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Background. Bladder cancer (BLCA) is a highly malignant tumor that develops in the urinary system. Identification of biomarkers
in progression and prognosis is crucial for the treatment of BLCA. BLCA-related differentially expressed genes (DEGs) were
authenticated by screening the DEGs and weighted gene coexpression network analysis (WGCNA). LASSO and SVM-RFE
algorithms were utilized to screen the feature genes in BLCA. Survival analysis was performed using the Kaplan–Meier curve
provided by the ‘survival’ R package. The BLCA samples were clustered by hclust based on the immune score matrix
calculated by the single-sample GSEA (ssGSEA) algorithm. The immune, stromal, and ESTIMATE scores of each BLCA
patient were calculated by applying the ESTIMATE algorithm. ssGSEA was conducted to explore the function of characteristic
genes in BLCA. The expression of characteristic genes in clinical cancer tissue, and the pericancerous tissue of BLCA patients
was verified using qRT-PCR assays. A total of 189 BLCA-related DEGs were identified. Fourteen feature genes were defined by
LASSO and SVM-RFE algorithms. Five characteristic genes, including SMYD2, GAPDHP1, ATP1A2, CILP, and THSD4, were
related to the OS of BLCA. The correlation analysis of five characteristic genes and clinicopathological factors showed that five
genes played a role in the progression of BLCA. Additionally, the expression of five characteristic genes in clinical cancer
tissues and pericarcinomatous tissues from BLCA patients was verified by qRT-PCR, which was consistent with the result from
the public database. Finally, we discovered five prognostic genes linked to BLCA progression, which might serve as a
theoretical basis for prognosis and treatment targets for BLCA patients.

1. Introduction

Bladder cancer (BLCA) is the most common malignant car-
cinoma of the genitourinary system, with a high rate of

recurrence [1]. BLCA is the world’s fifth most prevalent
malignant malignancy, with an estimated 81,180 new cases
and 17,100 deaths in the United States in 2022, posing a seri-
ous threat to people’s lives and health [2]. It also imposes a
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great financial burden on patients with this disease. The
pathophysiology of BLCA is widely recognized to be compli-
cated, as it is caused by a combination of intrinsic genetic
factors and extrinsic environmental factors [3]. Urothelial
carcinoma (also known as transitional cell carcinoma) is
the most common histological subtype of BLCA, accounting
for more than 90% of all BLCA [4]. BLCA is divided into
two types based on the degree of muscle invasion: nonmus-
cle invasive bladder cancer (NMIBC) and muscle-invasive
bladder cancer (MIBC) [5]. In the treatment of MIBC, recur-
rence is still a major issue. Approximately 75% of patients
present with NMIBC initially. Although these patients often
get rigorous therapies such as surgery, immunotherapy, che-
motherapy, and radiotherapy, their responses are variable
and unpredictable. About 10-30% of NMIBC individuals
may relapse and progress to MIBC, and the 5-year overall
survival (OS) rate remains unsatisfactory, with a median
OS of about 14 months [6]. Since there are no clinical bio-
markers or parameters that can consistently represent dis-
ease development, the prognosis of BLCA patients is
difficult to predict. Individual differences also have a signifi-
cant impact in determining the efficacy of BLCA treatment.
Clarifying the potential molecular pathways involved in
BLCA carcinogenesis, proliferation, and recurrence, as well
as identifying novel potential biomarkers, is critical for early
diagnosis, prognostic evaluation, and treatment of BLCA.

