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Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision is the standard treatment for locally advanced
rectal cancer (LARC). A noninvasive preoperative prediction method should greatly assist in the evaluation of response to nCRT
and for the development of a personalized strategy for patients with LARC. Assessment of nCRTrelies on imaging and radiomics
can extract valuable quantitative data from medical images. In this review, we examined the status of radiomic application for
assessing response to nCRT in patients with LARC and indicated a potential direction for future research.

1. Introduction

Colorectal cancer is the third most common cancer in men
and the second most common cancer in women, and it is
expected to increase by 60% in 2030 [1], with rapid rising
morbidity and mortality rates in many low- and middle-
income countries [1]. About 30% of patients with colorectal
cancer have rectal cancer [2]. Locally advanced rectal cancer
(LARC) is defned as rectal cancer with clinical tumor stage
3-4 (cT3-cT4, tumor invading through the muscularis
propria) or positive clinical nodal stage (cN+, malignant
lymph nodes detected) [3]. Neoadjuvant chemoradiotherapy
(nCRT) followed by total mesorectal excision (TME) is the
standard treatment for patients with LARC [4], with the goal
to eradicate micrometastatic diseases and to improve sur-
vival. For patients with LARC, the responses to nCRT vary
widely, from a pathological complete response (pCR) to
almost no response or tumor progression in a small group of
patients [5, 6]. Approximately, 20% of patients will achieve
pCR after surgery [5], which is defned as a complete re-
sponse without residual tumors on the histological report
after standard excision [7]. Currently, the only accurate way
to confrm pCR is the pathological diagnosis after TME [8].

Tus, a feasible and accurate preoperative noninvasive
prediction method will be helpful for assessing the efcacy of
nCRT and for developing a personalized treatment plan [9].
Moreover, patients with favorable prediction results can be
treated with an organ sparing therapy to ensure quality of life
[10] and presurgical prediction could aid in the selection of
the best therapies [11].

Magnetic resonance imaging (MRI) and computerized
tomography (CT) are the most common imaging modalities
for patients with LARC. However, the traditional imaging
characteristics discernible with human eye such as tumor
size, location, enhancing characteristics, etc., could not ef-
fectively predict the treatment response to nCRT. Advanced
functional imaging methods such as difusion-weighted
imaging [12] have been shown to improve response as-
sessment but could be costly and time-consuming. Tere-
fore, a noninvasive approach for predicting the response to
nCRT based on the initial pretreatment MR or CT images
could potentially assist clinical management.

Radiomics has emerged as a promising tool for assessing
imaging biomarkers to treatment response and it is defned
as a method of extracting image features from medical
images with high-throughput [13]. Radiomics involves data
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acquisition and preprocessing, tumor segmentation, feature
extraction, andmodeling. Compared to the traditional visual
methods for qualitative imaging features that are discernible
to human eye, radiomics uses novel computational tech-
niques to mine the quantitative features contained in
medical images. Radiomics provides convenient, repeatable,
and objective information that can more efectively assist in
clinical decision making.

Over the past decade, there has been an increasing
number of radiomic studies on rectal cancer; approximately,
60% of the relevant radiomic literature on LARC focused on
the prediction of treatment response and long-term prog-
nosis after preoperative nCRT [11]. Tese studies addressed
various aspects of rectal cancer, including pCR after nCRT,
decrease in staging after nCRT [14], lateral lymph node
metastasis [15, 16], and extravascular invasion [17].
Radiomic parameters, such as skewness, entropy, kurtosis,
and evenness, have been used to assess and quantify
intratumoral heterogeneity [18], which could potentially
make up for the lack of spatial heterogeneity in the TNM
staging system [19]. Previous radiomic literature on rectal
cancer has identifed various features and predictors for
tumor response in divergent studies that difered in study
design (multicenter versus single center, retrospective versus
prospective), image segmentation method (manual versus
automatic segmentation), imaging modality (CT, MRI, or
PET), and predictive modeling (machine learning versus
deep learning methods) [3, 9, 20–24]. Nevertheless, there is
still no consensus among the researchers regarding the
optimal application of radiomics to predict treatment re-
sponse for LARC.

Tis review comprehensively assessed the body of lit-
erature on radiomics and its application in rectal cancer

regarding treatment response to nCRT. Radiomic analysis
such as data acquisition, tumor segmentation, feature ex-
traction, feature selection, and predictive modeling was also
reviewed. Trough the literature review, we identifed po-
tential areas for future research. Te studies included in this
review are presented in Table 1 [3, 9, 12, 14–18, 20–76].

