
Research Article
ANovel Cuproptosis-Related PrognosticModel and theHubGene
FDX1 Predict the Prognosis and Correlate with Immune
Infiltration in Clear Cell Renal Cell Carcinoma

Kenan Zhang ,1,2 Wuping Yang ,1,2 Zedan Zhang ,1,2 Kaifang Ma ,1,2 Lei Li ,1,2

Yawei Xu ,1,2 Jianhui Qiu ,1,2 Chaojian Yu ,1,2 Jingcheng Zhou ,1,2 Lin Cai ,1,2

Yanqing Gong ,1,2 and Kan Gong 1,2

1Department of Urology, Peking University First Hospital, Beijing 100034, China
2Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China

Correspondence should be addressed to Yanqing Gong; yqgong@bjmu.edu.cn and Kan Gong; gongkan_pku@126.com

Received 20 August 2022; Revised 25 November 2022; Accepted 30 November 2022; Published 10 December 2022

Academic Editor: Haigang Wu

Copyright © 2022 Kenan Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clear cell renal cell carcinoma (ccRCC) is a common malignancy of the urological system with poor prognosis. Cuproptosis is
a recently discovered novel manner of cell death, and the hub gene FDX1 could promote cuproptosis. However, the potential roles
of cuproptosis-related genes (CRGs) and FDX1 for predicting prognosis, the immune microenvironment, and therapeutic
response have been poorly studied in ccRCC. In the present study, Te Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) data were downloaded. CRGs were subjected to prognosis analysis, and three of them were used to construct the
prognostic model by least absolute shrinkage and selection operator (LASSO) regression. Te CRGs prognostic model showed
excellent performance. Moreover, based on the risk score of the model, the nomogram was developed to predict 1-year, 3-year,
and 5-year survival. Furthermore, the hub gene of cuproptosis, FDX1, was an independent prognostic biomarker in multivariate
Cox regression analysis. Te pan-cancer analysis showed that FDX1 was signifcantly downregulated and closely related to
prognosis in ccRCC among 33 cancer types. Lower FDX1 was also correlated with worse clinicopathologic features. Te lower
expression of FDX1 in ccRCC was verifed in the external database and our own database, which may be caused by DNA
methylation. We further demonstrated that the tumor mutational burden (TMB) and immune cell infltration were related to the
expression of FDX1. Immune response and drug sensitivity analysis revealed that immunotherapy or elesclomol may have
a favorable treatment efect in the high FDX1 expression group and sunitinib or axitinib may work better in the low FDX1
expression group. In conclusion, we constructed a CRGs prognostic model and revealed that FDX1 could serve as a prognostic
biomarker and predict therapeutic response in ccRCC. Te study will provide a novel, precise, and individual treatment strategy
for ccRCC patients.

1. Introduction

Renal cell carcinoma (RCC) ranks third among all genito-
urinary neoplasms, and most of them are clear cell renal cell
carcinoma (ccRCC) [1, 2]. Partial or radical nephrectomy
were the primary treatment of localized ccRCC [3]. About
30% of ccRCC patients were found in advanced stages or
presented with metastases at initial diagnosis [4, 5]. In
ccRCC, 70%∼90% of patients had VHL mutations, which

were considered the frst step in tumorigenesis [6]. Loss of
VHL function could induce the abnormal accumulation of
HIF-α and activation of downstream target genes, pro-
moting the development of ccRCC [7, 8]. Nowadays, though
the vast amount of data allows to enhance the reliability and
accuracy of the prediction model, there were still no efective
diagnostic model or markers in ccRCC [9, 10]. Moreover,
while the feld of molecular therapy has seen great advances,
including antivascular endothelial growth factor drugs and
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immune inhibitors, challenges still remain for further im-
proving prognosis because of drug resistance and adverse
reactions [11, 12]. Tere were some emerging therapeutic
strategies, such as nanomedicine, that could overcome the
heterogeneity of drug response and resistance of tumors
[13]. Overall, the identifcation of new biomarkers is im-
portant not only for predicting prognosis but also for in-
dividual therapy.

Cuproptosis is a novel manner of cell death that was
recently discovered and may provide a new target for cancer
treatment [14]. As we all know, there were a great number of
predetermined and precisely controlled programmed cell
deaths throughout the development of multicellular organ-
isms, such as apoptosis, necroptosis, pyroptosis, and fer-
roptosis [15–17]. In recent decades, we have also learned that
various metals could cause cell death through other pathways
than apoptosis. Zinc could trigger cell death by inhibiting
adenosine triphosphate (ATP) synthesis [18]. Iron could
trigger ferroptosis by catalyzing the formation of toxic
membrane lipid peroxides [19]. Silver-based metal ions also
had cytotoxic potential in various cancer cell lines through the
induction of mitochondrial damage, oxidative stress, and
autophagy [20]. As for copper, the study revealed that excess
copper could perturb a set of lipoylated metabolic enzymes of
the tricarboxylic acid (TCA) cycle and cause the loss of iron-
sulfur cluster proteins, leading to proteotoxic stress and ul-
timately cell death. Furthermore, the study showed a strong
link between copper toxicity and mitochondrial activity. In
ccRCC, HIF-1α could promote the shift of cellular meta-
bolism away from the TCA cycle to glycolysis and down-
regulate mitochondrial respiration by regulating downstream
genes such as pyruvate dehydrogenase and miR-210 [21, 22].
Terefore, we speculated that there was a tight correlation
between cuproptosis-related genes and ccRCC.