Bioinformatics has been widely utilized to identify and
evaluate genes linked with the development and progression
of cancers as genome sequencing technology progresses [7].
Most previous research has focused on identifying a single
gene or protein, rather than describing the relationship
between genes and interaction pathways. Throughout the
network, several genes with similar expression patterns
interact with others. Weighted gene coexpression network
analysis (WGCNA) is a systematical biology method for
describing gene connection patterns across models. Based
on the endogeneity of the gene set and the link between
the gene set and the phenotype, this method may be used
to find highly synergistic gene sets and candidate biomarker
genes or therapeutic targets [8]. WGCNA has been fre-
quently used to explore genes linked to cancer phenotypes
such as breast cancer, colon cancer, and castration-
resistant prostate cancer [9–11]. We can use WGCNA to
build coexpression networks and perform gene-specific anal-
ysis, as well as find differently linked gene clusters. Several
potential molecular indicators linked to the development of
BLCA have been found in previous studies. Droop et al. used
RT-qPCR to detect lncRNA UCA1 expression levels in cell
lines and tissues, which showed that OS was much better
in patients with high lncRNA UCA1 expression levels com-
pared to those with low expression levels [12]. Overexpres-
sion of UCA1 frequently exhibited a low Ki-67
proliferation index and a p53 “wild-type” immune profile
[13]. 5-Hydroxymethylcytosine (5hmC) deletion has been
recognized as a characteristic of most cancers. Peng et al.
found that lower 5hmC levels are associated not only with
the poor OS but also with higher tumor stage and lymphatic
metastasis [14]. In addition, Zhang et al. found GTPase RAN
binding protein 1 (RanBP1) is an early diagnostic biomarker

for BLCA and a candidate pharmacological target for treat-
ment [15]. Although there are many studies on the prognos-
tic biomarkers of BLCA, the mechanisms of poor diagnosis
and prognosis of BLCA still need further exploration.

The Cancer Genome Atlas (TCGA) and Gene Expres-
sion Omnibus (GEO) datasets were used in this study to
identify possible biomarkers and biological functions linked
with BLCA using the comprehensive bioinformatics
method. Our findings might provide a theoretical founda-
tion for further research into clinical prognosis and treat-
ment targets for BLCA.

2. Materials and Methods

2.1. Data Source. This study included two BLCA datasets,
TCGA-BLCA and GSE133624. The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) provided
the TCGA-BLCA dataset, which had 19 normal and 408
BLCA samples. For the prognostic analysis, 403 patients
with survival data were selected. The Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/) contained the GSE133624 dataset, which included 29
normal and 36 BLCA samples.

2.2. Sample Sources for Quantitative Real-Time PCR
Validation. We took 10 cancer tissues and 10 pericarcino-
matous tissues from BLCA patients who had radical cystec-
tomy at The Second Affiliated Hospital of Kunming Medical
University. All of the patients had uroepithelial carcinoma,
which was identified pathologically. Pericarcinomatous tis-
sues were classified as those removed from the lesion at a
distance of 2.5 cm. We gave individual numbers to the sam-
ples after collecting them and promptly stored them in liq-
uid nitrogen chambers for preservation. All participants
gave their informed consent, and the study was authorized
by the Ethics Committee at The Second Affiliated Hospital
of Kunming Medical University.

2.3. Identification of Differentially Expressed Genes (DEGs).
The ‘limma’ R package and the ‘DESeq2’ R package were
used to identify DEGs between normal and BLCA samples
in the TCGA-BLCA and GSE133624 datasets, respectively.
The cut-off criteria were jlog 2 fold change ðFCÞj > 1 and P
value < 0.05. The results were drawn into a volcano plot,
and the Top 100 DEGs were drawn into a heatmap.

2.4. WGCNA Identifies BLCA-Related DEGs. The WGCNA
coexpression system was established using the ‘WGCNA’ R
package [16] with DEG expression data from the TCGA-
BLCA and GSE81558 datasets, with normal control and
BLCA disease as clinical features. The ‘goodSamplesGenes’
function was used to perform sample clustering to identify
and remove outliers. A soft-thresholding power was com-
puted using the pickSoftThreshold function and validated
by the correlation between k and p ðkÞ to make the coexpres-
sion network fulfilled the distribution of a scale-free
network. The dynamic tree cutting approach was utilized
to identify various modules, with each module containing a
minimum of 30 genes. Following that, a 0.2 merging thresh-
old was chosen to combine related modules. The
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relationship between these modules and two clinical charac-
teristics was investigated further. Finally, for further investi-
gation, the module with the greatest Pearson correlation
coefficient was picked.

