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Background. Chemotherapy-induced cytopenia is the most frequent side effect of chemoradiotherapy in glioblastoma patients
which may lead to reduced delivery of treatment. *is study aims to develop a predictive model that is able to forecast the
cytopenia induced by temozolomide (TMZ) during concomitant chemoradiotherapy. Methods. Medical records of 128 patients
with newly diagnosed glioblastoma were evaluated to extract the baseline complete blood test before and during the six weeks of
chemoradiotherapy to create a dataset for the development of MLmodels. Using the constructed dataset, different ML algorithms
were trained and tested. Results. Our proposed algorithm achieved accuracies of 85.6%, 88.7%, and 89.3% in predicting
thrombocytopenia, lymphopenia, and neutropenia, respectively. Conclusions.*e algorithm designed and developed in this study,
called PrACTiC, showed promising results in the accurate prediction of thrombocytopenia, neutropenia, and lymphopenia
induced by TMZ in glioblastoma patients. PrACTiC can provide valuable insight for physicians and help them to make the
necessary treatment modifications and prevent the toxicities.

1. Introduction

Glioblastoma is the most common primary brain tumor in
adults [1, 2]. *e standard treatment for newly diagnosed
glioblastoma is actually the maximal safe resection followed
by concomitant chemoradiotherapy with temozolomide
(TMZ) followed by adjuvant TMZ [3, 4]. Patients receiving
TMZ are at risk of hematologic toxicity (thrombocytopenia,
lymphopenia, and neutropenia) during therapy. Currently,
monitoring with a weekly complete blood count (CBC)
during the course of radiotherapy is proposed to identify the
hematologic toxicity [5].

*e most frequent hematological side effect of TMZ is
moderate to severe thrombocytopenia experienced by 10 to
20 percent of glioblastoma patients [6]. Chemoradiotherapy-
induced thrombocytopenia may lead to serious and life-
threatening consequences, such as intracranial hemorrhage

and gastrointestinal bleeding [7]. Overall, hematologic
toxicity induced by TMZ may lead to dose reductions,
treatment interruptions, or unexpected termination of
treatment, which may have a negative impact on the pa-
tient’s final treatment outcome [3, 6, 8]. If TMZ-induced
cytopenia could be predicted during concurrent chemo-
radiotherapy, there would be an opportunity to selectively
apply approaches to prevent the above-mentioned adverse
effects [9].

In recent years, there has been an increasing trend in the
application of supervised machine learning (ML) in various
fields of oncology [10, 11]. Although ML-derived models
have not yet entered into routine clinical practice of on-
cology, the recent advances have shown their potential to
improve the standards of early diagnosis and treatment. *e
existing studies have used ML algorithms in oncology for
oncological risk estimation, lesion detection, image
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assessment, grading and staging, treatment response as-
sessment, and survival prediction [9]. Successful ML models
have the ability to help physicians to reduce adverse effects
and increase the probability of positive results and guide
their decision on applying adaptive radiotherapy/chemo-
radiotherapy strategies [12, 13].

In predicting chemotherapy or chemoradiotherapy-in-
duced toxicity, several studies have shown the high per-
formance of ML-based models [14]. Different models have
been developed to predict toxicities in sarcoma, breast
cancer, and metastatic colorectal cancer [12, 13, 15]. In the
field of neuro-oncology, the majority of the few published
studies evaluated ML algorithms for image analysis and
predicting patient outcomes [16]. An ML approach has been
developed by Shibahara et al. to estimate myelosuppression
induced by nimustine hydrochloride by analyzing patient
blood cell counts prior to treatment of brain tumor patients
[15].

To the best of our knowledge, no published study has
investigated ML-based models to predict the hematologic
toxicity during concomitant TMZ and radiotherapy in
glioblastoma patients. *is study aims to develop an ML-
based model to predict treatment-induced thrombocyto-
penia, granulocytopenia, and lymphopenia in glioblastoma
patients receiving radiotherapy plus concurrent TMZ.

2. Method

2.1. Patients Characteristics and Treatment Protocol. *is
study was scientifically and ethically approved by Isfahan
Milad Hospital Research Committee (project code: IMH-
9961) in accordance with Iranian ministry of health regu-
lations on ethics in biomedical research.

