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Pyroptosis is associated with the biological behavior of the tumor and with tumor immunity. We investigated the efect of
pyroptosis on the tumor microenvironment and tumor immunity in head and neck squamous cell carcinoma (HNSCC). RNA
sequencing data and clinical information of HNSCC were downloaded from TCGA. Diferentially expressed pyroptosis-
related genes in HNSCC were identifed between HNSCC and normal tissue. Pyroptosis-related classifcation of HNSCC was
conducted based on consensus clustering analysis. LASSO-Cox regression analysis was used to construct a prognostic risk
model-based pyroptosis-related gene. Evaluation of the immune microenvironment was conducted in prognostic risk
signature based on pyroptosis-related genes. Total 22 diferentially expressed pyroptosis-related genes were identifed in
HNSCC. Six prognostic-related genes were included to construct a LASSO regression model with a prognostic risk
score � (0.133 ∗GSDME (DFNA5) + 0.084 ∗NOD1 + 0.039 ∗ IL6 + 0.003 ∗ IL1B + 0.084 ∗CASP3 + 0.028 ∗NLRP2). Higher
fraction of resting memory CD4+ Tcells and macrophages M1 was infltrated in the high-risk group compared with the low-
risk group in HNSCC. Furthermore, the PI3K-Akt signaling pathway and the IL-17 signaling pathways were identifed to be
involved in the development of high-risk HNSCC. Our study constructed a prognostic risk signature based on pyroptosis-
related genes, which emphasizes the critical importance of pyroptosis in HNSCC and provided a novel perspective of HNSCC
therapy.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks as
the seventh most common cancer worldwide, which leads to
450,000 deaths in 2018 [1, 2]. Tobacco use, alcohol con-
suming, and HPV infection are the main risk factors, es-
pecially HPV-positive associated HNSCC, which is
increasing among young people in the western world [1].
Multiple therapeutic interventions, including surgery, ra-
diation therapy, chemotherapy, and immunotherapy, are
recommended for HNSCC according to the anatomical sites
and the degree of severity of HNSCC [1]. Despite tremen-
dous eforts to therapy intervention for HNSCC, low

therapeutic response to HNSCC remains a global challenge
[3]. Te prognosis in HNSCC varies dramatically depending
on risk factors, perineural invasion and extensive of invasion
[4]. In addition, recurrent and metastatic HNSCC still have
a poor prognosis [5]. Terefore, understanding the tumor
biology of HNSCC will help us predict the prognosis and
identify novel therapeutic targets for HNSCC. Recently,
pyroptosis in cancer cell death induced by targeted therapy
ad chemotherapy has gained more and more attention in
cancer management [6, 7]. Pyroptosis, a kind of regulated
cell death pathway [8], is characterized by a distinct in-
fammatory outcome, accompanied by the release of many
infammatory cytokines release. It presents with cellular
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swelling and rapid rupture. Te Gasdermin (GSDM) su-
perfamily, including GSDMA, GSDMB, GSDMC, GSDMD,
and GSDME (DFNA5), are activated and cleaved during
pyroptosis, which is regulated by infammatory caspases [8].
Several studies have demonstrated that pyroptosis increases
cancer immune therapy [9–12]. However, the role of
pyroptosis in HNSCC remains unclarifed. In this study, our
objective was to identify the signature to predict the
prognosis of HNSCC and help provide a novel therapy
strategy for HNSCC.

2. Materials and Methods

2.1. Data Preprocess. RNA sequencing data and clinical
information of HNSCC was downloaded from TCGA
(https://tcga-data.nci.nih.gov) database. Total 542 HNSCC
and 44 normal human samples were included in this study.
Te gene expression profles in HNSCC were normalized to
fragment per kilobase million (FRKM).