2.5. Screening Feature Genes by Machine Learning. We
employed LASSO and SVM-RFE algorithms to screen the
feature genes in BLCA by using the ‘glmnet’ and ‘e1071’
packages, respectively. The least absolute shrinkage and
selection operator (LASSO) is a model refinement algorithm
that creates a penalty function [17]. Support vector
machine-recursive feature elimination (SVM-RFE) is a sup-
port vector machine-based feature selection technique that
ranks features based on a recursive feature deletion sequence
[18]. These two methods discovered overlapping genes,
which were referred to as feature genes.

2.6. Survival Analysis. To explore the effect of feature genes
on patient survival, BLCA patients were divided into two
groups, the high- and low-expression groups, based on the
optimal gene expression cut-off value. For survival analysis,
the ‘survival’ R package was used, and the Kaplan–Meier
curve was constructed. A significant difference in survival
between the high- and low-expression groups was defined
as a P value ≤ 0.05.

2.7. The Correlation Analysis between Characteristic Genes
and Clinicopathological Characteristics. The expression of
characteristic genes was analyzed and compared across dif-
ferent subgroups of clinicopathological features to better
understand the function of characteristic genes in the pro-
gression of BLCA.
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Figure 1: Differentially expressed genes (DEGs) are identified. (a) The volcano plot of DEGs in the TCGA-BLCA dataset. (b) The heatmap
of TOP100 DEGs in the TCGA-BLCA dataset. (c) The volcano plot of DEGs in the GSE133624 dataset. (d) The heatmap of TOP100 DEGs
in the GSE133624 dataset.
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Figure 2: Continued.
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2.8. The Correlation Analysis between Characteristic Genes
and Immune Infiltration. A single-sample GSEA (ssGSEA)
method was used to generate the immune score of each
BLCA sample in the TCGA dataset, which was based on
the genetic markers of 28 tumor-infiltrating immune cells.
Based on the immune score matrix, the BLCA samples were
grouped by hclust into high-immunity group (Immunity H),
medium-immunity group (Immunity M), and low-
immunity group (Immunity L). The ‘Estimation of Stromal
and Immune cells in MAlignant Tumours using Expression
data’ (ESTIMATE) algorithm was used to compute the
immunological, stromal, and ESTIMATE scores of each
BLCA patient in the various immune groups. Different
immunological groups had their expression of distinctive
genes evaluated and compared. It was also evaluated at the
Pearson association between characteristic genes and
immune infiltration cells. jCorrelation coefficient ðcorÞj >
0:3 and P value < 0.05 were considered to be significantly
correlated.

2.9. Single-Gene Gene Set Enrichment Analysis. Gene set
enrichment analysis (GSEA) for single gene based on ‘c5.
go.v7.4.symbols.gmt’ and ‘c2.cp.kegg.v7.4.symbols.gmt’ gene
sets was performed in GSEA software. The expression value
of each gene was used as phenotype files, and the correlation
coefficients of each gene with all genes in the gene sets were
ranked. jNESj > 1, NOM P value < 0.05, and FDR q value <
0.25 were used as enrichment significance thresholds.

2.10. Quantitative Real-Time PCR (qRT-PCR) Assay. Total
RNAs from the 20 samples were extracted using TRIzol
reagent (Life Technology, CA, USA) according to the manu-
facturer’s protocol to further investigate the functions of
genes in BLCA. The PrimeScript RT Master Mix was used

for reverse transcription (Takara, Tokyo, Japan). An ABI
7700 machine was used to perform quantitative real-time
PCR (Applied Biosystems, CA, USA). As an internal control,
the transcription level of GAPDH was employed. The 2-ΔΔCt

method was used to determine relative gene expression
levels. Supplementary Table 1 lists the PCR primer
sequences.

2.11. Statistical Analysis. All analyses were carried out using
the R programming language, and the Wilcoxon and
Kruskal-Wallis tests were used to compare data from differ-
ent groups. If not specified above, statistical significance was
defined as a P value < 0.05.