In the previous study, 10 genes were found to be closely
related to cuproptosis. Among them, 7 genes (FDX1, LIAS,
LIPT1, DLD, DLAT, PDHA1, and PDHB) could promote
cuproptosis, and 3 genes (MTF1, GLS, and CDKN2A) could
inhibit cuproptosis. FDX1, a reductase that reduces Cu2+ to its
more toxic form, Cu1+, was identifed as a hub gene that
regulated protein lipoylation to promote cuproptosis. Pre-
vious studies demonstrated that the FDX1 protein was not
detected in the lysates of most tissues, but it was highly
expressed in the adrenal gland, kidney, and testes [23]. Tis
result may indicate the unique role of FDX1 in kidney tissues
and the development of ccRCC. Te deletion of FDX1 could
cause resistance to cell death induced by one of the copper
ionophores, elesclomol. In recent studies, elesclomol showed
a hopeful result for the treatment of epithelial cancer, which
indicated FDX1may serve as a biomarker candidate [24–26].
However, its role has been rarely studied, especially in ccRCC.

In this study, we downloaded and analyzed the TCGA
database to construct a cuproptosis-related prognostic
model in ccRCC. Moreover, we identifed the hub gene
FDX1 as being downregulated, especially in KIRC, and
related to DNA methylation. We also detected the associ-
ation between FDX1 and the immune microenvironment,
and drug susceptibility to immunotherapy or target drugs.
Tis study may provide an alternative model and reveal the

important role of FDX1 in predicting prognosis and ther-
apeutic efects in ccRCC.

2. Materials and Methods

2.1. TCGA-KIRC Database and GEO Dataset Collection.
TeRNA-seq data, genetic mutation data, DNAmethylation
data, and corresponding clinical information about ccRCC
tissues (n� 530) and adjacent normal tissues (n� 72) were
downloaded from the TCGA-KIRC database (https://
cancergenome.nih.gov/, Data Release 31, accessed on
March 20, 2022). Te GSE53757, GSE66271, and GSE61441
data were acquired in the Gene Expression Omnibus (GEO)
databases (https://www.ncbi.nlm.nih.gov/geo, accessed on
March 20, 2022) [27–29]. Te single-cell databases about
GSE73121 were downloaded from the CancerSEA database
and analyzed (https://biocc.hrbmu.edu.cn/CancerSEA/,
accessed on May 1, 2022) [30]. Te single-cell data about
GSE159115 was reanalyzed from the supplementary data of
Zhang’s study [31]. Te fow sheets in this study have been
shown in Figure 1.

2.2. Patients and Clinical Samples Collection. A total of 38
ccRCC patients enrolled in this study signed informed
consent, and this research was authorized by the Ethics
Committee of Peking University First Hospital (Beijing,
China). All of them underwent a partial or radical ne-
phrectomy. Fresh tumor tissues and pair-matched adjacent
normal tissues were obtained from those patients. All tissue
samples were immediately stored in liquid nitrogen with
RNAlater solution (Termo, AM7020, USA).

2.3.DiferentiallyExpressedGenesandFunctionalEnrichment
Analysis. Te diferentially expressed genes were analyzed
using the “limma” R package. “Adjusted P< 0.05 and |Log2
(fold change)|≥ 1” were defned as the threshold for the
diferential expression of mRNAs. Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment were analyzed using the “ClusterProfler” R
package (version: 3.18.0) [32].

2.4. Construction and Validation of the CRGs Prognostic
Model. Te patients in KIRC were randomly split into the
training (n� 352) and validation (n� 178) cohorts at 2 :1
ratio, and the clinical information is summarized in Table 1.
Te 10 CRGs were subjected to univariate Cox regression
analysis to fnd the genes, which could infuence overall
survival (OS) and progression-free survival (PFS). Ten,
there were three CRGs that were both signifcantly difer-
entially expressed and associated with prognosis. Tese
genes were used to construct CRGs prognostic model using
least absolute shrinkage and selector operation (LASSO)
analysis in the training cohort. Te risk score was calculated
as follows: Risk Score� β1x1 + β2x2 + β3x3+. . .+βnxn. Te
patients were divided into two diferent groups according to
the median risk score. Te prognostic model was assessed
using Kaplan–Meier (KM) and time-dependent receiver
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operating characteristic (ROC) analysis by employing the R
packages “survival” and “timeROC.” A validation cohort was
used to identify the performance of this model.

