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Background. Melanoma development and progression are signifcantly infuenced by ferroptosis and the immune microenvi-
ronment. However, there are no reliable biomarkers for melanoma prognosis prediction based on ferroptosis and immunological
response.Methods. Ferroptosis-related genes (FRGs) were retrieved from the FerrDb website. Immune-related genes (IRGs) were
collected in the ImmPort dataset.Te TCGA (TeCancer Genome Atlas) and GSE65904 datasets both contained prognostic FRGs
and IRGs. Te model was created using multivariate Cox regression, the least absolute shrinkage and selection operator (LASSO)
Cox regression analysis, and the analysis and comparison between the expression patterns of ferroptosis and immune cell
infltration were done. Last but not least, research was conducted to assess the expression and involvement of the genes in the
comprehensive index of ferroptosis and immune (CIFI). Results. Two prognostic ferroptosis- and immune-related markers
(PDGFRB and FOXM1) were utilized to develop a CIFI. In various datasets and patient subgroups, CIFI exhibits consistent
predictive performance.Te fact that CIFI is an independent prognostic factor for melanoma patients was revealed. Patients in the
CIFI-high group further exhibited immune-suppressive characteristics and had elevated ferroptosis gene expression levels. Te
results of in vitro research point to the possibility that the PDGFRB and FOXM1 genes function as oncogenes in melanoma.
Conclusion. In this study, a novel prognostic classifer for melanoma patients was developed and validated using ferroptosis and
immune expression profles.

1. Introduction

Melanoma is the deadliest type of skin cancer, with a yearly
rise in incidence [1, 2]. Te limited treatment of choice for
advanced melanoma is immune checkpoint blockade (ICB)
and molecularly targeted therapies, such as CTLA-4, PD-1/
PD-L1 inhibitors, and BRAF inhibitors due to melanoma’s
high level of heterogeneity and aggressiveness [3, 4].
However, primary or secondary drug resistance afects more
than 50% of melanoma patients, which presents a signifcant
clinical treatment challenge [5, 6]. In addition to the timing
of treatment being delayed once patients develop drug re-
sistance, there will be limited options for subsequent ther-
apeutic approaches [7]. Developing precise, individualized

treatment plans for various patients and accurately pre-
dicting the risk and drug treatment response for diferent
individuals is an efective approach to addressing the drug
resistance problem. Obtaining reliable biomarkers for
a melanoma diagnosis is therefore crucial to initiate clinical
treatment. Ferroptosis is an excessive lipid peroxidation-
induced regulated cell death mode that is iron-dependent
and associated with the progression and treatment response
of multiple types of tumors [8, 9]. Recent research has
demonstrated that ferroptosis may result in immunosup-
pression brought by infammation in the tumor microen-
vironment [10, 11]. Additionally, there are interactions
between immune and tumor cells that are connected to
ferroptosis [12, 13]. Ferroptosis is regulated by a variety of

Hindawi
Journal of Oncology
Volume 2022, Article ID 1840361, 15 pages
https://doi.org/10.1155/2022/1840361

https://orcid.org/0000-0003-2961-9213
https://orcid.org/0000-0001-9136-4990
https://orcid.org/0000-0002-3327-4177
https://orcid.org/0000-0002-4465-7632
https://orcid.org/0000-0002-5511-9282
mailto:gaoyli@mail.sysu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1840361


molecular components in the tumor microenvironment.
Increased iron accumulation, free radical generation, fatty
acid supply, and lipid peroxidation are critical for the de-
velopment of ferroptosis [14]. Numerous studies have
demonstrated that the immunosuppressive microenviron-
ment can be impacted by ferroptosis intervention. Ferrop-
tosis may expose tumor antigens, increasing the tumor
microenvironment’s immunogenicity and enhancing the
efectiveness of immunotherapy [15–17].However, the JAK-
STAT1 pathway is activated, and SLC7A11 and SLC3A2
expression are downregulated, which causes ferroptosis in
tumor cells when interferon gamma is released by cytotoxic
T cells [18]. Te long-term efects of ferroptosis on tumor
immunity depend on the interactions among cancer cells
and other immune cell subsets. For instance, the lymphatic
system inhibits melanoma cells from ferroptosis via the
mechanism of enhancing the synthesis of ACSL3-dependent
MUFAs, which promote tumor spread [19]. Despite a strong
link between ferroptosis efects and the immune microen-
vironment, their role in melanoma is yet unknown. In this
work, a comprehensive index of ferroptosis and immune
(CIFI) model was created and validated using ferroptosis-
related genes (FRGs) and immune-related genes (IRGs). Te
CIFI model demonstrated consistent prognostic predictive
performance in patients with various clinical features and
across various datasets. Te outcomes of in vitro experi-
ments and clinical validation were used to validate the ex-
pression and function of the PDGFRB gene and the FOXM1
gene in CIFI.