3. Results

3.1. BLCA-Related DEGs. First, we used differential expres-
sion analysis to compare the gene expression profiles from
the TCGA-BLCA and GSE133624 datasets. Based on the
given criteria, a total of 1642 DEGs (including 763 upregu-
lated and 879 downregulated genes) were identified from
the TCGA-BLCA dataset between normal and BLCA
samples (Figure 1(a), Supplementary Table 2). Meanwhile,
in the GSE133624 dataset, a total of 5453 DEGs were
identified, with 2200 upregulated genes and 3253
downregulated genes between normal and BLCA samples
(Figure 1(c), Supplementary Table 3). A heatmap showed
the expression of the top 100 DEGs (Figures 1(b) and 1(d)).

Subsequently, we uncovered the BLCA-related DEGs by
WGCNA. In the TCGA-BLCA dataset, no obvious outliers
were removed by clustering (Fig.S1A) and β = 6 (scale-free
R2 = 0:85) was selected to construct a scale-free network
(Figure 2(a), Fig.S1B). Then, a cluster dendrogram was con-
structed and a dynamic tree cut was performed. Nine
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Figure 2: WGCNA was used to identify BLCA-related DEGs. (a) In the TCGA-BLCA dataset, analysis of the scale-free fit index (left) and
mean connectivity (right) for various soft-thresholding powers. β = 6 was selected as the optimal soft-thresholding parameter. (b) In the
TCGA-BLCA dataset, a dendrogram of all DEGs is clustered based on a dissimilarity score (different colors indicate different modules).
(c) A heatmap showing the relationship between module eigengenes and BLCA clinical characteristics. (d) In the brown module, a
scatter plot of module eigengenes is shown. (e) In the GSE133624 dataset, analysis of the scale-free fit index (left) and mean connectivity
(right) for various soft-thresholding powers. β = 12 was selected as the optimal soft-thresholding parameter. (f) In the GSE133624
dataset, a dendrogram showing all DEGs grouped using a dissimilarity measure (different colors indicate distinct modules). (g) A
heatmap showing the relationship between module eigengenes and BLCA clinical characteristics. (h) In the pink module, a scatter plot of
module eigengenes is shown.
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Figure 3: Continued.
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modules were eventually developed after merging (Figure 2
(b), Fig.S1C). We then analyzed the correlation of each mod-
ule with two clinical traits (normal and tumor). The results
indicated that the brown module (jcorj = 0:62, P < 0:0001)
had the highest correlation with BLCA (Figure 2(c)). Thus,
we extracted 686 genes from the brown module as BLCA-
related DEGs in the TCGA-BLCA dataset (Figure 2(d), sup-
plementary Table 4). Meanwhile, in the GSE133624 dataset,
no obvious outliers were removed by clustering (Fig.S2A)
and β = 12 (scale-free R2 = 0:9) was selected to construct a
scale-free network (Figure 2(e), Fig.S2B). Eventually, five
modules were generated after merging (Figure 2(f), Fig.
S2C). The correlation of each module with two clinical
features (normal and tumor) was calculated, and the pink
module had the strongest correlation with BLCA
(|corj = 0:84, P = 0:0001) (Figure 2(g)). In the GSE133624
dataset, the 2207 genes in the pink module were classified
as BLCA-related DEGs (Figure 2(h), Supplementary
Table 4). Finally, by overlapping the BLCA-related DEGs
in the TCGA-BLCA dataset and the GSE133624 dataset,
we were able to obtain 189 BLCA-related DEGs (Figure 3
(a), Supplementary Table 4).