2.2. Identifcation of Diferentially Expressed Pyroptosis-
Related Genes in HNSCCs. Tirty-three pyroptosis-related
genes were retrieved from the published research works
[9–12], which included efector substrate proteins-six
GSDM superfamily members (GSDMA, GSDMB,
GSDMC, GSDMD, GSDME (DFNA5), and DFNB59), seven
caspase family members (CASP1, CASP3, CASP4, CASP5,
CASP6, CASP8, and CASP9), pattern recognition receptors,
including eight nucleotide-binding oligomerization
domain-like receptors (NOD1, NOD2, NLRP1, NLRP2,
NLRP3, NLRP6, NLRP7, and NLRC4), absent in melanoma
2(AIM2), released infammatory cytokine (IL-1B, IL-6, IL-
18, and TNF) and other regulatory genes (GPX4, PLCG1,
PYCARD, PRKACA, ELANE, TIRAP, and SCAF11).

Diferentially expressed pyroptosis-related genes
(DEPG) between HNSCC and normal tissues were identifed
by “limma” package. Te heatmap and bar plots were
constructed to depict the expression of DEPG. Furthermore,
the correlation among 33 genes in HNSCC was conducted
based on Pearson’s correlation analysis. A P value less than
0.05 was considered signifcance.

2.3. Pyroptosis-Related Classifcation of HNSCC Based on
Consensus Clustering Analysis. To further identify the
pyroptosis-related subtype of HNSCC, consensus clustering
analysis was performed to justify the classifcation of
HNSCC based on the resampling method. A consensus
matrix was clustered to determine the optimal k value. In
addition, the clinicopathological characteristics (including
age, sex, grade, stage of TNM, metastasis, and alcohol use) of
HNSCC were included in the heatmap. To further evaluate
the efect of pyroptosis-related classifcation on survival time
in HNSCC, survival analysis was performed between two
pyroptosis-related clusters in HNSCC. Te survival rate was
estimated on the basis of the Kaplan–Meier method.
Comparison of the survival rate between two clusters was
implemented with the log-rank test. A P value less than 0.05
was considered signifcance.

2.4. Construction of a Risk Signature of HNSCC in TCGA.
To further identify the prognostic genes of pyroptosis,
univariate Cox regression analysis was applied to identify
the prognostic genes of pyroptosis-related genes. Sub-
sequently, the prognostic pyroptosis-related genes were
enrolled in the LASSO-Cox regression analysis to avoid
overftting the model. Te contraction penalty term (λ) was
introduced into the model to optimize the regression
model. Five-fold cross-validation was used to determine
the optimal λ by choosing the logarithm of the minimum
mean squared error of the lambda. LASSO-Cox-regularized
regression analysis was performed using “glmnet” package
in R. Te ROC curve was conducted to evaluate the efcacy
of the prognostic risk model of HNSCC with pyroptosis-
related genes.

2.5. Evaluation of the Immune Microenvironment in a Prog-
nostic Risk Signature Based on Pyroptosis-Related Genes.
To further evaluate the association between the immune
microenvironment and prognostic risk model based on
pyroptosis-related genes in HNSCC, cell-type identifca-
tion by estimating relative subsets of RNA transcripts
(CIBERSORT) and the ESTIMATEmethod were applied to
analyze the infltration of immune and stroma cells [13].
CIBERSORT (https://cibersort.stanford.edu/) calculates 22
immune cells based on the deconvolution method. ESTI-
MATE (https://bioinformatics.mdanderson.org/estimate/)
was applied to calculate the scores of stromal and
immune cells.

2.6. Functional Enrichment of Diferentially Expressed Genes
between High Risk and Low Risk Group at HSNCC.
Diferentially expressed genes (DEG) between the high-risk
and low-risk groups in HSNCC were calculated using
“limma” package with absolute log2(|fold change|) >1 and P

value <0.05. To further understand the potential mechanism
in DEG between the high-risk and low-risk groups in
HNSCC, functional enrichment of Gene Ontology (GO)
(https://geneontology.org/) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (https://www.kegg.jp/) was
applied to identify the biological function of hub genes in the
signifcant module.