We retrospectively reviewed the medical records of 18 to
55-year-old patients with newly diagnosed glioblastoma who
were referred to the oncology department between 2018 and
2020.

*en, all of the data was anonymized.*e eligible patients
were diagnosed with glioblastoma according to pathological
criteria, and after surgical resection or stereotactic biopsy,
they completed concurrent chemoradiotherapy with TMZ
(3D conformal radiotherapy to a total dose of 60Gy (2-Gy, 30
fractions) plus daily TMZ (75mg/m2/day)). Finally, the data
of 128 eligible patients (55 males and 78 females) were
considered as the dataset of this study.

2.2. Data Organization. A baseline complete blood test
(CBC) had been performed before the start of treatment and
after that on a regular weekly schedule during the whole
chemoradiotherapy course. All CBCs were performed in the
hospital laboratory with Veterinary Auto Hematology An-
alyzer, VH -22 (Labomed Inc., LA, USA). Platelet (PLT),
white blood cells (WBC), absolute lymphocytes, and neu-
trophil counts (ALC and ANC, respectively) plus hemo-
globin (HGB) levels were extracted from patients’
documents. Hematologic toxicity was graded according to
the National Cancer Institute Common Terminology Cri-
teria for Adverse Events version 5.0 (CTCAE v5.0) (ref ) as

follows: thrombocytopenia grade 1 (150–75/μL), grade 2
(75–50/mm3), grade 3 (50000–10000/mm3), grade 4
(<25000/mm3); neutropenia grade 1 (2000–1500/mm3),
grade 2 (1500–1000/mm3), grade 3 (1000–500/mm3), grade 4
(<500/mm3); lymphopenia grade 1 (1000–800/mm3), grade
2 (800–500/mm3), grade 3 (50–200/mm3), grade 4 (<200/
mm3) [17].

2.3. Algorithm and Training Dataset. To create an appro-
priate data set for training and testing our model, we applied
the following steps.

*e PLT, WBC, ALC, ANC, HGB, and ANC to ALC
ratios of all 6 weeks for any patient were extracted from the
recorded files. *en, the difference of any of the above
parameters between every two consecutive weeks was cal-
culated. Next, the toxicities occurred in the two previous
weeks and the above-mentioned difference were considered
as the input data to predict the grade of toxicity in the
following week. After that, the toxicities were categorized
into two classes: class 0 was assigned to grades 0 to 2 and
class 1 to grades 3 and 4, respectively. *e reason for
considering these two classes was that since severe toxicities
(grade 3 or 4) are clinically much more critical than others
and can affect the treatment cycle; we aimed to predict these
severe conditions. In addition, when grades 3-4 toxicity was
observed in several consecutive weeks for a patient, only data
corresponding to the onset week was entered the training
data to prevent obtaining high fake accuracy results. It is
worth noting that removing the data related to the men-
tioned weeks reduces the accuracy, but the obtained accu-
racy after this removal is much more reliable.

*erefore, in total, 21 input features and one output
feature, that is, the class of the future toxicity for either
thrombocytopenia, lymphopenia, or neutropenia toxicities,
have been imported to train and test our developed ML
model.

It is important to mention that gender, age, tumor size,
and tumor location were not significantly different between
class 0 and class 1 groups.

*en, the above-explained dataset was utilized for
training different ML algorithms. Since the data set was not
large enough, we used 50-fold cross-validation to avoid bias-
induced inaccuracy in predicting the classes. Due to the
imbalanced data set, misclassification costs depending on
the class proportions were also applied in training the
models. In addition to this strategy, we have slightly changed
the value of the weighting factors around the class pro-
portion to find the optimum value of the factors that results
in the best model performance. Finally, the results of the
models with the accuracy and true positive (TP) higher than
70% for both class 0 and class 1 including RUS-Boosted
trees, linear discriminant, boosted tree, and naı̈ve Bayes have
been obtained. According to these results, in the prediction
part of the final version of the PrACTiC algorithm, we have
selected RUS-boosted trees model for thrombocytopenia
and neutropenia and naı̈ve Bayes model for lymphopenia
toxicity prediction. All of the above parts have been
implemented in MATLAB 2020b.
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3. Results

Figure 1(a) shows the frequency of classes 0 and 1 and the
onset week of class 1 thrombocytopenia, lymphopenia, and
neutropenia. Figure 1(b) shows the distributions of different
grades and the onset of grades 3-4 cytopenia in the final
training set.