3.2. Screening Feature Genes by Machine Learning. To filter
out the feature genes based on 159 BLCA-related DEGs,
we adopted the LASSO regression and SVM-RFP algo-
rithms. 24 feature genes were determined by LASSO when
lambda was close to 0 (Figures 3(b) and 3(c), Supplementary
Table 5). In the meantime, 20 feature genes were selected
with the SVM-RFE algorithm at the optimal point 0.00984
(Figures 3(d) and 3(e), Supplementary Table 5). Fourteen
feature genes were defined by overlapping the genes
derived from these two algorithms, including C1QTNF7,
ATP1A2, FXYD1, CFD, LGI4, ACTA2-AS1, PER1,
THSD4, SMYD2, CILP, ESM1, ULBP2, NMB, and
GAPDHP1. Then, we visualized the expression of feature

genes in Figures 3(f) and 3(g). We noted that SMYD2,
ESM1, ULBP2, NMB, and GAPDHP1 were upregulated in
BLCA samples, and C1QTNF7, ATP1A2, FXYD1, CFD,
LGI4, ACTA2-AS1, PER1, THSD4, and CILP were
downregulated in BLCA samples both in the TCGA-BLCA
and GSE133624 datasets.

3.3. Characteristic Genes Related to Survival.We investigated
the overall survival (OS) of BLCA patients in the TCGA
dataset and plotted survival curves for each gene to investi-
gate the effect of potential feature genes on BLCA patients’
overall survival (OS). As shown in Figure 4, five distinct
genes, including SMYD2, GAPDHP1, ATP1A2, CILP, and
THSD4, were linked to BLCA OS with a P value of <0.05.
The high-expression group had a greater survival rate than
the low-expression group for GAPDHP1. The low-
expression group had a greater survival rate than the high-
expression group for SMYD2, ATP1A2, CILP, and THSD4.

To investigate the role of the five genes in the progres-
sion of BLCA, we examined the relationships between the
expression of characteristic genes and clinicopathological
features (age, gender, grade, stage, T stage, and N stage).
As shown in Fig.S3 and Figure 5(a), SMYD2 was not related
to age, gender, grade, T stage, and N stage, but related to
stage. The expression of SMYD2 tended to increase with
the increase of stage. As SMYD2 was downregulated in
BLCA, we speculated that SMYD2 played a promoting role
in the occurrence and progression of BLCA. For GAPDHP1,
GAPDHP1 was not related to age, gender, and N stage, but
related to the grade, stage, and T stage (Fig.S4, Figures 5
(b)–5(d)). We noted that the expression of GAPDHP1 was
significantly lower in high-grade BLCA patients than in
low-grade BLCA patients. The expression of GAPDHP1
was significantly lower in T3 and T4 stage BLCA patients
than in T2 stage BLCA patients. The expression of
GAPDHP1 was significantly lower in stage III and stage IV
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Figure 3: Screening feature genes by machine learning. (a) The Venn diagram of key module genes in the TCGA-BLCA and GSE133624
datasets. (b) Penalty graph of twenty-four characteristic variable coefficients. As the penalty coefficient lambda changes, the coefficients
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Candidate signature genes expression in the TCGA dataset. (g) Expression of candidate signature genes in the GSE133624 dataset.
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BLCA patients than in stage II BLCA patients. As
GAPDHP1 was upregulated in BLCA, these results implied
that GAPDHP1 played a promoting role in BLCA genesis
and an inhibitory role in BLCA progression. CILP was not
associated with age or gender, but rather with the grade,
stage, T stage, and N stage (Fig.S5, Figures 5(e)–5(h)). We
found that patients with high-grade BLCA had significantly
higher CILP expression than those with low-grade BLCA.
Patients with stage III and stage IV BLCA had significantly
higher CILP expression than those with stage II BLCA. Since
CILP was downregulated in BLCA, we presumed that CILP
acted an inhibitory role in BLCA development and a facilita-
tive role in BLCA progression. For ATP1A2, as shown in
Fig.S6 and Figure 5(i), ATP1A2 was not associated with
age, gender, grade, stage, and T stage, but related to N stage.
As revealed in Fig.S7 and Figures 5(j)–5(l), THSD4 was cor-
related with age, stage, and T stage, but not related to gender,
grade, and N stage. The expression of THSD4 tended to
increase with the increasing stage.