3. Results

3.1. Identifcation of DEPG between HNSCC and Normal
Tissues. As shown in Figure 1(a), 22 DEPGs (including
AIM2, CASP1, CASP5, CASP6, CASP8, CASP9,
GSDME(DFNA5), ELANE, GSDMB, GSDMD, IL-1B, IL-6,
IL-18, NLRC4, NLRP1, NLRP6, NLRP7, NOD1, PLCG1,
PRKACA, PYCARD, and TIRAP) were identifed between
the HNSCC tissue and normal tissue. Higher expression of
AIM2, CASP1, CASP5, CASP6, CASP8, GSDME (DFNA5),
GSDMB, GSDMD, IL-18, IL6, NLRC4, NLRP6, NLRP7,
NOD1, PLCG1, and PYCARD in HSNCC tissues compared
with the normal tissues, whereas a few pyroptosis-related
genes (CASP9, ELANE, IL-1B, NLRP1, TIRAP, and
PRKACA) were downregulated in HNSCC tissues (P< 0.05)
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Figure 1: Continued.
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(Figure 1(b)). Pearson correlation analysis indicated a highly
positive correlation between CASP4 and CASP1 (r� 0.81,
P< 0.05). Moderate positive correlations between PRKACA
and SCAF11 (r� 0.6, P< 0.05), SCAF11 and TIRAP
(r� 0.67, P< 0.05), SCAF11 and CASP8 (r� 0.64, P< 0.05),
and CASP3 and CASP6 (r� 0.67, P< 0.05) are manifested in
Figure 1(c).

3.2. Identifcation of Pyroptosis-Related Subtype of HNSCC
Based on Consensus Cluster Analysis. Te pyroptosis-related
subtype of HNSCC was clustered into two groups based on
consensus clustering analysis (k� 2) (Figures 2(a) and 2(b)).
A higher level of 33 pyroptosis-related genes was clustered in
cluster 2 (Figure 2(c)). In addition, a higher survival rate was
detected in cluster 1 of HNSCC compared with cluster 2
(P< 0.001) (Figure 2(d)).

3.3. Construction of a Prognostic Risk Model with HNSCC
Based onPyroptosis-RelatedGenes. As shown in Figure 3(a),
only 4 pyroptosis-related genes (including GSDME
(DFNA5), IL-6, IL-1B, and CASP3) were considered sig-
nifcant prognostic-related genes with univariate cox re-
gression analysis (P< 0.05). LASSO-Cox regression
analysis indicated that a prognostic risk model was con-
structed by 6 prognostic-related genes, including GSDME
(DFNA5), NOD1, IL-6, IL-1B, NLRP2, and CASP3
(Figure 3(b)). Te optimal lambda was identifed as 4 by the
cross-validation analysis (Figure 3(c)). Hence, the com-
putational formula of prognostic-related risk score in
HNSCC was as follows: risk score�(0.133 ∗ GSDME +
0.084 ∗ NOD1 + 0.039 ∗ IL6 + 0.003 ∗ IL1B + 0.084 ∗
CASP3 + 0.028 ∗ NLRP2). A moderate efciency was
verifed with an AUC of 0.638 from the ROC curve
(Figure 3(d)).
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Figure 1: Diferentially expressed pyroptosis-related genes between HNSCC and normal tissue. (a) Te heatmap of 33 pyroptosis-related
gene expression between HNSCC and normal tissue. (b) Bar plot of 33 pyroptosis-related gene expressions between HNSCC and normal
tissue.Nmeans normal tissues; Tmeans HNSCC tissues; ∗, compared with normal tissue, P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001. (c)Te heatmap
of correlation among 33 pyroptosis-related genes in HNSCC, the red dots mean positive correlation and blue dots mean positive correlation
(n� 582).
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3.4. Relationship between Prognostic Risk Model and Clinical
Characteristics in HNSCC Based on Six Genes. Te HNSCC
patients were divided into 2 groups based on the above risk
score (high-risk and low-risk group). Te HNSCC patient in
the high-risk group tended to have a shorter survival time
(P< 0.001) (Figure 3(e)). In addition, the expression of
6 pyroptosis-related genes (GSDME, IL6, IL1B, NOD1,
CASP3, and NLRP2) in the prognostic risk model was el-
evated in the high-risk group. Compared with the low-risk
group, a high-risk group manifested in higher grade with
female predominance (P< 0.05). However, no diferences in
alcohol use were observed between the high-risk group and
the low-risk group (P> 0.05). (Figure 4(a)).