2. Materials and Methods

2.1. Data Preparation. RNA-seq information and follow-up
data for melanoma patients were acquired from TCGA (472
samples). Data from the Gene Expression Omnibus (GEO)
were obtained, and the GSE65904 dataset (214 samples) was
chosen since it had the biggest sample set in the GEO database
and detailed follow-up information. Te FerrDb website in-
cludes FRGs. Te ImmPort dataset’s IRGs were downloaded.

2.2. Construction andValidation of the CIFI. We selected the
independent prognostic genes across FRGs and IRGs using
the “survival” program and univariate Cox analysis. Both
LASSO analysis and sequential Cox proportional hazards
regression were employed to develop CIFI. Te risk score’s
optimal cutof value was used to establish the CIFI-high and
CIFI-low groups (categories). To examine the diferences
(variations) in overall survival between the CIFI-high and
CIFI-low groups, the Kaplan-Meier survival analysis was
utilized. Te time-dependent ROC analysis was also used to
assess CIFI’s predictive ability. To assess the CIFI’s in-
dependent prognostic signifcance, both univariate and
multivariate Cox regression analyses were utilized.

2.3. Potentially Regulatory Pathways Analysis. Te score of
each pathway per sample was determined using a single-
sample gene set enrichment analysis (ssGSEA) with the aid
of the “GSVA” package. Te analysis of the correlation

between the CIFI and ssGSEA scores of each sample was
then conducted using the potential regulatory pathways.

2.4. Immunohistochemistry (IHC) Analysis. Te First Hos-
pital of China Medical University provided clinical samples
(paired nontumor skin tissue and melanoma). According to
a prior study [20], IHC staining and scoring were conducted.
Te following antibodies were used: PDGFRB (1 : 200;
ab69506; Abcam) and FOXM1 (1 :1000; ab207298; Abcam).
Te Ethics Committee of the First Hospital of ChinaMedical
University approved this study.

2.5. Cell Culture and Transfection. All of the cell lines (PIG1,
A375, A875, and MeWo) used in this investigation were
provided by the China Infrastructure of Cell Line Resource.
PIG1 is immortalized dermal melanocytes, A375 is human
malignant melanoma cells, A875 is human melanoma cell,
and MeWo is human malignant melanoma cells. Small
interfering RNA (siRNA) and Lipofectamine 2000 (Invi-
trogen, Shanghai, China), as previously described [20], were
used for cell transfection. PDGFRB-siRNA had the following
sequences: 5′-GGAAUGAGGUGGUCAACUU-3′. Addi-
tionally, the FOXM1-siRNA sequences were 5′-GGACCA
CUUUCCCUACUUU-3′.

2.6. CCK8 Assay and Colony-Forming Experiments. Te
negative control siRNA (NC-siRNA), the PDGFRB-specifc
siRNA, and the FOXM1-specifc siRNA were all transfected
into cell cultures in 96-well plates. Cells were cultured with
CCK8 solution (C0038, Beyotime, Shanghai, China) for
another 2 hours after 0, 24, 48, and 72 hours. To determine
cell vitality, an optical density (OD) value at 450 nm was
recorded. Cells (500/well) treated with siRNAs for colony-
forming experiments were added to 12-well plates. Te
colonies were counted after two weeks.

2.7. qPCR and Western Blot. qPCR and western blot pro-
cedures were conducted as previously mentioned [21].