3.4. Characteristic Genes and Immune Infiltration. We sepa-
rated the BLCA patients in the TCGA database into three
groups according to the immunological scores computed
by ssGSEA: high immunity, medium immunity, and low
immunity (Figures 6(a) and 6(b)). With the ESTIMATE
algorithm, we found that the immune score, stromal score,
and ESTIMATE score significantly increased among the
three immunity groups with the increase of immune scores
(Figures 6(c)–6(f)). Next, we analyzed the differential
expression of five characteristic genes among the high-
immunity group, medium-immunity group, and low-
immunity group. The results showed that the expression of
ATP1A2, CILP, and THSD4 was significantly increased,
the expression of GAPDHP1 was significantly decreased,
and the expression of SMYD2 was first increased and then
decreased with the increase of immune score (Figure 6(g)).
We also calculated the correlation between the characteristic
genes and immune cells (Supplementary Table 6). Activated
B cells, effector memory CD4 T cells, mast cells, memory B
cells, and monocytes were all related to ATP1A2. The

central memory CD4 T cell, natural killer cell, natural
killer T cell, neutrophil, regulatory T cell, T follicular
helper cell, and Type 2 T helper cell were all shown to be
positively linked with THSD4. CILP was linked to
activated B cells, activated CD8 T cells, activated dendritic
cells, central memory CD4 T cells, central memory CD8 T
cells, effector memory CD4 T cells, effector memory CD8
T cells, eosinophil, gamma delta T cells, immature B cells,
immature dendritic cells, macrophage, mast cell, MDSC,
memory B cell, natural killer cell, natural killer T cell, and
plasmacytoid (Figure 6(h)).

3.5. Single-Gene GSEA. To probe the possible mechanism of
the five characteristic genes in BLCA, we proceeded with the
single-gene GSEA for each gene. Top 10 GO (BP) terms and
KEGG pathways positively and negatively associated with
each gene were listed in Supplementary Table 7. SMYD2
was most related to ‘spliceosome’ and ‘cell cycle’ (Figures 7
(a) and 7(b)). GAPDHP1 was most associated with
‘ribosome’ and ‘oxidative phosphorylation’ (Figures 7(c)
and 7(d)). ATP1A2 was most correlated with ‘vascular
smooth muscle contraction’ and ‘calcium signaling
pathway’ (Figures 7(e) and 7(f)). ‘Hematopoietic cell
lineage’ and ‘cytokine-cytokine receptor interaction’ were
most commonly associated with CILP (Figure 7(g) and 7
(h)). ‘Focal adhesion’ and ‘cytokine-cytokine receptor
interaction’ were most commonly related to THSD4
(Figures 7(i) and 7(j)).

3.6. Quantitative Real-Time PCR Validation. Quantitative
real-time PCR was used to confirm the expression levels of
SMYD2, GAPDHP1, ATP1A2, CILP, and THSD4 in BLCA
tissues. We discovered that the expression levels of ATP1A2,
CILP, and THSD4 were downregulated in malignant tissues
compared to paraneoplastic tissues, which was consistent
with the TCGA and GEO findings (Figures 8(a)–8(c)).
Meanwhile, SMYD2 and GAPDHP1 expression levels in
cancer tissues were higher than in paracancerous tissues
(Figures 8(d) and 8(e)). As a result, we suggest ATP1A2,
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CILP, THSD4, SMYD2, and GAPDHP1 might be potential
biomarkers for BLCA.

4. Discussion

The incidence and mortality rates of BLCA, one of the most
frequent malignancies of the urinary tract, are increasing
each year. It was reported that approximately 430,000
patients are diagnosed with BLCA each year and about
165,000 patients die [19]. Due to BLCA having no obvious
symptoms in the early stage, the difficulty of diagnosis is
increased. In addition, high recurrence and metastasis rates
contribute to the low 5-year overall survival of BLCA
patients, which has become a major challenge for global
health [20]. Up to now, the main treatment for BLCA is sur-
gery, chemotherapy, and immunotherapy. Although the
clinical management of BLCA patients has improved after
a series of rigorous treatments. However, the survival rate
of patients with advanced stage was still low, and the effec-
tiveness of immunotherapy still needs to be improved, as it
benefits only a small proportion of patients [21]. Therefore,
in order to combat this disease, screening for novel and
promising diagnostic biomarkers and regulatory pathways
for BLCA remains urgent and challenging.

