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)e clinical progression of small-cell lung cancer (SCLC) remains pessimistic. )e aim of the present study was to promote the
understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC.
Wilcoxon tests, standardized mean difference (SMD), and Kruskal–Wallis tests were utilized to compare OGT level differences
among the experimental and control groups. )e univariate Cox regression analysis, Kaplan–Meier curves, and receiver operating
characteristic curves were applied to determine OGT’s clinical relevance in cancers. )e Spearman correlation analysis and en-
richment analysis were utilized to explore the underlying mechanisms of OGTin cancers. For the first time in the field, we provide an
overview of OGT in 32 cancers using a large number of samples (n= 21,196), determining distinct OGTexpression in 25 cancers and
its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both
mRNA and protein levels in SCLC (SMD=0.93, 95%CI [0.24, 1.63]). Higher OGT levels represented amore unfavorable disease-free
interval for SCLC patients (p< 0.001). )e research also identified OGT expression as a potential marker for SCLC prediction
(sensitivity = 0.79, specificity = 0.86, andAUC=0.88).)e high expression of OGTin SCLCmay result from the positive regulation of
two transcription factors—DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based
on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying
biomarker for the treatment and identification of some cancers, including SCLC.

1. Introduction

Lung cancer (primary bronchogenic carcinoma) has the
second-highest incidence (the highest is breast cancer) and
top mortality rate among cancers in the world [1]. Based on
estimated worldwide data for 2020, more than 2.20 million
people were newly diagnosed with lung cancer and 1.79
million individuals died of the disease [1]. According to the
pathobiology features, lung cancer is classified as nonsmall-
cell lung cancer (NSCLC) and small-cell lung cancer (SCLC).

Compared to NSCLC, SCLC is identified as more aggressive,
with a higher growth fraction and faster metastasis [2, 3],
although it accounts for fewer (15%) lung cancer cases.
Common therapeutic options for SCLC are lobectomy and
chemotherapy combined with radiotherapy; however, the
clinical progression of SCLC remains quite low, and the five-
year overall survival rate of this disease has been reported at
a mere 1%–5% [3–5]. Moreover, two-thirds of SCLC patients
were initially diagnosed with a metastatic status [2], thus
increasing the difficulty of the clinical management of the
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disease. Immune checkpoint inhibitors offer significant
benefits to SCLC patients [2], suggesting the potential of
target treatment for SCLC; however, little evidence supports
the correlation of currently common biomarkers (e.g., PD-
L1) with significant immunotherapy effects for SCLC [6]. In
the pathogenesis of SCLC, although it is known to involve a
variety of risk factors, such as tobacco smoking, the mo-
lecular mechanism has not been fully elucidated due to its
complexity [7]. )us, more effort is required to explore the
potential markers and mechanisms of SCLC.

O-GlcNAcylation, a dynamic and reversible glycosyla-
tion modification, participates in a wide range of funda-
mental cellular processes and functions [8]. )e O-linked
N-acetylglucosamine (GlcNAc) transferase (OGT) protein is
a glycosyltransferase encoded by the gene OGT; it enables
the catalysis of a single N-acetylglucosamine (GlcNAc)
molecule from uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc) to proteins. A variety of proteins with
O-GlcNAcylation can affect the occurrence and develop-
ment of malignant tumors [9]. )us, OGT-meditated
O-GlcNAcylation may provide cancer cells with an ad-
vantage for sustained growth, immune evasion, and other
hallmarks in the tumor microenvironment [10]. Indeed,
associations with high-OGT levels and an enhanced grade of
tumor aggressiveness, heightened metastasis incidence, and
poor prognosis were also identified in numerous cancers,
including prostate [11], colorectal [12], ovary [13], breast
[14], endometrium [15], pancreatic [16], and bladder cancers
[17]. OGT has also been reported to impel the mobility and
invasion of NSCLC cells by regulating O-GlcNacylation [18],
demonstrating its important role in lung cancer; however,
there is still a lack of research on SCLC.