2.8. Statistical Analysis. Te statistical tool SPSS 21.0 was
used to examine the data (IBM Corporation, Armonk, NY,
USA). Software called GraphPad Prism 8.0 was used to
generate the graphs (GraphPad Software, Inc., San Diego,
CA). Student’s t-tests were applied. With regard to t-tests,
a two-tailed p< 0.05 indicated a signifcant value.

3. Results

3.1.Development ofCIFI inMelanoma. Using univariate Cox
regression analysis, prognostic genes were initially discov-
ered using the TCGA dataset and the GSE65904 dataset. In
total, 4680 prognostic genes involved from the TCGA
dataset were fltered out. In Supplement Figure 1A, the top
20 genes’ hazard ratios (ranked by P value) were displayed.
In addition, 1593 prognostic genes were screened from the
GSE65904 dataset, and Supplement Figure 1B showed the
top 20 genes’ hazard ratios (ordered by P value). In addition,
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190 prognostic FRGs and IRGs were the intersecting genes
between the GSE65904 and TCGA cohorts (Figure 1(a)). Te
optimal prognostic genes were then chosen using the LASSO
Cox regression model, resulting in a model incorporating 20
genes: KLRD1, CHP2, PIK3R2, IFITM1, C5, CCL8, SEMA4A,
SEMA6A, LEP, PDGFRB, CD40, CNTFR, IL27RA, SSTR2,
MAP2K1, CTLA4, FOXM1, CHAC1, IDO1, and ULK1
(Figures 1(b) and 1(c)).Tismodel was examined and optimized
using a stepwise Cox proportional hazards model to include the
optimal prognostic genes, resulting in a fnal set of two genes
(Figure 1(d)). Consequently, CIFI was developed:
CIFI= (0.292× PDGFRB expression)+ (0.233× FOXM1
expression).

3.2. TCGADataset PrognosticAnalysis ofCIFI. Te risk score
distribution from the TCGA dataset, which was initially
computed for each sample in Figure 2(a), was shown. Pa-
tients in the CIFI-high group showed remarkably worse
overall survival rates than those in the CIFI-low group, as per
a Kaplan-Meier survival analysis (Figure 2(b); P< 0.0001).
Te AUC values over 1, 3, and 5 years of survival were shown
by ROC curve analysis to be 0.614, 0.587, and 0.619, re-
spectively (Figure 2(c)).

3.3. Verifcation of CIFI in GSE65904. Te stability and
dependability of CIFI are then further verifed. Figure 3(a)
displayed the GSE65904’s CIFI distribution. Te overall
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Figure 1: Prospective FRGs and IRGs identifed in melanoma. (a) 190 predicted FRGs and IRGs were detected in the GSE65904 and TCGA
cohorts, using a Venn diagram. (b) 100-foldcross-validation for LASSO model-related parameter selection refnement. (c) Te most
signifcant prognostic genes’ LASSO coefcient profles. (d) PDGFRB and FOXM1 show statistical signifcance in the Cox proportional
hazards regression model incorporating 20 genes.
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survival of patients in the CIFI-high group was signifcantly
lower than that of patients in the CIFI-low group, as per
a Kaplan-Meier prognostic analysis in Figure 3(b)
(P< 0.0001). AUC values of 0.622, 0.648, and 0.658 were
found for 1-year, 3-year, and 5-year survival, respectively,
based on ROC curve analysis (Figure 3(c)).

3.4. Prognostic Value of CIFI in Various Melanoma Patient
Subgroups. Next, individuals with distinct clinical features
were studied to determine the prognostic signifcance of
CIFI. Figures 4(a)–4(j) showed that among melanoma pa-
tients with diferent clinical characteristics, the overall
survival of patients belonging to the CIFI-high group was
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Figure 2: CIFI-related prognostic analysis in the TCGA dataset. (a) Risk scores survival duration, survival status, and PDGFRB and FOXM1
expression levels in CIFI. (b) Kaplan-Meier-based comparison of the OS between the groups with high and low CIFI. (c) Time-dependent
ROC analysis of CIFI for OS and survival status.
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considerably worse than that of the CIFI-low group.
However, CIFI was able to diferentiate the prognosis of
several patient subgroups.