2.5. Establishment and Evaluation of the Nomograms. We
used univariate and multivariate Cox regression analyses to
determine whether risk scores and other clinicopatho-
logical factors (age, gender, pathological T stage (pT),
pathological M stage (pM), tumor stage, and histopatho-
logical grade) could be independent predictors of survival
in ccRCC patients. Afterwards, we developed a nomogram
that can assess the survival probability at 1, 3, and 5 years
using all independent clinical prognostic factors. Cali-
bration curves were drawn for 1, 3, and 5 years to compare
the observed prediction probability with the actual OS
probability.

2.6. Pan-Cancer Analysis. Te expression of FDX1 among
diferent cancer types was detected in the GEPIA2 database
(https://gepia2.cancer-pku.cn/, accessed on March 28, 2022)
[33]. Univariate Cox regression analyses about OS and PFS
of FDX1 across all tumors were performed using the TCGA

database. Te protein level and the subcellular location of
FDX1 were investigated in the Human Protein Atlas (HPA)
database (https://www.proteinatlas.org/, accessed on April
16, 2022) [34, 35].

2.7. Mutation Gene and Copy Number Variation (CNV)
Analysis. Te data of mutations were visualized using the
“maftools” R package [36]. Using the mutations per million
bases of each sample, we calculated the tumor mutational
burden (TMB) value. Te KIRC CNV data of 10 CRGs was
acquired and visualized from the cBioPortal database
(https://www.cbioportal.org/, accessed on May 20, 2022)
[37, 38].

2.8. Immune Cell Infltration and Immune Checkpoint
Analysis. To assess the reliability results of the immune
score evaluation, we used the “immundeconv” R package
and the EPIC algorithm for further analysis [39]. Te al-
gorithms had been benchmarked and had a unique ad-
vantage [40]. Te expression values of SIGLEC15, TIGIT,
CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2

KIRC data from TCGA
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Figure 1: Te fow sheet of this study.
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were determined as immune checkpoint relevant
transcripts.

2.9. Immune Response and Drug Susceptibility Analysis.
Tumor immune dysfunction and exclusion (TIDE) analysis
is a computational method that integrates two mechanisms
of tumor immune evasion to predict the immune check-
point blockade (ICB) response in cancer treatment [41].
Te TIDE score was calculated using TIDE online (https://
tide.dfci.harvard.edu/, accessed on April 4, 2022). Pre-
dicted chemotherapeutic response for each sample based
on the Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org/, accessed on April 5, 2022)
[42]. Te prediction process was implemented by the R
package “pRRophetic.” Te samples’ half-maximal in-
hibitory concentration (IC50) was estimated by ridge re-
gression. All parameters were set to their default values.
Using the batch efect of combat and tissue type of all
tissues, the duplicate gene expression was summarized as
a mean value.

2.10. Cell Culture. Te 293 T human embryonic kidney cells
and Caki-1, 786-O, and 769-P renal cancer cells were ob-
tained from the National Infrastructure of Cell Line Re-
source (Shanghai, China). Te 293T cells were cultured in
DMEM medium (Procell, PM150210, China). Te Caki-1
cells were cultured in McCoy’s 5A medium (Procell,

PM150710, China). Te 786-O and 769-P cells were cultured
in RPMI 1640 medium (Procell, PM150110, China). All
media contained 10% fetal bovine serum (Termo,
10270106, USA) and penicillin-streptomycin (100 μg/ml)
(Gibco, 15140122, USA). All the cell cultures were main-
tained as a monolayer culture at 37°C in a humidifed at-
mosphere containing 5% CO2.

2.11. RNA Extraction and RT-PCR. Te total RNA of cell
lines and tissues was extracted using TRIzol reagent (Sigma-
Aldrich, T9424, USA) and quantifed using Nanodrop 2000
(Termo Fisher Scientifc, Waltham, MA, USA). Te cDNA
was acquired using the TransScript First-Strand cDNA
Reagent kit (TransGen, AT301, China). Te ABI PRISM
7000 Fluorescent Quantitative PCR System (Termo Fisher
Scientifc, USA) was used according to instruction. Te
reaction was performed by the following process: 95°C for
2min, followed by 40 cycles at 95°C for 15 s and 60°C for
1min.Te primers used in this study were as follows: FDX1-
F, TTCAACCTGTCACCTCATCTTTG, FDX1-R, TGC
CAGATCGAGCATGTCATT; β-actin-F, CTGGAGAAG
AGCTACGAGCTGC, β-actin-R, and CTAGAAGCATTT
GCGGTGGACG. All the Ct values were controlled to be
lower than 40 and β-actin was used as an internal reference.
Te relative expression level was calculated with the 2−ΔΔCT

method.

2.12. Western Blotting Analysis. Ice-cold radio-
immunoprecipitation assay bufer (Sigma-Aldrich, R0278,
USA) was used to lyse cells and total proteins were extracted.
We quantifed protein using BCA kit (Termo, 23227, USA)
according to the instruction. Te same amount of protein was
loaded for each sample and was transferred to PVDF mem-
branes. Primary antibodies were incubated at 4°C overnight
(β-actin, #4970, Cell Signaling Technology; Anti-FDX1,
ab108257, Abcam). Te secondary antibody (Anti-rabbit IgG,
#7074, Cell Signaling Technology) was added and incubated at
room temperature for 1h. Signals were detected by chem-
iluminescence (ECL Western Blotting Detection Reagents, GE
Healthcare) and visualized using G: BOX Chemi Gel Docu-
mentation System (Syngene, Frederick, MD, USA).