3.5. Efects of Pyroptosis-Related Genes on Immune Micro-
environment in HNSCC. Immune cell infltration varied
between high and low prognostic risk signature based on
pyroptosis-related genes (P< 0.05) (Figure 4(b)). A higher
fraction of resting memory CD4+ T cells and macrophages
M1 was infltrated in the high-risk group (P< 0.05)
(Figure 4(b)). Interestingly, a higher fraction of plasma cells,
native B cells, native CD4+ T cells, follicular helpers of
T cells, and monocytes were identifed in the low-risk group
(P< 0.05). Furthermore, compared with the low-risk group,
a higher immune score was detected in the high-risk group
of HNSCC (P< 0.05) (Figure 4(c)).

3.6. Functional Enrichment of DEGs between the High-Risk
and Low-Risk Groups in HSNCC. Higher expression of
(GSDME (DFNA5), PXN, ACTN1, DSE, LAMC2, PROCR,
UBASH3B, ITGA3, LIMA1, and MYO1B) was identifed in
the high-risk group compared with the low-risk group

(Figure 5(a)). GO and KEGG analyses were performed to
evaluate the functional enrichment in DEGs. In KEGG
analysis, cytokine-cytokine receptor interaction pathway,
phosphatidylinositol 3-kinase (PI3K)-Akt signaling path-
way, focal adhesion, and IL-17-signaling pathway were
mostly enriched (Figure 5(b)). In the GO analysis, biological
processes (including extracellular structure organization and
extracellular matrix organization) were mostly enriched
(Figure 5(c)). Te extracellular matrix, especially for
collagen-containing extracellular matrix, was the leading
cellular component (Figure 5(d)). In addition, the molecular
function among DEGs varies in receptor regulator activity,
receptor ligand activity, and endopeptidase activity
(Figure 5(e)).

4. Discussion

Although pyroptosis is essential for host defense infection
and hazardous signals, its role in tumor activity remains
ambiguous. Emerging evidence shows that pyroptosis
inhibits tumor growth and migration [7]. However, sev-
eral lines of evidence support that a possible harmful role
of pyroptosis in HNSCC [7]. In consistent with our study,
high expression of NLR family pyrin domain family
members was detected in the HNSCC tissue. Increased
NLRP3 is positively correlated with the growth and me-
tastasis of oral squamous cell carcinoma (OSCC) [14, 15].
Knockdown of Nlrp3 expression inhibits the proliferation,
migration, and invasion of OSCC by decreasing the
cleavage of Caspase-1 and lL-1β release in vitro and in vivo
[14]. In addition, high expression of NLRP3 implied
a poor prognosis and minor diferentiation in histo-
pathological grading in patients with OSCC. Increased
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Te classifcation of HNSCC with optimal k� 2. (b) Empirical cumulative distribution function (CDF) plots. Te CDF plot fnds that the
k� 2 at which the distribution reaches an approximate maximum. (c)Te heatmap of expression of 33 pyroptosis-related genes between the
two clusters and among clinicopathologic features. (d) Survival analysis between the 2 pyroptosis-related clusters of HNSCC (n� 542).