3.5. Cox Analysis of CIFI and Nomogram Construction.
We then performed univariate and multivariate Cox re-
gression analyses. Age, CIFI, M, N, T, and tumor stage were
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Figure 3: Validation of CIFI in the GSE65904 dataset. (a) Risk scores, survival times, survival status, and expressions of PDGFRB and
FOXM1 in CIFI. (b) Kaplan-Meier analysis of the OS in the CIFI-high group versus the CIFI-low group. (c) Time-dependent ROC analysis
of CIFI for OS and survival status.
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Figure 4: Continued.
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all linked to patients’ prognosis, according to a univariate
Cox analysis (Figure 5(a)). According to a multivariate Cox
analysis, the patient’s prognosis was determined in-
dependently by CIFI, age, M stage, N stage, and T stage
(Figure 5(b)). Tese fndings showed that a high CIFI was an
independent predictor of outcomes in melanoma patients.

Te development of a quantitative technique in clinical
practice may also aid doctors in assessing melanoma pa-
tients’ prognosis. Based on the outcomes of multivariate Cox
regression analysis, a nomogram incorporating clinico-
pathological traits and CIFI was constructed (Figure 5(c)).
Te model’s potent ability to predict patient outcomes over
5 years was confrmed by the calibration curves, which
revealed considerable overlap between the calibration points
and the standard curve (Figure 5(d)). Additionally, the
decision curve analysis demonstrated that the nomogram
model accurately predicted overall survival (OS) compared

to a single clinicopathological characteristic (Figure 5(e)).
Tese fndings revealed the therapeutic use of the CIFI-based
nomogram to determine the prognosis of melanoma
patients.

3.6. Immune Profle in the CIFI. We then investigated if CIFI
may indicate a melanoma immunological state. First, we
investigated the link between CIFI and immune-invading
cells. ssGSEA was conducted to determine the level of in-
fltration of 28 immune cells. Some immune cells were
expressed aberrantly in both the CIFI-high and CIFI-low
groups (Figures 6(a) and 6(b)). Following that, we sought to
investigate the link between CIFI and the tumor immune
microenvironment. Figure 6(c) showed that CIFI was
positively correlated with immune score (R= 0.1, P< 0.043)
and stromal score (R= 0.38, P< 0.001).
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Figure 4: Impact of CIFI on prognosis in melanoma patients with distinct clinical characteristics. (a) Male. (b) Female. (c) Age <60. (d) Age
≥60. (e) T1 +T2. (f ) T3 +T4. (g) N0. (h) N1–N3. (i) Stage 1 + Stage 2. (j) Stage 3 + Stage 4.
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3.7. Identifying Pathways Related to CIFI. Te link between
CIFI and biological function was the subject of our next
analysis efort. Using a cutof of P< 0.05, it was observed that
the TCGA cohort samples with CIFI-high had 237

substantially upregulated genes and 38 considerably
downregulated genes (Figure 7(a)). Te expression levels of
these diferentially expressed genes (DEGs) were then
imported into Metascape. Te extracellular matrix
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organization, collagen synthesis, blood vessel development,
etc. were the primary areas where the upregulated genes
were enriched. Te majority of the downregulated genes
were specialized for pigmentation, inner ear development,
etc. (Figure 7(b)). Te scores of all patients in various routes
were then obtained by calculating the ssGSEA scores by
GSVA. As the risk score grew, ECM receptor interaction,
focal adhesion, and other activities increased, whereas ri-
bosome, basal transcription factors, and other activities
decreased (Figure 7(c)).

3.8. Validation of the CIFI Genes at the mRNA and Protein
Levels, and Its Functional Analysis. As shown in Figures 8(a)
and 8(b), melanoma cells (A375, A875, and MeWo) had
considerably higher PDGFRB and FOXM1 mRNA and
protein levels than melanocyte PIG1 cells. Te outcomes of
immunohistochemistry experiments demonstrated that
PDGFRB and FOXM1 were overexpressed in melanoma
samples in comparison to normal tissues (Figure 8(c)).
Furthermore, we transfected the A375 cells, and transfection
efciency was shown in Figure 8(d). Based on in vitro ex-
periments, we found that silencing PDGFRB and FOXM1
inhibited the proliferative capacity of melanoma cells
(Figures 8(e) and 8(f)). Tese fndings collectively indicated
that PDGFRB and FOXM1 may act as carcinogens in
melanoma.