2. Radiomic Methods

Radiomics can be divided into classic radiomics and deep
learning-based radiomics depending on if a deep learning
technique is used. Classic radiomics involves the following
steps: image acquisition and preprocessing, tumor seg-
mentation, feature extraction, feature selection, modeling,
and validation (Figure 1) [24]. Deep learning-based radio-
mics performs learning procedures via convolutional op-
erations such as the convolutional neural network (CNN)
approach (Figure 2) [75].

2.1. Classic Radiomics. Data acquisition is the frst step in
classical radiomic methods. Data used in radiomic studies
may be retrospective or prospective from a single-center, or
a multicenter setting. Te image modality can be CT, MRI,
and PET.Te specifc choice of modality needs to be decided
according to the research objective. Te investigator should
frst identify the clinical problem to be addressed and should
be aware that imaging protocols may not always be stan-
dardized with variability between institutions. In this regard,
the recommendations of the Image Biomarker Standardi-
zation Initiative may help to reduce the variability of image
preprocessing before analysis [76].

To achieve repeatability and generalization, several
preprocessing steps after image acquisition are necessary,

CT

MRI

(a)

(b)

(c)

(a) Shape

(b) Histrogram

(c) Texture

Training set

RF SVM Cox

Trained model

Validation set

ROC AUC C-index

IV Analysis

Filters Wrappers

III Feature extraction

Feature selection

ROI delineation

II Tumor segmentationI Image acquisition

… …

…

Figure 1: Representative pipeline of radiomic analysis for rectal cancer. CT: computer tomography, MRI: magnetic resonance imaging,
ROI: region of interest, RF: random forest, SVM: support vector machine, Cox: cox regression, ROC: receiver operating characteristic curve,
and AUC: area under curve.
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which typically include the following: intensity normaliza-
tion, spatial smoothing, spatial resampling, noise reduction,
and MR feld nonuniformity correction [77].

Tumor segmentation is another basic step in radiomics,
where researchers typically analyze the entire primary tumor
and select the region of interest (ROI) corresponding to one
slide of the image or a volume of interest (VOI) indicating
the volume of a specifc area. Image segmentation of the
target ROI or VOI can be done manually, automatically, or
semiautomatically. Manual segmentation is more accurate
in some cases, but less repeatable. Automatic segmentation
depends on the algorithm, which is efcient and helpful to
eliminate subjective errors. However, there is a lack of ac-
curate automatic segmentation algorithm so far, and its
application is limited. Currently, several steps have been
used to improve radiomic performance, including in-
volvement of diferent medical professionals, adaptation of
consistent methods in tumor segmentation, and standard-
ization of imaging features [78].

Based on ROI or VOI, radiomic features are extracted
from the images. Tese quantitative imaging features are
important characteristics in radiomics because they bridge
medical images and the clinical endpoint. Tese intrinsically
valuable features can be extracted directly from the initial
medical image, or by transformation or fltering. Tis
process can be performed using diferent open-source tools
such as PyRadiomics, TexRAD, and MaZda, and the main
method is based on the study published by Aerts et al. [79].
Diferent types of quantitative features can be extracted from
medical images; these features are mathematically defned
diferently and features are usually divided into the following

subgroups. Shape features represent geometric relations and
properties of the segmented ROI or VOI, such as the
maximum diameter, maximum surface area, volume,
compacity, or sphericity [80]. First-order statistical features
or histogram-based features use the image intensity distri-
bution represented by histograms that characterize the
distribution of individual pixel or voxel-intensity values
within the segmented ROI or VOI. Second-order statistical
features or textural features quantify the intratumoral het-
erogeneity. Higher-order features are usually statistical
features computed on matrices that consider relationships
between three or more pixels. In addition, wavelet features
and model-based features are also used in radiomic studies
[53, 71].

In radiomic analysis, feature selection is a necessary step
to obtain features closely related to target results. Hundreds
or thousands of features are often extracted, a large pro-
portion of features may not be useful for the task and un-
stable features should be excluded to preserve the most
important features and prevent overftting. Terefore, fea-
ture selection is a critical step in radiomics. Te commonly
used feature selection methods in radiomics are divided into
three broad categories: flters, wrappers, and inserts [81].
Minimum absolute shrinkage, selection operator regression,
minimum redundancy, and maximum correlation are
commonly used algorithms for feature selection.