2.13. Statistical Analysis. Results were reported as mean± SD
for triplicate experiments unless otherwise indicated. Te
statistical diferences of two groups were compared through the
Wilcox test, and the signifcance diference of three groups was
tested with the Kruskal–Wallis test. All analytical methods
above andR packages were performed using R software version
v4.0.3 (https://www.r-project.org) or GraphPad Prism v8.0.1. A
value of p< 0.05 was considered as statistically signifcant,
unless stated otherwise.

3. Results

3.1. Te Potential Prognosis Role of 10 CRGs. First, we in-
vestigated the expression level of 10 CRGs in ccRCC. Te
results showed that only CDKN2A was upregulated and the

Table 1: Clinical features of the ccRCC patients.

Clinical
feature

Training
cohort

Validation
cohort

Whole
cohort

Overall 352 178 530
Age
>60 176 (50.0%) 90 (50.6%) 266 (50.2%)
≤60 176 (50.0%) 88 (49.4%) 264 (49.8%)

Gender
Male 227 (64.5) 117 (65.7%) 344 (64.9%)
Female 125 (35.5) 61 (34.3%) 186 (35.1%)

pT
T1/T2 231 (65.6) 109 (61.2%) 340 (64.1%)
T3/T4 121 (34.4) 69 (38.8%) 190 (35.9%)
Missing

pN
N0 165 (46.9%) 74 (41.6%) 239 (45.1%)
N1 12 (3.4%) 4 (2.2%) 16 (3.0%)
Missing 175 (49.7%) 100 (56.2%) 275 (51.9%)

pM
M0 292 (83.0%) 148 (83.1%) 440 (83.0%)
M1 53 (15.0%) 27 (15.2%) 80 (15.1%)
Missing 7 (2.0%) 3 (1.7%) 10 (1.9%)

Pathologic stage
I/II 218 (61.9%) 104 (58.4%) 322 (60.8%)
III/IV 132 (37.5%) 73 (41%) 205 (38.7%)
Missing 2 (0.6%) 1 (0.6%) 3 (0.6%)

Histologic grade
G1/G2 157 (44.6%) 84 (47.2%) 241 (45.5%)
G3/G4 189 (53.7%) 92 (51.7%) 281 (53.1%)
Missing 6 (98.3%) 2 (1.1%) 8 (1.4%)
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other 9 CRGs were downregulated in tumor tissues
(Figure 2(a)). Furthermore, there were 4 signifcantly dif-
ferentially expressed CRGs when comparing tumor tissues
with adjacent normal tissues (Figure 2(b)). Univariate OS
and PFS analysis showed that there were 7 CRGs that were
signifcantly related to OS, and all 10 CRGs were signif-
cantly correlated with PFS (Figures 2(c)–2(d)). FDX1,
PDHB, and CDKN2A were determined by taking the in-
tersection of the signifcantly low DEGs and prognostic
CRGs (Figure 2(e)). KM analysis showed that lower ex-
pression of FDX1 and PDHB groups had a poorer OS and

PFS. Higher CDKN2A expression group had poorer OS and
PFS (Figures 3(a) and 3(b)). Interestingly, the low expression
of the other 4 CRGs and 7 CRGs all showed worse OS and
PFS (Supplementary Figures S1 and S2).

3.2. Construction and Validation of CRGs Prognostic Model.
TeLASSOCox regression algorithmwas used to construct the
prognosis model in the training cohort for predicting clinical
outcomes of ccRCC with CRGs. FDX1, PDHB, and CDKN2A
were included to construct the risk model. Te risk score was
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Figure 2:Te expression and prognostic value of 10 CRGs in the TCGA database. (a)Te box diagram showed the expression of 10 CRGs in
KIRC. Te statistical diferences between normal and tumor tissues were compared through the Wilcoxon test. ∗p< 0.05, ∗∗p< 0.01, and
∗∗∗p< 0.001. (b) Heatmap of the expression of 10 CRGs between tumor tissues and adjacent normal tissues. Red, the level of high ex-
pression. Blue, the level of low expression.Treshold value of diferentially expressed gene id adjusted P< 0.05 and |Log2 (fold change)|> 1.
∗p< 0.05. (c) Te forest plot of CRGs associated with overall survival. (d) Te forest plot of CRGs associated with progression-free survival.
(e) Venn diagram showed the intersection of signifcantly low DEGs and the genes that associated with survival. DEGs, diferentially
expressed genes. CRGs, cuproptosis-related genes.
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obtained throughout the calculation formula as follows:
(−0.6044)× expression level of FDX1+ (−0.1197)× expression
level of PDHB+ (0.2386)× expression level of CDKN2A. In the
training cohort, based on the median cut-of value (−2.959),
patients were divided into high-risk and low-risk groups
(Figure 4(a)). Te high-risk group had signifcantly worse OS
based on KM analysis (Figure 4(b)). For the 1-year, 3-year, and
5-year overall survival rates, the predicted areas under the
curve (AUC) were 0.675, 0.659, and 0.668, respectively
(Figure 4(c)). To further validate this prognostic model, the risk
score was determined in the validation cohort, and the patients
were categorized into two risk groups based on the cut-of
value (Figure 4(d)). Also, the high-risk group had a signifcant
worse OS (Figure 4(e)). Te predicted AUCs of the ROC curve
for 1-year, 3-year, and 5-year overall survival rates were 0.709,
0.582, and 0.614 (Figure 4(f)).