Journal of Oncology 7



DFNA5

NOD1

IL6

IL1B

CASP3

NLRP2

CASP1

CASP8

CASP4

CASP6

SCAF11

CASP5

PLCG1

IL18

PRKACA

NLRP1

NOD2

NLRP6

GSDMD

TIRAP

GSDMB

TNF

CASP9

NLRP3

DFNB59

NLRC4

PYCARD

ELANE

GSDMA

GPX4

NLRP7

GSDMC

pvalue

<0.001

0.008

0.012

0.015

0.057

0.091

0.097

0.099

0.121

0.142

0.208

0.210

0.245

0.286

0.310

0.334

0.391

0.440

0.501

0.546

0.599

0.612

0.630

0.715

0.790

0.792

0.797

0.834

0.915

0.929

0.965

0.980

Hazard ratio

1.267 (1.109−1.447)

1.403 (1.094−1.799)

1.102 (1.021−1.189)

1.120 (1.022−1.228)

1.229 (0.994−1.520)

1.045 (0.993−1.099)

1.135 (0.977−1.319)

1.184 (0.969−1.448)

1.132 (0.968−1.325)

1.192 (0.943−1.508)

1.141 (0.929−1.402)

1.065 (0.965−1.175)

1.150 (0.908−1.457)

1.063 (0.950−1.190)

1.147 (0.880−1.496)

0.923 (0.786−1.085)

0.949 (0.843−1.069)

0.960 (0.866−1.064)

1.066 (0.885−1.285)

1.058 (0.881−1.272)

1.030 (0.923−1.149)

1.025 (0.932−1.126)

1.049 (0.862−1.277)

1.021 (0.914−1.140)

1.017 (0.897−1.153)

1.020 (0.878−1.186)

1.024 (0.857−1.223)

0.985 (0.859−1.130)

0.997 (0.935−1.062)

0.991 (0.805−1.219)

1.001 (0.939−1.068)

0.999 (0.908−1.099)

0.71 1.0 1.41 2.0
Hazard ratio

(a)

Figure 3: Continued.

8 Journal of Oncology



−6 −5 −4 −3

0.00

0.05

0.10

0.15

Log Lambda

Co
effi

ci
en

ts

9 7 7 5
1

2

3

4

5

6

8

9

10

(b)

−6 −5 −4 −3

11.4

11.5

11.6

11.7

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

9 9 9 9 9 7 7 7 7 7 6 5 5 5 4 1 0

(c)

Figure 3: Continued.

Journal of Oncology 9



expression of NLRP3 enhances the 5-FU resistance of oral
squamous cell carcinoma (OSCC). Knockout of Nlrp3 and
Caspase1 inhibited the tumor growth in mice with 5-
FU [15].

NLRP3 promotes the epithelial-mesenchymal transition
(EMT) in colon cancer [16]. Similarly, activation of the
NLRP3 infammasome accelerates tumor proliferation and
migration in lung cancer [17]. In addition, the NLRP3
infammasomes are involved in radiotherapy resistance in
glioblastoma [18]. Hence, pyroptosis might play an im-
portant role in tumorigenesis in HSNCC.