In this study, we explore the underlying molecules and
potential mechanisms that affect the prognosis of BLCA

patients through a combination of bioinformatics and exper-
imental validation. A total of 189 BLCA-related DEGs were
identified. Then, after a series of bioinformatics analyses,
we identified 5 especially outstanding characteristic genes,
including SMYD2, GAPDHP1, ATP1A2, CILP, and THSD4,
which were tightly linked to the progression and prognosis
of BLCA. Moreover, we validated the expression levels of
SMYD2, GAPDHP1, ATP1A2, CILP, and THSD4 in clinical
samples. Interestingly, the results were consistent with those
in the TCGA and GEO databases. Namely, the expression
levels of ATP1A2, CILP, and THSD4 were downregulated
in cancer tissues compared with paracancerous tissues,
whereas the expression levels of SMYD2 and GAPDHP1
were upregulated. These findings may help improve treat-
ment decisions, risk stratification, and prognosis prediction
for BLCA patients.

In combination with the Sin3A and HDAC1 histone
deacetylase complexes, SMYD2 is a lysine methyltransferase
that not only methylates H3K36 but also acts as a transcrip-
tional regulator [22]. Previous research has shown that
SMYD2 is involved in the occurrence and progression of a
variety of cancers [23]. SMYD2 expression was found to be
highly upregulated in lung adenocarcinoma, and high
SMYD2 expression was linked to shorter overall and
disease-free survival. Mechanically, SMYD2 may promote
carcinogenesis and metastasis by activating RPS7
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Figure 5: The correlation analysis of characteristic genes with clinicopathological features. (a) Expression of SMYD2 between different
pathological grades. (b–d) GAPDHP1 expression between different clinical stages, pathological grades, and T stages. (e–h) Expression of
CILP between different clinical stages, pathological grades, T stages, and N stages. (i) Expression of ATP1A2 in different N stages. (j–l)
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transcription through binding to its promoter [24]. Inhibi-
tion of SMYD2 expression has been shown to significantly
reduce cervical cancer proliferation in vivo and in vitro
[25]. Furthermore, Meng et al. found that SMYD2 inhibits
the expression of APC2, thereby activating the Wnt/β-
catenin signaling pathway and promoting the epithelial-
mesenchymal transition in colorectal cancer [26]. We dis-
covered that high SMYD2 expression was not only related
to poor survival in BLCA but also that SMYD2 expression
increased with stage, which was consistent with our findings.
Finally, we hypothesized that SMYD2 may promote the
onset and development of BLCA.

As a well-known membrane protein, Na+/K+-ATPase is
composed of an α subunit and a β subunit and is widely
involved in various processes of human physiology and
pathology [27]. The ATP1A2 gene encodes the α-2 subunit
of Na+/K+-ATPase, a transmembrane protein that is
responsible for creating and sustaining Na and K ion electro-
chemical gradients across the plasma membrane. Previously,
ATP1A2 expression was found to be downregulated in
breast cancer [28]. Another evidence for the participation
of ATP1A2 in ovarian serous cystadenocarcinoma patho-
physiology comes from Huang et al., which revealed that
the expression of ATP1A2 was higher in adjacent normal
bladder tissues than in tumor tissues [29]. Additionally,
Zhang et al. found that ATP1A2 was regulated by the
lncRNA FLJ42875 in laryngeal squamous cell carcinoma
[30]. Herein, our analysis and experimental verification
demonstrated that ATP1A2 is lowly expressed in BLCA,
and overexpression of ATP1A2 was associated with unfavor-
able outcomes in BLCA patients.