3.3. Construction and Evaluation of Nomogram. Te age,
pathologic T, pathologic M, pathologic stage, histopatho-
logical grade, and risk score could signifcantly afect the OS

according to the univariate Cox analysis (Figure 5(a)). Te
multivariate Cox analysis showed that age, pathologic M,
and risk score were independent risk factors for ccRCC
patients in the training cohort (Figure 5(b)). Furthermore,
an easy-to-use and clinically adaptable nomogram was
constructed. Te patients with higher total points were as-
sociated with worse 1-year, 3-year, and 5-year OS
(Figure 5(c)).Te calibration curve indicated the accuracy of
the nomogram (Figure 5(d)).

3.4. Lower FDX1 Expression ShowedWorse Clinicopathologic
Features. To further explore the infuence of the three CRGs
on ccRCC, univariate and multivariate Cox regression an-
alyses were performed, and the results showed that only
FDX1 was an independent protective factor in ccRCC (HR
0.525, 95% CI 0.338–0.816, p � 0.004, Table 2). Due to the
critical role of FDX1 in cuproptosis, we focused on the FDX1
gene. Te expression level of FDX1 in diferent cancers was
explored using the GEPIA2 database. Among the 33 cancer
types in TCGA, the expression level of FDX1 was signifcant
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lower only in KIRC when comparing tumor tissues to ad-
jacent normal tissues (Figure 6(a) and 6(b)). Univariate Cox
regression analysis found that high expression of FDX1 had
worse OS in HNSC and LGG and better OS in KIRC
(Figure 6(c), Supplementary Figure S3A). Additionally,
univariate Cox regression analysis also displayed that high
expression of FDX1 was associated with worse PFS in HNSC
and LGG and better PFS in KIRC and THCA (Figure 6(d),
Supplementary Figure S3B). The association between
the expression of FDX1 and clinicopathologic
features in ccRCC was analyzed. The results
showed that lower expression of FDX1 was as-
sociated with males, a higher pathologic N stage,
a higher pathologic T stage, a higher pathologic M
stage, a higher pathologic stage, and a higher
histologic grade (Figure 6(e), Supplementary
Figures 3C and 3D).

3.5. Identifcation of the FDX1 Expression in the External
Dataset and Our Database. Te expression level of FDX1
was further identifed by the GEO database in the
GSE53757 and GSE66271 databases, which contained 72
and 13 paired tumor tissues and adjacent normal tissues,
respectively. FDX1 was signifcantly downregulated in
tumor tissues (Figures 7(a) and 7(b)). We also explored the
expression of FDX1 at the single-cell RNA-seq level in the
GSE73121 database, which comprised 43 PDX primary
ccRCC cells and 36 PDX metastatic ccRCC cells. FDX1 was
lower expressed in metastatic ccRCC cells (Figure 7(c)).
Also, we found that the single-cell RNA-seq results in the
GSE159115 database demonstrated that the expression of
FDX1 was lower in ccRCC tumor epithelial cells than
proximal tubule cells, and the bulk-RNA seq in this study
also identifed this result (Figure 7(d)). Te expression of
the FDX1 protein was downregulated in tumor tissues
when compared with normal tissues in the Human Protein
Atlas (HPA) database (Figure 7(e)). And FDX1 was mainly
expressed in mitochondria, according to immunofuores-
cence results in U2OS and A431 cells from the HPA da-
tabase (Figure 7(f )). To further identify the lower
expression of FDX1 in tumor tissues in our database, we
performed RT-PCR in cell lines and 38 paired ccRCC
tissues. Te results showed FDX1 was downregulated in

Caki-1, 786-O, and 769-P cancer cell lines and 38 paired
ccRCC tissues when compared with normal cells or tissues
(Figures 7(g) and 7(h)). We also verifed this result at the
protein level, where the expression of FDX1 was down-
regulated in Caki-1, 786-O, and 769-P cancer cell lines and
6 paired ccRCC tissues using Western blotting analysis
(Figure 7(i)).