After feature selection, it is necessary to establish
a prediction model, which usually includes biological, im-
aging, and clinical feature parameters. Machine learning
provides several modeling methods. Te most used methods
in radiomics are linear and logistic regression, decision trees

CT

MRI

Hidden Layers

Input Output

Supervised Unsupervised

CNN
RNN

AE
RBM

Deep learning model

Validation set

ROC AUC C-index

III AnalysisII Feature extractionI Image acquisition

…

…
…

Deep features

Figure 2: Representative pipeline of deep learning-based radiomic analysis for rectal cancer. CT: computer tomography, MRI: magnetic
resonance imaging, CNN: convolutional neural networks, RNN: recurrent neural networks, AE: autoencoder, RBM: restricted Boltzmann
machine, Cox: cox regression, ROC: receiver operating characteristic curve, and AUC: area under curve.
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(e.g., random forests), support vector machines, neural
networks, and Cox proportional risk models. Each modeling
approach has its limitations. In logistic regression, the
Bayesian networks and deep learning, feature independence,
feature discretization and network confguration de-
pendence should be considered, respectively. In building the
model, researchers can use diferent software tools such as
the R-language and the SPSS modeler [82].

Te models can be validated internally and externally. In
addition to validation of the model, quality assessment
should be performed to ensure reproducibility of the study.
Amodel may be used potentially for clinical decisionmaking
only after a standardized assessment of its performance has
been completed.

2.2.DeepLearning-BasedRadiomics. Deep learning is a deep
neural network architecture based on broad spectrum al-
gorithms that allow machine learning of highly complex
mathematical models for data representation and for per-
forming accurate data analysis. Manual and semiautomatic
methods are time-consuming and difcult to implement in
clinical practice with a high degree of intraobserver and
interobserver variability [83]. In addition, feature selection
using the flter mentioned above is also time-consuming and
laborious. On the other hand, deep learning can help to solve
some of the issues associated with classic radiomics. Deep
learning methods often rely on information about outcomes
to select their features. In contrary to the classic radiomics,
deep learning-based radiomics skips the steps of image
segmentation and feature extraction. Instead, it uses the
entire non-segmented image to extract and select high-
dimensional features through the automatic neural net-
work and to identify the inherent information contained in
the images without manual segmentation [84].Te following
three types of deep learning models are commonly used for
medical imaging: convolutional neural networks (CNNs),
generative adversarial networks, and sparse autoencoders.
Deep learning-based radiomics performs the learning pro-
cess through the convolutional operation and the CNN
structure [82]. Compared with traditional radiomics, con-
volution operation has a stronger feature extraction ability.
In deep learning models, deep learning features are usually
extracted from convolutional layers. By changing the con-
volution kernel and modifying the structure, the neural
network structure can fexibly extract diferent task-related
features, thus making the method more targeted. Each
hidden layer module in the network transforms the repre-
sentation at a level. For example, the frst level may represent
edges in an image oriented in a particular direction, the
second may detect motifs in the observed edges, and the
third could recognize objects from ensembles of motifs [85].

Similar to the classical machine learning methods, deep
learning also has supervised, unsupervised, and semi-
supervised methods. Supervised deep learning methods
include CNN and recurrent neural networks (RNN), which
use their internal memory to process sequential inputs and
take previous outputs as the input. Trough learning, these
methods could assess which data in the sequence is

important and should be kept or discarded. Unsupervised
learning algorithms include deep auto encoders (AE) and
restricted Boltzmann machines (RBM) [75].

Deep learning-based radiomics also has its limitations.
Te main issue is the need for large datasets to train the
model because feature selection depends on training data
rather than hand-crafted radiomics. Another issue is the lack
of interpretability. Artifcial neural networks build complex
computational functions that can be challenging to interpret
as the generated features are not easily explained by tumor
characteristics. A comparison between classical radiomic
methods and deep learning-based radiomic methods is
summarized in Table 2.

3. Radiomics for Predicting Response to nCRT
in Patients with LARC

3.1. Image Acquisition. In this review, studies on patients
with biopsy-proven non-mucinous LARC were included.
Studies with poor image quality, incomplete tumor coverage
on imaging, rectal perforation, or mucinous tumors were
excluded.