)e aim of the present study was to promote the un-
derstanding of the mechanism of OGT in SCLC and its
clinical significance.We first performed an overview of OGT
in pan-cancer and discussed its clinical value in multiple
cancers. OGT expression was then explored at both the
mRNA and protein levels based on in-house andmulticenter
SCLC samples. We also exploited the prognosis and dis-
tinction effects of OGT in SCLC and investigated the un-
derlying molecular mechanism of the gene in the disease,
contributing to a better understanding of the pathogenesis of
SCLC.

2. Materials and Methods

)is study was carried out with the approval of the Ethics
Committee of the First Affiliated Hospital of Guangxi
Medical University and the Ethics Committee of the Affil-
iated Hospital of Guilin Medical University. A process flow
chart of this study can be viewed in Figure 1.

2.1. Collection of Pan-Cancer Samples and SCLC Samples.
A normalized pan-cancer cohort, containing samples
from the Cancer Genome Atlas (TCGA), was obtained
from the Xena database constructed by the University of
California, Santa Cruz. Six types of samples in the cohort
were included: “samples from solid tissue normal,”

“primary solid tumor,” “primary tumor,” “normal tissue,”
“primary blood-derived cancer—bone marrow,” and
“primary blood-derived cancer—peripheral blood.”
Noncancer tissue samples were collected from the Ge-
notype-Tissue Expression (GTEx) database, which was
combined with the TCGA cohort to explore the mRNA
expression of OGT. For each type of cancer, more than
three respective samples were collected for both the cancer
group and the noncancer control group for further
analysis. )irty-two cancers (n of samples � 21,196) in the
TCGA-GTEx cohort were ultimately included in the study
(Table S1).

To analyze OGT mRNA expression and its clinical
significance to SCLC (a cancer was not contained in the
TCGA-GTEx cohort), cohorts from the Gene Expression
Omnibus (GEO) were collected. Strategies for screening
these cohorts included “(lung or bronch∗ ) and (small cell)
and (mRNA or gene)”. GEO cohorts were included in this
study, provided that they met the following criteria: (1)
samples consisted of lung/bronchus tissues or cells of Homo
sapiens and (2) expression profiles included mRNA levels.
Cohorts were excluded if they had one of the following
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Figure 1: A flow chart of this study.
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features: (1) contained duplicate samples from another
cohort, (2) complete expression data was unavailable, and/or
(3) there were only one or two samples in the combined
dataset.)e process of selecting the GEO cohorts is shown in
Figure S1, and the included cohorts and their sample
numbers are shown in Figure 2.

Collected from the First Affiliated Hospital of Guangxi
Medical University and the Affiliated Hospital of Guilin
Medical University, an in-house cohort with 26 SCLC
samples and 29 nonSCLC samples were used to compare the
differential levels of OGT protein between SCLC and
nonSCLC tissues. A rabbit anti-OGT antibody, purchased
from Abcam plc, was used for the immunohistochemical
experiment. )e experiment was performed following the
manufacturer’s instructions. )e immunohistochemical
experimental methods and protein level scoring criteria were
consistent with our previous study [19].

2.2. Gene Expression Data Processing. )e mRNA ex-
pression profiles of the TCGA-GTEx cohort and GEO co-
horts were transformed by log2 (x+ 1). )irty SCLC cohorts
were classified into 15 new cohorts based on the same
platforms. Batch effects in merged cohorts (e.g., GPL6884,
consisting of GSE32036 and GSE4127) were eliminated
using the limma software package [20–22]. Finally, the
mRNA expression levels in the SCLC cohorts were nor-
malized via the limma package.