3.6. Te Expression of FDX1 Was Correlated with DNA
Methylation Level. To further explore the underlying
mechanism of the lower expression level of FDX1, we frst
investigated themutation status of 10 CRGs in TCGA-KIRC.
Te results showed that only 2 (0.4%) of the ccRCC patients
harbored copy number alterations (Supplement
Figure S4A). We speculated that the low expression level of
FDX1 may relate to DNA methylation. Ten, we compared
the methylation levels of 11 CpG sites in FDX1 between 323
ccRCC tissues and 160 adjacent normal tissues (Figure 8(a)).
Te detailed information of 11 CpG sites is shown in Table 3.
Te results also indicated that 6 CpG sites were hyper-
methylated and 5 CpG sites were hypomethylated in ccRCC
tissues when compared with adjacent normal tissues
(Figure 8(b) and Supplementary Figure S4B). Te correla-
tion between FDX1 expression and the methylation level of 6
CpG sites was analyzed. Linear correlation analysis results
showed that only the methylation levels of the cg26061355
site were signifcantly negatively correlated with FDX1 ex-
pression (Figures 8(c)–8(e) and Supplementary
Figure S4C–G).

In order to better investigate the mechanism of FDX1
during ccRCC tumorigenesis, we compared the 75% high
FDX1 expression group with the 25% low FDX1 expression
group to fnd diferentially expressed genes. Te results
showed that there were 251 genes upregulated in the high
expression group and 164 genes downregulated in the high
expression group (Supplementary Figure S5A and
Figure S5B). GO and KEGG functional analyses were per-
formed to explore the afected pathway that FDX1 regulated.
Te results showed that fatty acid metabolism, glycolysis/
gluconeogenesis, pyruvate metabolism, oxidative phos-
phorylation, and citrate cycle (TCA cycle) pathways were
upregulated (Figure 8(f )), and cytokine-cytokine receptor
interaction, NF-kappa B signaling, TNF signaling, IL-17

Table 2: Univariate and multivariate Cox regression analyses of clinicopathologic features and the expression of FDX1, PDHB, and
CDKN2A for OS.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Age (>60 vs. ≤60) 2.079 (1.434, 3.015) <0.001 2.150 (1.473, 3.137) <0.00 
Gender (male vs. female) 0.972 (0.671, 1.410) 0.882
pT (T3/T4 vs. T1/T2) 3.095 (2.154, 4.447) <0.001 1.388 (0.663, 2.907) 0.385
pM (M1 vs. M0) 3.900 (2.680, 5.676) <0.001 2.836 (1.763, 4.561) <0.00 
Pathologic stage (III/IV vs. I/II) 3.661 (2.515, 5.331) <0.001 1.292 (0.546, 3.059) 0.56
Histologic grade (G3/4 vs. G1/2) 2.515 (1.662, 3.805) <0.001 1.438 (0.915, 2.262) 0.116
FDX1 (high vs. low) 0.453 (0.313, 0.656) <0.001 0.525 (0.338, 0.816) 0.004
PDHB (high vs. low) 0.563 (0.369, 0.858) 0.008 1.081 (0.634, 1.845) 0.774
CDKN2A (high vs. low) 1.395 (1.161, 1.676) <0.001 1.184 (0.973, 1.440) 0.092
pT, pathologic T stage; pM, pathologic M stage.
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signaling, and mineral absorption pathways were down-
regulated in high expression groups (Figure 8(g), Supple-
mentary Figure S5C–5F).

3.7. TMB and Immune Cell Infltration Analysis. Te dif-
ferences in mutation landscapes were found between
FDX1 high and low expression groups (Figure 9(a)). In the
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Figure 6: Lower expression of FDX1 was associated with worse clinicopathologic features. (a) Te expression level of FDX1 in 33 cancer
types. Green, the expression of FDX1 was signifcantly lower in tumor tissues. Red, the expression of FDX1was signifcantly higher in tumor
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among 33 cancer types for progression-free survival. (e) Correlations of the expression of FDX1 and gender, Tstage, N stage, M stage, tumor
stage, and tumor grade.Te statistical diferences between diferent groups were compared through theWilcoxon test. ∗p< 0.05, ∗∗p< 0.01,
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high FDX1 expression group, the mutation rates were
lower when compared with the low FDX1 expression
group (74.27% vs. 88.20%). Moreover, the TMB between
the FDX1 high expression group and the FDX1 low ex-
pression group was investigated, and the result demon-
strated the TMB was lower in the high expression group
(Figure 9(b)). We also found that FDX1 was down-
regulated in tumors with VHL, PBRM1, SETD2, BAP1, and
KDM5C mutations (Supplementary Figures S6A–S6E).
Te TMB was negatively correlated with FDX1 expression
(Figure 9(c)). From the previous analysis of KEGG, we
found that lower FDX1 could relate to the immune

microenvironment. Ten, we compared immune cell in-
fltration between the FDX1 high expression group and low
expression group, which demonstrated that B cells,
macrophages, and NK cells were higher in the FDX1 low
expression group. T cell CD4+ and Tcell CD8+ were lower
in the FDX1 low expression group (Figure 9(d)). Besides,
we detected a correlation between FDX1 and diferent
immune cells. Results revealed that the expression level of
FDX1 was positively correlated with T cell CD4+ in-
fltration level and negatively associated with the in-
fltration levels of B cells, macrophages, and NK cells
(Figure 9(e), Supplementary Figures S6F–S6G).
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3.8. Te Prediction of Immune and TargetTerapy Responses.
Te expression of immune checkpoint genes was detected in
diferent FDX1 expression groups, and the results showed
that the expression levels of CD274 were signifcantly higher
and those ofCTLA4, LAG3, PDCD1, PDCD1LG1, and TIGIT
were signifcantly lower in the FDX1 high expression group
(Figure 10(a)). Moreover, the potential immune response
was predicted. Te results demonstrated that immune re-
sponse scores were higher in the lower expression group
(Figure 10(b)). Due to the fact that FDX1 is a direct target of
elesclomol, we also found that the patients in the FDX1 high
expression group were signifcantly more sensitive to ele-
sclomol, and the patients in the FDX1 low expression group
were signifcantly more sensitive to sunitinib and axitinib
(Figures 10(c)–10(e), Supplementary Figures S6H–S6J).