Most radiomic studies on LARC used MRI and CT
images and few used PET/CT images. MRI is commonly
used for imaging rectal cancer because it has the advantages
of no radiation and high soft tissue resolution, which can
clearly identify the rectal wall [86]. In the MRI radiomic
studies, T2-weighted imaging has been used as a morpho-
logical parameter. Other multiparametric MRI such as
a combination of difusion-weighted imaging (DWI), T2-
weighted imaging, and dynamic contrast enhancement
imaging have also been used. For staging, MRI provides
tissue details about the tumor location, extension, and re-
lationship to surrounding tissues to establish markers for
subsequent treatment. In addition, it reveals prognostic
information such as mesenteric fat involvement, vascular
invasion, and distance to the anal sphincter complex [87].

CT imaging is capable of predicting lymph node me-
tastasis [88], but a few studies have indicated otherwise
[15–18, 29, 59, 60, 64, 71, 89]. Te CT radiomic model built
by Jiazhou Wang et al. improved the prediction ability of
overall survival to 0.730 from 0.672 with only clinical
characteristics in patients with LARC treated with nCRT
[71]. Hamerla et al. showed that random forest classifcation
added no value to radiological data obtained from non-
contrast CT scans in patients with rectal cancer [64].
Vandendorpe et al. predicted the clinical response to nCRT
using contrast-enhanced CT and texture analysis, reaching
an area under the curve (AUC) of 0.70 [14].

Six studies focused on PET/CT-based radiomics to
predict the treatment response [27, 31, 33, 48, 58, 70]. 18-F
[FDG]-PET/CT was used in radiomic studies where texture
analysis was performed. Giannini et al. reported that their
logistic regression model could predict the complete re-
sponse with an AUC of 0.84, with higher gray-level co-
occurrence matrix (GLCM) contrast and lower GLCM
homogeneity [27]. Shen et al. developed a random forest
model based on 18-F [FDG]-PET/CT to predict pCR after
chemoradiotherapy in rectal cancer [48]. Martin-Gonzalez
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et al. assessed tumor heterogeneity in 18-F-FDG PET
[33, 90].

3.2. Tumor Segmentation, Feature Extraction, and Selection.
In the literature presented in Table 1 [3, 9, 12, 14–18, 20–76],
most researchers used manual segmentation, in which two
experienced imagers were generally responsible for drawing
tumor ROI. A few used automatic tumor segmentations. Jin
et al. proposed a multitask deep learning approach to predict
treatment response and tested a model in a multi-
institutional cohort of patients with rectal cancer. Te
deep neural networks were performed on two diferent but
related tasks simultaneously, namely, tumor segmentation
and response prediction. Te tumor segmentation of the
proposed network was consistent with the expert description
and the results were similar to the specialized deep neural
networks trained with a single task. Te AUC values from
internal and external validation cohorts for predicting
treatment response were 0.95 and 0.92, respectively [21].
Leng et al. developed endorectal co-registered photoacoustic
microscopy (PAM) and ultrasonography system paired with
a CNN to assess the rectal cancer treatment response, which
enabled automatic ROI selection [22]. Pang et al. introduced
a deep learning model for ROI characterization. A novel
two-stage model, called two-stage rectal perception U-NET
(TSRAU-NET), was proposed to replace manual assessment.
Teir results with AUC values of 0.829 and 0.815 from the
internal and external validation sets validated the feasibility
and stability of their method for pCR prediction [9].

Regarding tumor segmentation, it has been suggested
that intraclass correlation coefcients (ICC) should be used
to assess inter-reader and intrareader consistency [91]. In
addition, given the possibility of subjective bias, segmen-
tation results may be inconsistent, which may be mitigated
by providing more training to imagers, or performing
multiple segmentations [78].

Extracted radiomic features include features for in-
tensity, shape and size, texture, and for wavelet and Gabor
flters [28]. Zwanenburg et al. standardized 174 radiomic
features to enable verifcation and calibration of diferent
radiomic software [76]. Teir dataset consisted of features
commonly used to quantify morphologic characteristics,
frst-order statistical aspects, and spatial relationships be-
tween voxels (texture) in three-dimensional images of the
regions of interest (ROI). Te commonly used platform is
py-Radiomics, a fexible open-source platform that extracts
a large number of engineering features frommedical images,
which enables standardization of feature defnition [37].