4.1. Te Caspase-3/GSDME Signaling Pathway in Head and
Neck Cancer. Gasdermin family proteins, as the efectors of
pyroptosis, play a critical role in lytic-programmed cell death
(pyroptosis) [19, 20]. GSDME-mediated is involved in the
regulation of tumor immune microenvironment and anti-
tumor immunity [21]. Consistent with our result, high levels
of GSDME have been detected in many cancers, including
lung cancer, melanoma, osteosarcoma, digestive cancers,
and head and neck cancer [6, 22]. GSDME, cleaved by
Caspase 3, releases the pore-forming domain (N-terminal)
in the cell membrane to punch holes, which enables the
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Figure 3: Construction of a prognostic risk model with pyroptosis-related genes. (a) Univariate cox regression coefcients in 33 pyroptosis-
related genes in HNSCC. (b) Identifcation of the penalty parameters for the pyroptosis-related genes. (c) Cross-validation plot for the term
of penalty. (d) ROC curves for the prognostic risk model. AUC, area under the curve. (e) Survival curve between the high-risk and low-risk
groups in prognostic risk model of HNSCC (n� 542).
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secretion of IL-1B and leading to cell swelling, per-
meabilization, rupture, and death [22, 23]. In addition,
GSDME, the downstream of Caspase 3, is involved in the
switch from apoptotic cell death to secondary pyroptosis.
Interestingly, GSDME, in turn, enable us to enhance the
intrinsic apoptotic pathway in cancer cells by forming pores
in the mitochondria with GSDME-N and liberating pro-
apoptotic factors (including Cyt c and HtrA2) [24]. A recent
study has indicated that GSDME ablation impaired the
tumor-suppressive activity in head and neck cancer [6].
Consistently, LASSO regression model with prognostic risk
in our study demonstrated that higher GSDME and CASP3

expression was inclined to a poor prognosis, suggesting
a compensatory increase in Caspase-3-mediated cleavage of
GSDME in HNSCC.

Not only does GSDME restrains the tumor growth, but
augments the function of tumor-infltrating immune cells
[21]. Fewer fractions of tumor-infltrating lymphocytes and
tumor-associated macrophages were detected in the tumor
microenvironment when GSDME was knocked out in mice
[21]. Similarly, higher number of macrophages and CD4+
T cells was computed from CIBERSORT analysis in our
study. In mouse melanoma, the activation of pyroptosis
increases the infltration of tumor-associated T cells and
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damps dendritic cell infltrates [25]. In addition, immune
microenvironment disorder might induce pyroptosis. Re-
cent studies have demonstrated that serine protease gran-
zymes (Gzmes), transferred by perforin and released by NK
cells and cytotoxic T lymphocytes, act to cleave GSDMB and
GSDME and lead to pyroptosis [7].

4.2. Pattern Recognition Receptors are Involved in the Regu-
lation of Pyroptosis. NOD1 and NLRP2, as the nucleotide-
binding oligomerization domain-like receptor (NLPs)
members, function as the pattern recognition receptors (PRR)
to recognize the pathogen-associated molecular patterns
(PAMP) or damage-associated molecular pattern (DAMP)
from external stimuli and activate the downstream of caspases
through the classical pyroptosis-signaling pathway [26]. Our
study demonstrated that NLRP2 was highly expressed in the
high-risk group of HNSCC. Similarly, NOD1 and NLRP2
function as risk genes in pyroptosis-related prognostic gene
signature related to pyroptosis of lung adenocarcinoma [11].
Recent reports found that NLRP2 elevated the level of pro-
fbrotic mediators, but reduced the expression of proin-
fammatory cytokines and reduced the apoptotic cell rate in
proximal tubular epithelial cells [26].

Although the association between pyroptosis and anti-
tumor immunity has been discussed, there is no consensus
on the molecular mechanism. PI3K-Akt signaling pathway
impacts the tumor growth, migration, survival, and meta-
bolism [27]. Recent research has demonstrated that
pyroptosis is induced by ischemia-reperfusion through the
PI3K-Akt signaling pathway in neurons [28]. In addition,
the activation of the IL-17signaling pathway augments
pyroptosis with GSDMD cleave and IL-1 1β and IL-18 re-
lease in pneumonia-induced sepsis [29]. Tis evidence
supports our results on the role of the IL-17 and PI3K-Akt
signaling pathways in high-risk HNSCC.

5. Conclusion

Our study constructed a prognostic risk signature based on
genes and suggested a role of the PI3K-Akt signaling
pathway and the IL-17 signaling pathways in poor survival of
HNSCC, which emphasized the critical importance of
pyroptosis in HNSCC and provides a novel perspective of
the HNSCC therapy.
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