4. Disscussion

With the development of diagnostic technologies and im-
mune checkpoint inhibitors, the survival of advanced ccRCC
patients has been dramatically improved [43]. However,
there were still some treatments that failed in patients with
ccRCC because of metastasis, which could be attributed to
the heterogeneity of ccRCC tissues [44, 45]. Cuproptosis,
a novel manner of programmed cell death, is diferent from
ferroptosis, necrosis, apoptosis, and pyroptosis. Recently,
a study revealed that cuproptosis was closely associated with
mitochondrial respiration. However, ccRCC is mainly de-
pendent on the glycolytic pathway for energy because of the
loss of function of VHL and the accumulation of HIF-1α
[22, 46]. Tumor cells may develop the mechanism of
cuproptosis tolerance to attenuate cell death and promote
proliferation or metastasis. Te role of cuproptosis in pa-
tients with ccRCC has rarely been studied. In this study, we
constructed a CRGs prognosis model and further elucidated
the vital role of the key gene of cuproptosis, FDX1, in the
ccRCC. Our study about CRGs genes may shed new light on
tumor classifcation and response to treatment.

In the present study, we screened 3 diferentially
expressed CRGs, FDX1, PDHB, and CDKN2A. All of them
were associated with OS or PFS, and then they were de-
termined to construct a CRGs prognosis model using
LASSO regression analysis. Te model could divide KIRC

patients into high-risk and low-risk groups. Te model
demonstrated great survival prediction efciency and was
validated in the training and validation cohorts. Also, the
ROC curve of the model in the training and validation
cohorts showed moderate diagnostic performance in pre-
dicting 1-year survival (0.675 and 0.708) and 5-year survival
(0.668 and 0.614). Te reason that the model did not show
a high level of performance may be due to the limited
number of CRGs and the infuence of various pathways or
cell death methods. Te other important pathway genes
could be incorporated into this model in the future. To be
more accessible for the model, we constructed a nomogram
prediction model throughout, combining it with the in-
dependent clinicopathological risk factors. Ten, the cali-
bration curves showed the high accuracy of the nomogram
model. In general, we constructed a novel CRGs prognosis
model, which could guide clinical surveillance and treatment
decisions.

To further explore the prognostic role of FDX1, PDHB,
and CDKN2A, we performed multivariate Cox regression to
identify the key gene, and the results showed that low ex-
pression of FDX1 was an independent risk factor. Most
importantly, FDX1 was a key gene that regulated cuprop-
tosis. FDX1 has also been closely related to lipid-related and
steroid metabolism [47, 48]. FDX1 is essential for the
synthesis of various steroid hormones (pregnenolone, al-
dosterone, and cortisol), and lower FDX1 expression is
associated with increased glycolysis [49, 50]. FDX1 pro-
moted cuproptosis through increased protein lipoylation,
and the deletion of FDX1 conferred resistance to copper-
induced cell death [51]. Te role of FDX1 in cancer is rarely
studied. Recently, a study showed that FDX1 was decreased,
and the patients with lower expression of FDX1 had a worse
prognosis for lung cancer [49]. Te role of FDX1 remains
unclear. Terefore, we focused on the role of FDX1 in
ccRCC.

Among the expression of FDX1 in 33 cancer types, KIRC
was the only one cancer that was signifcantly down-
regulated. Lower FDX1 expression was associated with
worse OS and PFS in KIRC, which showed that FDX1 played
a vital role, especially in KIRC. Te results could be at-
tributed to the tissue specifcity of FDX1 expression. In
addition, the diferent FDX1 expression groups presented

Table 3: Detailed information from 13 CpG of FDX1 gene.