2.3. Mutation Landscapes of OGT in Pan-Caner. A simple
nucleotide variation (SNV) dataset and a copy number
variation (CNV) dataset, respectively processed by MuTect2
[23–25] and GISTIC [26–29] software, were collected from
the Genomic Data Commons database. Samples in the two
datasets with OGT expression equal to zero were excluded.
Cancers with less than three samples were screened out.
Ultimately, the SNV data of 16 cancers and the CNV data of
19 cancers were retained for further analysis. Based on the
SNV dataset, the mutation landscape of OGT in pan-cancer
was explored with the help of the matfools software package
[22, 30, 31].

2.4. Clinical Associations of OGT Expression in Cancers. )e
relationships between OGT expression and several clinical
features, including age and TNM stages, were evaluated
using Kruskal–Wallis tests. OGT expression was considered
independent of these clinical parameters if it was not closely
related to the latter.

)e relevance of OGT expression to patients’ prognoses
was also analyzed by Kaplan–Meier curves and univariate
Cox analyses. Four clinical outcomes reflecting patients’
prognoses were considered in the study: overall survival
(OS), disease-specific survival (DSS), progression-free in-
terval (PFI), and disease-free interval (DFI).

)e ability of OGT expression to differentiate between
cancer from noncancer samples was tested using the area
under the curve (AUC) of the receiver operating charac-
teristic curves (ROCs). )e larger an AUC value is (ranging

from 0 to 1), the more likely OGT expression represents
conspicuous effects in identifying cancers, indicating its
potential in screening for these diseases.

2.5. Relevance of OGT Expression with Immune Microenvi-
ronment (IME). ESTIMATE [32–35] is a tool used to
measure scores of patients based on gene expression profiles,
including a stromal score (for stromal cells), an immune
score (for immune cells), and an estimated score (for tumor
purity). Another algorithm, TIMER [36–39], can be used to
detect immune cell infiltration levels. In this study, both the
ESTIMATE and TIMER algorithms were applied to explore
the associations (evaluated by the Spearman correlation
coefficient) between OGT expression and IME.

2.6. Relationship between OGT Expression and Immunotherapy
Indexes. Tumor mutational burden (TMB), microsatellite
instability (MSI), and homologous recombination deficiency
(HRD) are considered promising indicators in immuno-
therapy [40–42]. Analyses of the correlation of OGT ex-
pression with the three markers were performed in this
study.

2.7. Research on OGT in SCLC. In addition to mutation
landscapes (data limited), the analyses used for pan-cancer
were also applied to the research on OGT in SCLC.
Moreover, both standardized mean difference (SMD) and
enrichment analyses were utilized at this stage. For a coding
gene, it is the protein it encodes rather than its mRNA
molecule that plays a biological role.)erefore, OGTprotein
levels between SCLC and nonSCLC tissues were detected
based on the in-house cohort of the study.

A gene with an absolute value of log2 (fold change) ≥1
and an SMD value >1 was considered an upregulated dif-
ferently expressed gene (Up-DEGs). A gene that demon-
strated a positive correlation (Pearson coefficient ≥0.3) with
OGT expression in at least three cohorts was defined as an
OGT-positively related gene (OGT-RG). OGT-related Up-
DEGs were obtained from the intersection of Up-DEGs and
OGT-RGs.

)e Cistrome Data Browser [43, 44] is a database that
incorporates experimental data on the chromatin immu-
noprecipitation sequence (ChIP-Seq) to predict transcrip-
tion factors (TFs) for target genes; this method was applied
to predict TFs for OGT (based on one kb base sequence
upstream of OGT’s transcription start site). Potential TFs
likely regulating OGT expression were the intersection of
predicted TFs, Up-DEGs, and OGT-RGs.

