in the patients with high M2 macrophage
infiltration, the pathway of KRAS signaling, HEME
metabolism, adipogenesis, coagulation, xenobiotic
metabolism, and epithelial-mesenchymal transition (EMT)
were significantly enriched (Figure 1(c)). ClueGO analysis
showed that the DEGs between high and low macrophages
were mainly involved in dopaminergic neuron
differentiation, mast cell activation, cell adhesion mediator
activity, positive regulation of insulin-like growth factor
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receptor signaling pathway, regulation of action potential,
potassium channel activity, and acylglycerol homeostasis
(Figure 1(d)).

3.2. Prognosis Model Construction. A univariate Cox regres-
sion analysis was performed as the first step of the method
in order to discover the genes that were connected with the
prognosis. After that, LASSO regression was carried out in
order to reduce the dimensionality of the data (Figures 2(a)
and 2(b)). Multivariate Cox regression analysis finally identi-
fied six genes for model construction, including TRIM58,
VIPR2, CTNNA3, KIAA0408, CLEC4G, and MATN4

(Figure 2(c)). Within the training group, a larger percentage
of fatalities was seen in patients who were considered to be
at high risk (Figure 2(d)). KM survival curve showed that
the patients in the high-risk group had a worse overall sur-
vival (OS) (Figure 2(e)). ROC curves indicated a good predic-
tion of patients 1-, 3-, and 5-year OS (Figures 2(f)–2(h),
1‐year AUC = 0:728, 3‐year AUC = 0:75, and 5‐year AUC =
0:81). The same trend was also found in the validation cohort
(Figures 2(i)–2(m), 1‐year AUC = 0:661, 3‐year AUC =
0:705, and 5‐year AUC = 0:746). Next, we explored the prog-
nosis value of six model genes. The result showed the genes
TRIM58, VIPR2, CTNNA3, KIAA0406, and CLEC4G might
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Figure 1: M2 macrophages in LUSC. (a) The infiltration level of M2 macrophages was quantified using the CIBERSORT algorithm; (b) the
patients with higher M2 macrophage infiltration tend to have a worse prognosis; (c) pathway enrichment analysis M2 macrophages; (d)
ClueGO analysis.
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Figure 2: Continued.
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Figure 2: Prognosis model construction. (a, b) LASSO regression algorithm; (c) multivariate Cox regression analysis; (d) overview of the
prognosis model in the training cohort; (e) KM survival curve of the model in the training cohort; (f–h) ROC curve was used for model
evaluation in the training cohort; (i) overview of the prognosis model in the validation cohort; (j) KM survival curve of the model in the
validation cohort; (k–m) OC curve was used for model evaluation in the validation cohort.
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be associated with poor OS and disease-free survival (DSS),
while MATN4 was associated with better prognosis
(Figures 3(a) and 3(b)). Meanwhile, the patient with higher
TRIM58 expression might have a shorter progression-free
survival (Figure 3(c)).

3.3. Clinical Correlation Analysis. Both univariate and multi-
variate analyses demonstrated that our model is a risk factor
that is not reliant on any other clinical characteristics,
including age, gender, T classification, N classification, and
clinical stage (Figure 4(a), univariate analysis, HR = 1:79, P
< 0:001; Figure 4(b), multivariate analysis, HR = 1:864, P <
0:001). Clinical correlation analysis indicated no significant
difference of model genes and risk score in patients of differ-
ent ages (Figure 4(c)). Interestingly, we found that the
female patients might have a higher risk score than male
patients (Figure 4(d)). Also, we observed a lower CLEC4G
level in patients with a worse clinical stage (Figure 4(e)).
No significant difference of model genes and risk score was
observed in patients of different TNM classifications
(Figures 4(f)–4(h)).

3.4. Pathway Enrichment, Immune Infiltration, and Genomic
Instability Analysis. Moreover, we made an effort to deter-
mine the potential variations in biological pathways that
exist between patients who have a high risk and those who
have a low risk. The result showed that the pathway of allo-
graft rejection, bile acid metabolism, coagulation, inflamma-
tory response, IL6/JAK/STAT3 signaling, hedgehog

signaling, peroxisome, and myogenesis were significantly
activated in the high-risk patients (Figure 5). The CIBER-
SORT algorithm was used to quantify the immune microen-
vironment of LUSC patients (Figure 6(a)). Based on the
results of an investigation of immune infiltration, risk score
was found to have a positive correlation with M2 macro-
phages and resting CD4+ memory T cells, but a negative
correlation with follicular helper T cells, M1 macrophages,
and Tregs (Figure 6(b)). Genomic instability analysis
showed that risk score had no remarkable correlation with
TMB and MSI (Figures 7(a) and 7(b)). However, we found
a negative correlation between risk score and mRNAsi
(Figure 7(c)).

3.5. Immunotherapy and Drug Sensitivity Analysis. Both
immunotherapy and chemotherapy were considered to be
the most essential treatment options for lung cancer. Next,
we investigated the underlying variations in immunotherapy
and chemotherapy sensitivity between patients with a high
chance of developing the disease and those with a low risk.
The TIDE algorithm was used to quantify the immunother-
apy response rate of LUSC patients (Figure 7(d)). The result
showed that the immunotherapy responders might have a
higher risk score (Figure 7(e)). Also, the patients in the
high-risk group might have a higher proportion of immuno-
therapy responders (Figure 7(f)). The results of the drug
sensitivity test suggested that people in the low-risk group
would be more susceptible to the effects of cisplatin
(Figure 7(g)). However, no significant difference was found
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Figure 3: Prognosis effect of model genes. (a) The OS difference in patients with high and low model gene expression; (b) the DSS difference
in patients with high and low model gene expression; (c) the PFS difference in patients with high and low model gene expression.
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Figure 4: Continued.
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in axitinib, bexarotene, bleomycin, bortezomib, docetaxel,
gemcitabine, and sunitinib (Figure 7(g)).