Delta-radiomics is another radiomic method that ex-
tracts features from a time series of images to refect the time
variation of radiomic features [92]. For instance, this method
has shown an improvement over the radiomics that focus on
a single time point for assessing overall survival in patients
with recurrent glioblastoma [92]. A recent study showed that
the T2-weighted imaging-based delta-radiomics improved
the early response assessment in patients with soft tissue
sarcomas [93]. A study by Davide et al. identifed two delta-
radiomics features including the change in minimum length

of principal component analysis (△Least) and gray in-
homogeneity calculated by a run matrix (△GLNU) as the
promising predictors of clinical complete response to nCRT
in patients with rectal cancer [53].

Most radiomics studies have used a flter for coarse
radiomic feature selection [91]. Filter methods can be
generally divided into two types as follows: univariate
methods and multivariate methods. Univariate flters rank
features using the Chi-square test or the Mann–Whitney U
test. A multivariate flter consists of a collator and a subset
selector. Another feature selection method commonly used
in radiomics is the least absolute shrinkage and selection
operator (LASSO) method; which is a linear regression
contraction and selection method proposed by Tibshirani
[94]. In the study by Yi et al., MaZda software was used for
the frst time to generate a total of 340 quantitative features,
and the LASSO method was then used to select the most
useful predictive features from the original dataset. Radio-
mic score (RAD-Score) was calculated for each patient,
weighted by their respective coefcients as linear combi-
nation of selection features [95]. Several studies used
a combination of methods for feature selection. For instance,
a study by Pang et al. adopted two feature selection methods
in their study, i.e., frst calculating Harrell’s Concor index
(C-index) between the feature and the pCR status to evaluate
the discriminating ability of each single feature and then
using the LASSO method to further select the remaining
features [9].

In almost all the studies included in this review, manual
segmentation was performed, which was laborious and time-
consuming. Various feature reduction methods were used to
ensure the number of features being reasonable compared to
the number of enrolled patients, thereby reducing overftting
or type I errors [11].

3.3. Modeling and Validation. Radiomics aims to construct
predictive models for clinical outcomes. In machine
learning, several algorithms can be used to generate pre-
dictive models. Validation is an integral part of a complete
radiomic analysis. Tere is no doubt that independent ex-
ternal validated models are more reliable than internally
validated models because the results of data obtained in-
dependently are generally more reliable. Te receiver op-
erating characteristic curve (ROC curve), sensitivity, and
specifcity of the model can be used to measure the per-
formance of the radiomic model.

Tere are usually two datasets in radiomic analysis, i.e.,
the training dataset (for training the model) and the vali-
dation dataset (for evaluating the model performance). Te
validation sets can come from external or internal sources
although few studies used external validation data due to
unavailability. Most studies were retrospective and had
a small sample size without external validation. Neverthe-
less, it should be stressed here that radiomic studies with
independent external validation are more reliable than
studies with only internal validation. Radiomic results from
externally validated studies are generally more robust and
more applicable to clinical practice.
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3.4. Deep Learning-Based Radiomics. A few studies have
used deep learning to predict treatment response in patients
with rectal cancer [3, 9, 20–24]. Trebeski et al. constructed
a deep learning model to segment rectal tumors by fusing
difusion-weighted imaging (DWI) and T2-weighted im-
aging (T2WI), and obtained dice similarity coefcient (DSC)
values of 0.70 and 0.68 [96]. Zhu et al. proposed a deep
learning model for automatic segmentation of rectal tumors
on DWI images, constructing a 3D volume U-net to
characterize the spatial features in all three directions, unlike
the previous DWI and T2WI fusion model. Tis model was
designed to perform segmentation using DWI data alone to
avoid potential registration errors [97]. Leng et al. developed
an imaging system consisting of an intrarectal registration
photoacoustic (PA) microscope (PAM) that was paired with
a convolutional neural network (CNN), which showed high
diagnostic performance in assessing the treatment response
with potential for optimizing posttreatment management
[22]. However, a study by Khadidos et al. evaluated six
traditional learning models and one deep learning model
based on MRI texture analysis of patients with LARC, and
found that their deep learning CNNmodel did not show any
predictive potential [24].