2.8. Other Statistical Analyses. Wilcoxon and Kruskal–Wallis
tests were utilized to compare OGT level differences among
the experimental and control groups (e.g., SCLC vs.
nonSCLC). In the study, without any special description,
p< 0.05 indicated that the results were statistically
significant.
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3. Results

3.1. �e Expression of OGT and Its Mutation Landscape in
Pan-Cancer. Distinct OGT expression was observed in 25
of the 32 cancers included in this study. )e upregulation of
OGT expression was detected in four cancers—CHOL,
HNSC, LAML, and READ. Downregulated OGTexpression
was determined in 21 cancers containing ACC, BRCA,
CESC, COAD, COADREAD, ESCA, GBM, KICH, KIRP,
LIHC, LUAD, LUSC, OV, PAAD, PRAD, SKCM, STAD,
STES, THCA, UCEC, and UCS (Figure 3(a)).

All 16 cancers showed SNVs (mainly missense muta-
tions) ranging from 0.6% to 5.1%, and the top three cancers
with the highest frequency of SNV were UCEC, UCS, and
LUAD (Figure S2). For the three cancers, SNVs were more
likely to be detected in the high-OGTexpression group than

in the low-OTG expression group, and the top five genes
with the highest frequency of SNV were MUC17, PIK3CA,
SI, SYNE1, and PTEN (Figure S3). In THCA, upregulated
OGT expression was observed in the mutant group instead
of in the wild-type group (Figure 3(b)). )e expression level
of OGT was consistent with the trend of CNV in BRCA,
ESCA, HNSC, LUAD, STAD, and STES (Figure 3(c)).

3.2. Clinical Relevance of OGT Expression in Cancers. For the
detection of OGT’s prognosis significance in pan-cancer, an-
alyses of univariate Cox and Kaplan–Meier curves were per-
formed. No relationship of OGTexpression with age and TNM
stages was found inmost cancers (Figure S4), suggestingOGT’s
independence of these features. In clinical outcomes, OGT
expression plays different roles in various cancers. OGT
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expression is related to the favorable OS of patients with BLCA,
LUAD, and SKCM, while it represented an unfavorable OS of
patients with ESCA, KICH, KIPAN, and UCEC (Figure 4(a)).
In addition, high-OGT expression indicated longer DSS
(LUAD and SKCM) and PFI (SKCM) in some cancers, while it
suggested poor DSS (KICH, KIPAN, PCPG, and UCEC), PFI
(COADREAD and PRAD), and DFI (COAD, COADREAD,
KIRP, and PRAD) for multiple cancers (Figure 4(a)). )e
prognosis significance of OGT expression in pan-cancer was
also supported by the Kaplan–Meier curves (Figure 4(b)).

In addition to prognosis significance, another clinical
value—the prediction effect of OGT in pan-cancer—was ex-
plored. In 20 of the 32 cancers, the AUC values of OGT ex-
pression in differentiating cancer samples from noncancer
samples were >0.7 (Figure 5(a) and Figure S5). AUC values for
eight cancers (e.g., ACC) were up to at least 0.9 (Figure 5(a)),
suggesting conspicuous effects of OGT expression in dis-
tinguishing cancers from noncancers. A pooled AUC (� 0.89)
of the 32 cancers also supported the conclusions (Figure 5(b)).

3.3. Relevance of OGT Expression with IME. IME, including
stromal cells and immune cells, plays an important role in
tumor progression. )erefore, the association of OGT ex-
pression with IME was investigated. )rough the TIMER
algorithm, OGT expression was observed to have the most
significant relevance with CD8 T cells in KICH, THCA, and
PCPG (Spearman’s correlation coefficient ≥0.34, p< 0.05).
OGTexpression was also associated with infiltration levels of
B cells and neutrophils in some/all of the three cancers
(Figure 5(c)).

Based on the ESTIMATE algorithm, negative associa-
tions of OGT expression with the stromal score, immune
score, and/or estimated score were detected in most of the
cancers. )e most significant negative correlations between
OGT expression and both the stromal score and the esti-
mated score were observed in GBMLGG, LGG, and BLCA.
)emost obvious negative relation between OGTexpression
and the immune score was detected in GBM, GBMLGG, and
SARC (Figure 6(a)).