THSD4 encodes thrombospondin type 1 domain con-
taining 4, and its methylation status has been linked to poor
survival in glioblastoma patients [31]. Furthermore, GATA3
regulates THSD4 expression and promotes the transition of
normal cells into breast cancer through THSD4 dysregula-
tion [32]. The expression of THSD4 mRNA was discovered
to be downregulated in colorectal cancer samples by Liu

et al. THSD4 expression was found to be downregulated in
patients with poorly differentiated colorectal cancer, and
patients with low THSD4 expression had lower survival rates
[33]. Our findings, together with previous research, revealed
the role of THSD4 in BLCA tumorigenesis regulation. How-
ever, more research into the particular molecular pathways
of THSD4 in the evolution of BLCA is required. As for CILP
and GAPDHP1, they were not reported to be involved in the
BLCA progression. Therefore, more research into these two
genes is required in the future.

The tumor microenvironment has an impact on tumor
occurrence and recurrence, as well as tumor immunotherapy
outcomes. Tumor-infiltrating immune cells are an impor-
tant part of the tumor microenvironment, and the composi-
tion and distribution of these cells are linked to cancer
prognosis [34]. Inflammatory infiltrating cells’ location,
type, and density in colorectal cancer are stronger predictors
of survival than clinical and histological variables in previous
research [35]. Given the importance of the tumor microenvi-
ronment in cancer progression and the fact that tumor-
infiltrating immune cells are an important component of
the tumor microenvironment, we used the TCGA dataset
to conduct immune infiltration analysis to investigate the
relationship between signature genes and immune cells.
ATP1A2, CILP, and THSD4 were found to be considered
positively connected with most immune cells, GAPDH1
was found to be significantly negatively correlated with most
immune cells, and SMYD2 was shown to be strongly nega-
tively correlated with natural killer cells and monocytes. As
a result, we postulated that those genes have an impact on
the immune microenvironment of BLCA, play a major role
in BLCA tumor immunity regulation, and can reflect the
immune status of BLCA patients.

Moreover, the current research also explored the possi-
ble mechanism of the five characteristic genes in BLCA, we
proceeded with the single-gene GSEA for each gene. Our
results demonstrate that SMYD2 was most related to spli-
ceosome and cell cycle. GAPDHP1 was most associated with
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Figure 6: The correlation analysis between characteristic genes and immune infiltration. (a, b) Immune score clustering and heatmap of
BLCA samples. Groups with high immunity (red), medium immunity (blue), and low immunity (green). (c–f) Immune score, stromal
score, and ESTIMATE score variations among high-, medium-, and low-immunity groups. (g) Differential expression of characteristic
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Figure 7: Continued.
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Figure 7: Enrichment plots from gene set enrichment analysis (GSEA). (a, b) Top 2 KEGG pathways enriched by SMYD2. (c, d) Top 2
KEGG pathways enriched by GAPDHP1. (e, f) Top 2 KEGG pathway enriched by ATP1A2. (g, h) Top 2 KEGG pathways enriched by
SMYD2. (i, j) Top 2 KEGG pathways enriched by THSD4.
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Figure 8: The expression of SMYD2, GAPDHP1, ATP1A2, CILP, and THSD4 in clinical BLCA tissues detected by qRT-PCR.
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ribosome and oxidative phosphorylation. ATP1A2 was most
correlated with vascular smooth muscle contraction and
calcium signaling pathway. CILP was most related to hema-
topoietic cell lineage and cytokine-cytokine receptor interac-
tion. THSD4 was most associated with focal adhesion and
cytokine-cytokine receptor interaction. These data provided
a basis for further investigation of the underlying molecular
mechanism of these five genes.

5. Conclusions

In conclusion, our comprehensive bioinformatics analysis of
BLCA datasets from TCGA and GEO revealed DEGs,
molecular processes, and key pathways associated with
BLCA. In addition, quantitative real-time PCR results
showed that the expression levels of ATP1A2, CILP, and
THSD4 were downregulated and the expressions of SMYD2
and GAPDHP1 were upregulated in cancer tissues com-
pared with normal tissues. Therefore, this information may
help to identify new biomarkers to effectively assess tumor
staging, improve treatment, and aid in drug development.
However, further research is needed to elucidate their spe-
cific mechanisms and biological roles in the occurrence
and development of BLCA.
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