It should be noted that deep learning requires more data
than traditional machine learning. In addition, if data from
more than one scanner were used, magnetic feld or vendor
signal variability should be taken into consideration. A study
based on two 1.5 Tesla MR scanners found that 75% of
functionality was unstable due to vendor and image ac-
quisition variability [49]. If the images were scanned at
diferent magnetic felds, the changes would be even greater.
Since few radiomic studies of LARC used deep learning, the
information regarding its validity and efcacy are limited
and more studies should be performed to fully assess its
potential for clinical applications.

4. Discussion and Future Perspective

In this review, we presented data to show radiomics as
a promising noninvasive imaging-based method for pre-
dicting treatment response in patients with LARC. Future
radiomic research should focus on independent validation of
existing models while continuing to develop new models for
novel research questions. Te current knowledge on deep
learning in LARC is limited and more research is needed to
explore its potential for clinical applications. Incorporation
of multimodal imaging data and other factors such as clinical
features and surgery-related variables should enhance pre-
dictive model performance.

Tere are inherent issues with interpretability of
radiomic models. A lack of understanding of how machine
learning predictions are generated remains a barrier to its
adoption in clinical practice. Tis situation also occurs in
deep learning approach. Tese black-box-like networks are
hard to understand and hard to correlate with clinical
outcomes with no strong theoretical support [98]. Te lack
of interpretability of predictive models can undermine in-
terest and trust in them [99]. More work needs to be done to
familiarize the users of radiomic models and help them to

understand the associated interpretations [100]. Multidis-
ciplinary teams need to create visual displays to help cli-
nicians better understand how machine learning works
[101].

Te high variability of data acquisition should also be
addressed in radiomics. As imaging protocols and scanner
parameters are diferent in various research centers, the
radiomic results are often diferent, which will greatly afect
the reproducibility of radiomic data. It is prudent to use
multicenter studies and standardized imaging parameters
[46]. MRI and CTare commonly used as imaging modalities
of choice for patients with rectal cancer. Staal et al. evaluated
quality of published literature using Quadas-2 and radiomics
quality score (RQS). Tey concluded that the high-quality
studies were predominantly MRI-based radiomic analysis of
the rectum [11]. Although CT may not have the detailed
tissue characterization as the MRI for assessing treatment
response of LARC, CT is still more commonly used than
MRI in clinical practice. Nevertheless, the combined im-
aging features of CT and MRI are desirable [37]. Te
multimodal radiomic model designed by Li et al. achieved an
AUC of 0.925 in the training set and AUC of 0.93 in the
validation set [89]. However, the multimodal strategy is
time-consuming and costly with a potential issue for
overftting.

Tere were issues with the study design of radiomic
studies. Most of existing radiomic studies are retrospective,
sourcing from single-center data with the lack of in-
dependent external validation, which may limit the re-
liability and applicability of the results. Multicenter studies
are conducive to reducing bias yet not achieved in most
studies.

Tere was a lack of clinical features in predictive
modeling in the studies included in this review, suggesting
a need to take clinical features into consideration for future
studies. For instance, preoperative factors [57], surgical
approach, and postoperative treatment all have important
efects on the prognosis of patients with LARC [102], which
should be included in modeling. In addition, studies in-
corporating clinical features have a higher predictive value.
Pizzi et al. presented a novel machine learning model
combining clinical and MRI-based radiomic features,
demonstrating that the combination of clinical and radiomic
features contributed to improved performance of the
prognostic models [37]. Teir result was generally in line
with that of a study by Staal et al. [11]. Tis review was
limited due to the lack of surgery-related literature for
prediction models of surgical planning, preoperative and
postoperative complications. Future radiomic studies and
predictive modeling should incorporate relevant surgical
information to improve model performance for predicting
LARC prognosis.

5. Conclusion

In summary, this review examines the status of radiomic
application in predicting treatment response to nCRT for
patients with LARC. Te limitations of existing radiomic
studies have pointed out the need for large-scale prospective
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multicenter approach to avoid the potential pitfalls of small
sample size, single-center data, imaging variability, and over-
ftting issues. In addition, there is a need to incorporate clinical
factors in predictive modeling to improve the model perfor-
mance and clinical relevance. More work needs to be done to
render the radiomic data more interpretable and explainable to
enhance its application for clinical use. Radiomics has emerged
as a potential tool for identifcation of imaging biomarkers for
cancer treatment, which could assist in clinical decisionmaking
and personalized medicine for patients with cancer.
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