Table 1 shows the true positive (TP), accuracy, and area
under the curve (AUC) of the performance of different ML
models to predict thrombocytopenia, neutropenia, and
lymphopenia. It is worth mentioning that as an incorrect
prediction of the occurrence of toxicity may have a high
negative impact on the treatment outcome, correct pre-
diction (true positive) of class 1 is much more important
than the accuracy and AUC of a model; as a result, we select
those models that have shown better performance in pre-
dicting class 1. As it is presented in Table 1, only RUS-
boosted trees model shows a relatively good performance in
predicting thrombocytopenia and neutropenia, while lym-
phopenia, in addition to RUS-boosted, linear discriminant,
boosted tree, and naı̈ve Bayes has shown a good performance
(Figure 2(a)–2(c)). *e maximum TP was 92%, 78%, and
89% and the maximum accuracy was 85.6%, 88.7%, and
89.3% for the prediction of thrombocytopenia, lymphope-
nia, and neutropenia, respectively.

4. Discussion

4.1.TMZandHematologicToxicity. Our results show that the
accuracy of PrACTiC achieves 85.6%, 88.7%, and 89.3% with
true positives of 92%, 78%, and 89% in predicting throm-
bocytopenia, lymphopenia, and neutropenia, respectively.
*ese prove that PrACTiC is able to provide the accurate
prediction of thrombocytopenia, neutropenia, and lympho-
penia toxicities induced by TMZ in glioblastoma patients.
*erefore, PrACTiC can provide valuable insight for physi-
cians about the upcoming hematologic toxicities. *e insight
can be used to make the necessary treatment modifications
and prevent the toxicities in glioblastoma patients.

Hematological toxicity of concurrent chemo-
radiotherapy for glioblastoma patients remains a highly
pertinent issue for clinicians. *is treatment-induced
cytopenia may result in treatment impairment which finally
leads to decreased survival and decline in the quality of life of
these patients [18–20].

*ere are several published pieces of research utilizing
ML methods for treatment-induced toxicity prediction in
oncology [21–25]. To the best of our knowledge, this study is
the first study applying ML models to predict hematologic
toxicity of concomitant chemoradiotherapy with TMZ in
glioblastoma patients [21]. We have designed an ML model
that shows relatively good performance to predict the
thrombocytopenia, neutropenia, and lymphocytopenia in
glioblastoma patients.

*e frequency of grades 3-4 cytopenia and the onset of
grades 3-4 cytopenia in this study, presented in Figure 1, is in
good agreement with the other reports [6]. As explained
previously, correctly predicting class 1 is much more

important than the correct prediction of class 0. *e im-
portance of class 1 correct prediction leads us even to accept
some incorrect predictions for this class.

*e main finding is that among the trained models, the
random undersampling- (RUS-) boosted model showed high
predictive results for all types of cytopenia. *is can be
explained regarding the intrinsic characteristics of this model,
whichmade it practical to be applied for imbalanced data sets.
For clarification, RUS part removes examples (randomly)
from the majority class until the desired balance is achieved.
*is algorithm combines random undersampling with
boosting, resulting in improved classification performance
when training data is imbalanced [26]. Consequently, this
technique is the most straightforward method for training an
imbalanced dataset. However, linear discriminant, näıve
Bayes, and boosted tree also showed high accuracy in pre-
dicting lymphopenia. Considering different misclassification
costs for these models has enabled them to overcome the
imbalanced data set problem. Due to this, they have also
shown a relatively good predictive performance in this study.