3.4. Relationship between OGT Expression and Immuno-
therapy Indexes. )e relevance of OGT expression with im-
munotherapy indexes was studied to determine whether OGT
can be considered a potential immune treatment marker.
Slight-to-moderate correlations of OGTexpression with TMB,
MSI, and HRD were detected in numerous cancers. A positive
correlation betweenOGTexpression and TMBwas observed in
KICH and that for MSI and HRD were ACC and COAD,
respectively (Figures 6(b)–6(d)). A negative relationship of
OGTexpression with TMBwas detected in COAD and that for
MSI and HRD were COAD and TGCT (Figures 6(b)–6(d)).

3.5. Research on OGT in SCLC. )e clinical progression of
SCLC remains pessimistic. Efforts focusing on exploiting
novel biomarkers are needed, for which we performed
further research on the understanding of the clinical sig-
nificance and mechanism of OGT in SCLC.

3.6.mRNAandProteinLevels ofOGTinSCLC. Among the 15
SCLC-related datasets, OGT expression was observed as
upregulated (compared to nonSCLC) in six datasets, while
its down-regulation was observed in one dataset (GPL570;
Figure 7(a)). )e other eight datasets did not indicate that
the expression of OGTwas statistically different between the
SCLC group and the nonSCLC group (e.g., GPL11154)
(Figure S6). Taken together, overexpressed OGTrather than
underexpressed was observed in SCLC, which was supported
by the random-effects model (SMD� 0.93, 95% CI [0.24,
1.63]; Figure 7(b)). No significant publication bias of SMD
was detected through Begg’s test (p> 0.1, Figure 7(c)).

To confirm OGTexpression in SCLC, we investigated an
in-house immunohistochemical experiment. As a result,
compared to nonSCLC tissues, increased OGTprotein levels
were found in SCLC tissues (Figure 7(d)), consistent with its
mRNA expression. Under the microscope, positive OGT
protein levels were observed in the SCLC tissues rather than
in their control tissues (Figures 8(a)–8(l)).

3.7. Clinical Correlation of OGT Expression in SCLC. No
significant differences in OGT expression between various
ages and TNM stages were detected (Figure S7). Upregulated
OGT expression tended to be associated with poor OS
(p � 0.086) and DFI (p< 0.001; Figure 8(m)). OGT ex-
pression enabled the conspicuous differentiation of SCLC
samples and nonSCLC samples (sensitivity = 0.79, specific-
ity = 0.86, and AUC= 0.88; Figure 8(n)), similar to the results
of the pan-cancer analysis.

3.8. Potential Mechanism of High-OGT Expression in SCLC.
Via the calculation, 3742 Up-DEGs, 403 OGT-RGs, and 96
predicted TFs were identified. Two TFs (DEK and XRN2)
selected from the intersection of these genes (Figure 9(a))
were considered potential TFs regulating OGT expression.
)is conclusion was also supported by the ChIP-Seq peaks of
DEK and the XRN2 upstream of OGT’s transcription start
site (Figure 9(b)–9(c)).

3.9. Enrichment Analyses and IME of OGT in Cancer.
Eighty-nine OGT-related Up-DEGs were screened for en-
richment analyses. In GO terms, these genes were involved
in mitotic and transcription regulators (cell components),
participated in mRNA splicing and nucleic acid transport
(biological processes), and linked with ubiquitin protein-
ligase binding and RNA methyltransferase activity (mo-
lecular functions; Figure 10(a)). In addition, OGT-related
Up-DEGs clustered in 20 Reactome signaling pathways,
such as “Resolution of Sister Chromatid Cohesion” and
“Mitotic Prometaphase” (Figure 10(b)).