4. Discussion

Lung cancer, the leading cause of cancer death throughout
the world, claims the lives of more than 350 people every
day [19]. During the last decade, although there was a steep

decline in lung cancer incidence for advanced cases based on
the changes in cancer screening and treatment, only 15% of
patients with NSCLC can live beyond five years [20]. LUSC,
the most common pathological subtype of NSCLC, known
for its high tumor heterogeneity, showed a significant thera-
peutic difference in immunotherapy response rate [21]. A
key objective of our research is to identify prognostic and
therapeutic targets for LUSC.
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Figure 4: Clinical correlation analysis. (a, b) Both univariate and multivariate analyses were performed on the risk score and clinical
characteristics; (c–h) clinical correlation of model genes and risk score.
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In this study, we comprehensively explored the role of
M2 macrophages and its related genes in LUSC patients.
Meanwhile, a prognosis model based on six M2
macrophage-related genes was established, including

TRIM58, VIPR2, CTNNA3, KIAA0408, CLEC4G, and
MATN4, which showed a good prognosis prediction effi-
ciency in both training and validation cohort. In order to
investigate the underlying clinical and biological differences
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Figure 6: Immune infiltration analysis. (a) In order to quantify the immunological microenvironment, the CIBERSORT algorithm was
utilized; (b) the correlation of risk score and quantified immune cells.
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that exist between patients with a high risk and patients with a
low risk, clinical correlation, route enrichment, and immune
infiltration studies were carried out. In addition, we discovered
that patients in high-risk groups may respond better to immu-
notherapy than individuals in lower-risk groups. However,
low-risk patients might be more sensitive to cisplatin.

M2 macrophage is an essential part of the tumor micro-
environment. In our study, we identified six model genes
TRIM58, VIPR2, CTNNA3, KIAA0408, CLEC4G, and
MATN4 that were associated with patients’ prognosis and
M2 macrophage infiltration. In lung cancer, Chen et al.
found that TRIM58 was a prognostic biomarker that could
remodel the tumor microenvironment of lung cancer [22].
Based on the whole-exome sequencing, Liu et al. indicated
that CTNNA3 has the potential to be a promising druggable
target in LUSC therapy [23]. However, there have been few
studies examining the role of other genes playing in lung
cancer, as well as their underlying association with M2 mac-
rophage infiltration. The result of our study could provide a
novel insight into the research direction of model genes.

The result in the present study showed that the pathway
of allograft rejection, bile acid metabolism, coagulation,
inflammatory response, IL6/JAK/STAT3 signaling, hedge-
hog signaling, peroxisome, and myogenesis were signifi-
cantly activated in the high-risk patients. Through the
large-scale metabonomic analysis of cancer tissue and
plasma, Nie et al. found that bile acid metabolism was corre-
lated with poor clinical features, which might be an underly-
ing therapeutic target in lung cancer [24]. Meanwhile,
Tantawy et al. found that the imbalance of IL6/JAK/STAT3
pathway and its related downstream pathways is the main
reason for the progression of NSCLC [25]. The abnormal
activation of the hedgehog pathway is responsible for caus-
ing and progressing several types of cancer [26]. In lung can-
cer, the hedgehog pathway was considered associated with

lung cancer development [27]. Meanwhile, risk score was
found positively correlated with M2 macrophage infiltration.
In lung cancer, high level of M2 macrophages was associated
with more progressive biological behavior. From our result,
it is possible that the aberrant activation of the pathways
mentioned above, along with the link with M2 macrophages,
is to blame for the dismal prognosis of patients who fall into
the high-risk group.

Nowadays, immunotherapy and chemotherapy were
important therapy options for lung cancer. According to the
findings of our study, patients who were in the high-risk group
would respond better to immunotherapy, whereas those who
were in the low-risk group might respond better to cisplatin.
Therefore, aside from predicting the prognosis of lung cancer
patients, our model also provides some therapeutic guidance.
In the clinical setting, the application of our model could indi-
cate the therapy option of LUSC patients.

It is important to be aware of some restrictions. Firstly,
the majority of people who participated in our research were
from Western countries. The underlying race bias might
hamper the credibility of the application of our model to
other races. Secondly, the M classification information of a
considerable part of the population is unknown. If all clinical
information is complete, our data will be richer and more
reliable. Moreover, further experimental research is required
to elucidate the protein expression levels of the prognostic
genes as well as their molecular mechanisms in the patho-
genesis and progression of LUSC.

5. Conclusion

Our study identified a novel signature that reliably predict
overall survival in pancreatic cancer. The findings may be
beneficial to therapeutic customization and medical deci-
sion-making.
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Figure 7: Immunotherapy and drug sensitivity analysis. (a) The correlation between risk score and TMB; (b) the correlation between risk
score and MSI; (c) the correlation between risk score and mRNAsi; (d) TIDE algorithm was used to quantify the immunotherapy response;
(e) the TIDE score in low- and high-risk patients; (f) the proportion of immunotherapy responders and non-responders in low- and high-
risk patients; (g) drug sensitivity differences between low- and high-risk patients.
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