Several studies have used ML models to predict che-
motherapy-induced toxicities in different cancers. In a study
on the patients with rhabdomyosarcoma receiving IVA
chemotherapy, Cuplov et al. applied machine learning
analysis using a gradient boosting regression technique to
predict the ifosfamide induced hematological toxicities as a
function of neutrophils and platelets initial levels and the
initial ifosfamide dose [12]. Oyaga-Iriarte et al. developed an
ML model that quite accurately predicted the irinotecan-
induced high-grade leukopenia, neutropenia, and diarrhea
in metastatic colorectal patients treated with chemotherapy.
*ey utilized backward stepwise logistic regression (BSLR),
random forest, and support vector machine (SVM) [13]. In
another study, Cho et al. utilized the ML models including
SVM, decision tree, XGboosting, and artificial neural net-
work to predict the febrile neutropenia in breast cancer
patients undergoing taxane-based chemotherapy [27].

In comparison with the above-mentioned studies, this
study has some advantages that are listed in the following:

(i) PrACTiC algorithm is able to predict the toxicity
one week before; so, oncologists may consider some
treatment modification or apply different strategies
to avoid toxicities which help the patient complete
the whole chemoradiotherapy course. *erefore,
PrACTiC can be used during TMZ regimen to avoid
toxicities. In contrast to ours, Wojcieszynski et al.
predicted cytopenia 90 to 180 days after treatment
rather than during chemoradiotherapy [28].

(ii) *e sample size of this study was much larger (128
patients) than other studies. Other studies used a
relatively small dataset, ranging within 20–34, to
predict cytopenia during or after chemo-
radiotherapy or chemotherapy [12, 13, 15]. *ere-
fore, our reported results seem more reliable than
other similar studies.

(iii) Most of the existing studies have considered re-
gression-based models to predict treatment-induced
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Figure 1: (a) *e distribution of class 0 and 1 of cytopenia in all data sets. (b) *e percentage of onset week in class 1 cytopenia.

Table 1: *e true positive of each class and accuracy of thrombocytopenia, neutropenia, and lymphopenia predicted by different machine
learning models.

Toxicity type Misclassification cost Model TP-class 1 TP-class 0 Accuracy AUC

*rombocytopenia
10

RUS boosted
75 85 85.6 0.88

11 92 73 74.8 0.87
12 85 73 73.9 0.84

Lymphopenia

4 Naı̈ve bayes 78 79 78.9 0.83
RUS boosted 71 84 81.7 0.80
Naı̈ve bayes 75 79 78.2 0.83

5 Linear discriminant 71 70 70.4 0.75
Naı̈ve bayes 75 76 76.1 0.83

6 Boosted tree 71 92 88.7 0.86
RUS boosted 71 81 79.6 0.81

Neutropenia
9 RUS boosted 89 88 88 0.94
10 RUS boosted 89 89 89.3 0.92
11 RUS boosted 89 88 88 0.96

Bold values show the highest accuracy of toxicity prediction.
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Figure 2: (a) AUC of thrombocytopenia (misclassification cost 10), 1 (b) lymphopenia (misclassification 4), and 1 (c) neutropenia
(misclassification cost 11), predicted by RUS-boosted model.
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toxicity [13, 15, 27]. While regression analysis is an
excellent tool in analyzing observations and drawing
conclusions, in most cases in which data availability
is skewed, generalization and consequently cross-
platform application of the derived models may have
some limitations [29, 30]. Regression and classifi-
cation are categorized under the same umbrella of
supervised machine learning, but the output variable
in the regression is numerical or continuous, while
that for classification is categorical or discrete [31].
So, there is an inevitably intrinsic error in fitting data
with themodel because of making continuous output
[32]. Considering these points, we have considered
our problem as a classification problem. *e most
important advantage of this consideration is
achieving higher and more reliable accuracies in
comparison with regression models.

4.2. Clinical Impact. Chemoradiotherapy with TMZ pro-
longs the overall survival of patients with glioblastoma; ac-
cordingly, the development of severe thrombocytopenia
during the course of treatment may be accompanied by
treatment interruption or early termination that negatively
affects survival [33]. Traditionally, the routine practice in case
of developing thrombocytopenia is to discontinue the TMZ
regimen and wait for the recovery of platelet count to the
normal levels. However, some new strategies for prophylaxis
and treatment of thrombocytopenia have shown promising
results in recent studies. *e PLATUM phase II trial showed
the efficacy of the thrombopoietin receptor agonist Romi-
plostim for the prevention and treatment of TMZ-induced
thrombocytopenia in glioblastoma patients [34].