4. Discussion

Melanoma is highly aggressive, yet the patient’s prognosis
remains poor due to limited conventional treatment options
[22, 23]. Terefore, there is a need to establish prognostic
characteristics for melanoma patients. Several studies have
provided potential prognostic assessment models for mel-
anoma patients [24–26]. However, most of the studies were
genomic or transcriptomic-based and did not validate bi-
ological functions. Melanoma onset and progression are
signifcantly infuenced by ferroptosis and the immune

microenvironment [27, 28]. We developed CIFI in this study
utilizing FRGs and IRGs based on open-source datasets. In
many datasets and patient subsets, CIFI exhibits consistent
predictive accuracy. Signifcantly, CIFI is an independent
prognostic factor for melanoma patients. In conclusion,
CIFI has the potential to be useful in clinical settings and is
quite efective in predicting the prognosis of patients with
melanoma.

Currently, several studies have reported immune-related
molecular markers as prognostic markers for melanoma
[29–31], but these prognostic markers had limitations. First,
molecular markers in previous studies contained various
genes, which increased the workload and cost in clinical
practice and constrained the clinical utility of these mo-
lecular markers to some extent [29, 32, 33]. Second, these
studies have not further investigated the underlying
mechanisms or clinical signifcance of prognostic markers
[28, 34], and therefore, the clinical reliability of these
prognostic markers was unclarifed. Terefore, it is imper-
ative to fnd a reliable and practical prognostic marker. Our
study yields a predictive model for melanoma patients based
on ferroptosis and immunity, two essential tumor charac-
teristics. Tis model may simultaneously refect changes in
melanoma’s ferroptosis and immunological state. Our
methodology is also practical for clinical use. Most im-
portantly, the outcomes of clinical samples and in vitro tests
have validated the expression level and probable functions of
genes in our model. Te CIFI we constructed contains two
genes, PDGFRB and FOXM1. Among these, PDGFRB and
FOXM1 are genes involved in ferroptosis and the immune
system, respectively. Embryonic development, cell pro-
liferation, survival, diferentiation, chemotaxis, and migra-
tion are all regulated by the protein that the PDGFRB gene
produces [35, 36]. Previous studies have established the link
between PDGFRB overexpression and a poor prognosis in
patients with renal cell carcinoma [37], oral squamous cell
carcinoma [38], ovarian cancer [39], and colorectal cancer
[40]. Involved in cell proliferation, the transcriptional
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activator FOXM1 may have an impact on the expression of
several cell cycle genes, including cyclin B1 and cyclin
D. Numerous studies have revealed the association of ele-
vated FOXM1 expression levels with a poor prognosis in
patients with ovarian cancer [41], pancreatic and esophageal
cancers [42], malignant rhabdoid tumors [41], and small-cell
lung cancer [43]. FOXM1 expression level is elevated and
activated in malignant melanoma [44]. FOXM1 inhibition
might be a promising treatment strategy for metastatic
melanoma [45].

We also compared our model with others. Only two
models based on immune or ferroptosis-related genes
have been discovered so far [46, 47]. However, in our
analysis, for the frst time, the incorporated ferroptosis
and immune gene set were utilized to develop a mela-
noma-related prognostic model, which could play
a consistent prognostic performance in diverse data sets
that could be utilized as an independent prognosis-
related predictive indicator for melanoma patients.

Although CIFI has the potential to be an excellent model
for predicting prognosis in individuals with melanoma, it
has certain drawbacks. To begin, all samples in this study
were obtained retrospectively, and potential samples are
currently being validated. We, therefore, examined CIFI’s
prognostic signifcance in clinic settings. Te roles of
PDGFRB and FOXM1 in CIFI require further in vivo and
in vitro investigations.

5. Conclusions

In conclusion, a novel prognostic classifer based on fer-
roptosis and immune expression profles in patients with
melanoma was developed and validated.
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