No statistical difference was detected for OGTexpression
and IME; however, a trend was observed in SCLC that OGT
expression was negatively related to the stromal score and
immune score (Figure S8(a)). High-OGT expression tended
to negatively relate to infiltration levels of CD8 T cells and
M0 macrophages and was positively associated with resting
CD4 memory T cells (Figure S8(b)).
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4. Discussion

In our study, we investigated the expression, clinical
relevance, and underlying mechanisms of OGT in pan-
cancer, including SCLC. For the first time in the field, we
have provided an overview of OGT in 32 cancers using a
large number of samples (n = 21,196), determining dis-
tinct OGT expression in 25 cancers and its prognosis
effects in 12 cancers. Furthermore, by analyzing 950
samples from multiple sources, we observed upregulated
OGT in both mRNA and protein levels in SCLC. Higher
OGT levels represented a more unfavorable prognosis for
SCLC patients. )e research also identified OGT ex-
pression as a potential marker for SCLC prediction. )e
high expression of OGT in SCLC may result from the
positive regulation of two TFs—DEK and XRN2. We also
primarily investigated the underlying mechanisms of

OGT in SCLC. Based on analyses from pan-cancer to
SCLC, OGT demonstrated conspicuous clinical
significance.

Aberrant OGT expression was identified and demon-
strated significant associations in multiple cancers. Zhou
et al. [45] identified the downregulation of OGT and its low
expression status, affecting cisplatin resistance in ovarian
cancer. Jin et al. [17] determined the upregulation of OGT
and its oncogenic role in bladder cancer. Wu et al. [46]
initially demonstrated abnormal OGT expression in various
cancers by exploring 8,948 samples, but they did not in-
vestigate the clinical significance of OGT in cancers. Fur-
thermore, our study not only distinguished OGTexpression
in numerous (25/32) cancers by using large samples
(n� 21,196) but also revealed its significant association with
the prognosis of patients in 12 cancers—BLCA, COAD,
COADREAD, ESCA, LUAD, KICH, KIRP, KIPAN, PCPG,
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Figure 4: )e prognosis significance of OGT expression in pan-cancer.
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PRAD, SKCM, and UCEC. To the best of our knowledge,
except for BLCA [47], ESCA [48], LUAD [49], and PRAD
[45], the prognosis effects of OGT in the remaining eight
cancers are newly reported. OGTwas previously determined
as an underlying marker for BLCA prediction [50], as
positive OGTexpression was detected in half of the patients’
urine. In our study, conspicuous effects of OGT expression
in distinguishing cancers from noncancers were found in
eight cancers (ACC, CHOL, LAML, OV, PAAD, SKCM,
THCA, and UCS), indicating its potential in cancer

prediction. )us, distinct OGT expression may serve as an
essential marker in the clinical management (e.g., targeted
therapy) of some cancers.

)e mechanisms of OGT in various cancers may be
varied and complex. O-GlcNAcylation has been reported to
play important roles in immune cell activation, thus par-
ticipating in immune responses [51]. Our research revealed
the positive relevance of OGT expression with the filtration
levels of some immune cells (particularly the CD8 T cell, a
well-known anticancer cell [52]) in some cancers (e.g.,
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Figure 5: Distinguish effects of OGT expression for cancers and its relevance with immune cells infiltration. (a) Receiver operating
characteristic curves. (b) Summary receiver operating characteristic curves. SENS, sensitivity; SPEC, specificity; AUC, area under the curve.
(c) Associations of OGT expression and immune cells infiltration levels based on the TIMER algorithm.
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THCA), and we also found a negative association between
OGT expression and immune-related scores in several
cancers (e.g., GBMLGG). To some extent, these findings
indicate a correlation between OGTexpression and immune
responses; however, the mechanisms shown in various
cancers were diverse and require further study. In addition,
the study also showed correlations of OGT expression with
TMB, MSI, and HRD (all were biomarkers in immuno-
therapy [40–42]), initially implying its potential in immu-
notherapy, which was verified by further research.