Decreased neutrophil and lymphocyte counts during
concomitant TMZ and radiotherapy can increase the prob-
ability of developing opportunistic infections or even febrile
neutropenia. Fortunately, in the current practice, granulocyte
colony-stimulating factor (GCSF) and new generation anti-
biotics are available that can effectively treat and prevent
leukopenia, so the efforts to predict neutropenia and lym-
phopenia during chemoradiation are of great value [35].

It is worth bearing in mind that there are some studies
evaluating the adding of bevacizumab to the TMZ and
conventional or hypofractionated radiotherapy in patients
with newly diagnosed glioblastoma. In such circumstances,
considering the added risk of hemorrhage by bevacizumab,
the prediction of thrombocytopenia will be of clinical im-
portance [36] that gives this study a considerable clinical
value.

If the predicted onset of grades 3-4 toxicity would be in
the last week of chemoradiotherapy, it may have no major
effect on the completeness of the treatment course but raise
the alarm that such patients must be monitored more closely
and cautiously in the weeks between the termination of
chemoradiotherapy and the beginning of adjuvant chemo-
therapy to prevent serious complications related to
thrombocytopenia or neutropenia [6, 37].

4.3. Limitations and Recommendations for Future Studies.
*is study has some limitations. *e first limitation is the
imbalanced data set problem which restricted us from
utilizing other ML models in predicting hematologic
toxicity. *e second limitation was the possibility of
underestimating the number of grades 3-4 thrombocyto-
penia. It is widely accepted that automation in hematology
is still very controversial in cases of thrombocytopenic
patients especially in the presence of interference from
nonplatelet particles or platelet abnormalities [38]. Recent
studies mainly focused on the counts of low levels of
platelets and demonstrated that automated counts were not
accurate in severely thrombocytopenic samples [39]. Dif-
ferent values of systematic errors with the maximum value
of 25% have been reported for platelet automated counters
that should be considered in the platelet counts [38]. *e
third limitation of the current study was the lack of detailed
data of radiotherapy dosimetric parameters, exact infor-
mation of corticosteroids, and antiepileptic drugs type and
doses. Studies have reported some degree of radiation-
induced lymphopenia related to the irradiated volume
[40, 41]. Also, the effect of the new and old generation of
antiepileptic drugs on cytopenia has been shown in glio-
blastoma patients [8, 42]. So, the dose-volume histogram
(DVH) information, the dosage of antiepileptics and cor-
ticosteroids can be added as extra features to the PrACTiC
algorithm.

For future works, we plan to set a confident interval
between grade 2 and grade 3 of thrombocytopenia to help
us to be more confident in reporting the class “0” and class
“1” in cases that have the platelet counts close to the
boundary between grade 2 and grade 3 of thrombocyto-
penia. For clarification, we are going to consider a prob-
abilistic model instead of the deterministic approach used
in this study. Having considered this approach, we can
estimate the probability of grade 3 compared to grade 2
thrombocytopenia, depending on how far the platelet count
closes to the boundary between these two grades. Adding
more patients and treatment-related features to the
PrACTiC, and evaluation of this tool in the glioblastoma
patients receiving adjuvant TMZ is highly encouraged.
Since chemoradiotherapy with TMZ is also used for
management of anaplastic astrocytoma, oligoden-
droglioma, and some of the patients with low-grade glioma
[43–45], utilizing PrACTiC for these purposes is also
recommended.

Altogether, the model designed and developed in this
study (PrACTiC) showed promising results in the accurate
prediction of thrombocytopenia, neutropenia, and lym-
phopenia associated with concurrent radiotherapy and TMZ
in newly diagnosed glioblastoma patients. PrACTiC gives
the medical practitioners prior knowledge about the grade of
toxicity that a patient might suffer in the coming week with
high accuracy and, thus, can serve as a great assistant to the
clinicians for prophylaxis’ monitoring and treatment of
hematologic toxicities and to make the necessary treatment
modifications, accordingly.
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