Diverse (increased) expression levels of OGT showed
clinical associations in SCLC, similar to the results for pan-
cancer. Although OGT expression was considered an in-
dependent risk factor for the prognostic of LUAD (one of the
NSCLCs) [49], as far as we know, little is understood about
OGT’s roles in SCLC. In our study, upregulated OGTmRNA
and protein levels were primarily determined using

multicenter data and in-house samples, respectively. )e
high expression of OGT was correlated to unfavorable DFI
of SCLC, suggesting its risk role in the prognosis of patients
with the disease. Similar to a series of cancers (e.g., ACC),
OGT made it feasible to distinguish SCLC from nonSCLC,
implying its prediction effects for SCLC. )erefore, OGT
demonstrated underlying clinical value in SCLC, and it may
be a marker for the future treatment of SCLC.

OGT may also play a role in SCLC through its typical
functions. )e OGT protein catalyzes a single O-GlcNA-
cylation (GlcNAc) molecule from uridine diphosphate
N-acetylglucosamine to proteins, thus upregulating
O-GlcNAcylation levels. Increasing OGT-meditated
O-GlcNAcylation levels could affect the occurrence and
progression of cancers [9, 10], including lung cancer. For
example, Ge et al. [18] demonstrated O-GlcNacylation’s
effects in enhancingmobility and invasion by stimulating IL-
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Figure 6: Relationship of OGTexpression with the immune environment (a) and immunotherapy indexes (b)–(d). TMB, tumor mutational
burden; MSI, microsatellite instability; MMR, mismatch repair; HRD, homologous recombination deficient.
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Figure 7: )e expression of OGT in small cell lung carcinoma (SCLC). (a) Violin plots of OGT expression in SCLC. (b) A forest plot
evaluating standard mean difference (SMD) of OGTexpression between SCLC and nonSCLC groups. (c) A funnel plot with Begg’s test for
publication bias test. (d) A violin plot of OGT protein levels between SCLC and nonSCLC groups.

10 Journal of Oncology



6/STAT3 signaling in NSCLC. In our study, for the first time,
we revealed that TFs DEK and XRN2 may regulate OGT
expression in SCLC in the following ways: (1) both TFs were
Up-DEGs in SCLC, similar to OGT; (2) conspicuous and
positive expression relationships of DEK and XRN2 with
OGT were detected in SCLC; and (3) ChIP-Seq binding

peaks of the two TFs were observed in the potential pro-
moter region of OGT. Previously, O-GlcNAcylation was
considered to participate in multiple cellular processes, such
as transcription, signal transduction, and chromatin
remodeling [53]. As shown by our research, based on OGT-
related Up-DEGs, OGT may preserve its roles in SCLC by
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Figure 8: OGTprotein levels and the clinical significance of OGTexpression in small cell lung carcinoma (SCLC). (a)–(l) )e protein levels
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summary receiver operating characteristic curve for identifying small cell lung carcinoma based on OGT expression. SENS, sensitivity;
SPEC, specificity; AUC, area under the curve.
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involving mitotic and transcription regulators (cell com-
ponents), participating in mRNA splicing and nucleic acid
transport (biological processes), and linking with ubiquitin
protein ligase binding and RNA methyltransferase activity
(molecular functions), which contributes to signaling
pathways, such as “Resolution of Sister Chromatid Cohe-
sion” and “Mitotic Prometaphase.” Such results suggest that
OGT may affect the development of SCLC via its classical
functions, which requires further verification.

)ere were several limitations of the research. Initially,
we failed to collect enough samples to verify the mRNA
and protein levels of OGT in cancers of the pan-cancer
analysis and the relevance of OGT with the prognosis.
Adequate body fluid samples were required to verify
OGT’s ability to distinguish cancerous from noncancer-
ous samples. Future in vivo and in vitro investigations are
needed to exploit the molecular mechanism of OGT ex-
pression in SCLC.
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Figure 10: Gene Ontology terms and signaling pathways of OGT-related upregulated expression genes. CC: cellular component; BP:
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5. Conclusions

Collectively, we determined the different OGT expressions
and their significant clinical values in various cancers. OGT
may be an underlying biomarker for the treatment and
identification of some cancers, including SCLC.
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