Composite element
REF Chromosome Start End CGI_Coordinate Feature_Type

cg02239377 chr11 110463373 110463374 CGI: chr11 :110429850-110430610 —
cg05485370 chr11 110430609 110430610 CGI: chr11 :110429850-110430610 Island
cg05741490 chr11 110429437 110429438 CGI: chr11 :110429850-110430610 N_Shore
cg06674932 chr11 110428618 110428619 CGI: chr11 :110429850-110430610 N_Shore
cg08887425 chr11 110429740 110429741 CGI: chr11 :110429850-110430610 N_Shore
cg09762563 chr11 110429860 110429861 CGI: chr11 :110429850-110430610 Island
cg13258606 chr11 110429908 110429909 CGI: chr11 :110429850-110430610 Island
cg18719294 chr11 110429851 110429852 CGI: chr11 :110429850-110430610 Island
cg23587050 chr11 110430404 110430405 CGI: chr11 :110429850-110430610 Island
cg26061355 chr11 110433445 110433446 CGI: chr11 :110429850-110430610 S_Shelf
cg26763524 chr11 110429705 110429706 CGI: chr11 :110429850-110430610 N_Shore
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Figure 8: Te high methylation level of FDX1 in ccRCC. (a) Heatmap of CpG site methylation levels of 11 CpG sites in FDX1 DNA.
(b) Statistical comparison of the diference in methylation levels of 6 hypermethylation CpG sites in tumor. Te statistical diferences
between diferent groups were compared through the Wilcoxon test. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. (c) Correlation between FDX1
expression and cg26061355methylation levels in KIRC. (d)Te cg26061355methylation levels of FDX1 in GSE61441 dataset. (e) Correlation
between FDX1 expression and cg26061355 methylation levels in the GSE61441 dataset. (f, g) KEGG and GO analysis of upregulated or
downregulated genes in the high FDX1 expression group. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Treshold value identifed as signifcant is p value <0.05.
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Figure 9: Continued.
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a signifcant correlation with gender, pathological T stage,
lymphatic invasion, metastasis, pathological stage, and
histological grade in ccRCC. On the basis of these results, we
concluded that FDX1 could be a valuable prognostic bio-
marker in ccRCC. Ten, the lower expression of FDX1 in
tumor tissues was identifed in external and our own da-
tabases. Te external databases demonstrated that in the
level of bulk-RNA seq or single-cell RNA seq, the FDX1 was
downregulated in tumor tissues, metastasis tumor cells and
ccRCC epithelial cells.TeHPA databases further confrmed
this result, and the immunofuorescence analysis showed
FDX1 was mainly distributed in mitochondria. In our own
database, FDX1 was downregulated in renal cancer cell lines
and paired tumor tissues at both of mRNA and protein
levels. Overall, lower expression of FDX1was associated with
worse OS and PFS, especially in ccRCC, and may function as
a tumor suppressor due to being downregulated in
tumor cells.

Te mechanisms of low expression of FDX1 were further
explored in ccRCC. Te mutation status of CRGs was de-
tected in the cBioPortal database, and the results showed low
mutation rates and copy number alternation in the FDX1
gene. Ten, we detected that the methylation level was
negatively correlated with the expression of FDX1 and
verifed this in the GSE61441 dataset, which indicated that
DNA hypermethylation might play a vital role in decreasing
the expression of FDX1 in ccRCC. However, it was not
strongly correlated between FDX1 expression and the
methylation level of cg26061355, which indicated that there
may be some other mechanisms contributing to the low
expression of FDX1 in ccRCC. Previous studies reported that
SF-1 and cJUN could bind with the promoter of FDX1 in
MA-10 leydig cells and ovarian granulosa cells [52, 53].
Tere were also some nucleotide polymorphisms in FDX1
that may contribute to IgA nephropathy [54, 55]. All of these
mechanisms may also contribute to the low expression of
FDX1 in ccRCC. Furthermore, KEGG and GO analyses were
performed to explore the underlying mechanisms of FDX1
in tumorigenesis. In the high FDX1 expression group, ox-
idative phosphorylation, the citrate cycle (TCA) cycle, and

the gluconeogenesis pathway were upregulated, which in-
dicated the correlation between high FDX1 and upregulated
mitochondrial respiratory. Meanwhile, lower expression of
FDX1 may be related to the IL-17 signaling pathway and
T cell activation, which indicates that low expression of
FDX1 may be related to immune cell infltration.

Te mutation landscapes were compared between two
diferent expression groups.Te TMBwere higher in the low
expression group. Meanwhile, TMB was negatively corre-
lated with the expression of FDX1. Ten, the immune cell
infltration was analyzed, and the results showed that T cell
CD4+ were lower expressed and positively correlated with
the low FDX1 expression group.Te B cell, macrophage, and
NK cell were more highly expressed and negatively corre-
lated with the low FDX1 expression group. Higher B cells,
macrophages, and lower T cell CD4+ were associated with
poorer OS and PFS [56–59]. However, though higher NK
cells were related to better OS, the population of NK cells
was small in ccRCC [60]. Te CD274 was lower in the low
FDX1 expression group, as were the CTLA4, LAG3, PDCD1,
PDCD1LG2, and TIGIT, which were higher in the low FDX1
expression group. Te results helped us better choose ICB
for immune treatment or provided a theoretical basis for the
development of new therapeutic strategies based on immune
characteristics [61, 62]. Te immune response prediction
results showed that low FDX1 expression had worse re-
sponse. Tis may be due to low T cell CD4+ and T cell 8+
infltration in ccRCC. Tis result seems to contradict the
higher TMB in FDX1 low expression groups [63, 64].
However, a recent study showed that the TMBmay not have
a tight correlation with ccRCC [65]. In drug sensitivity
analysis, elesclomol showed a better therapeutic efect in the
FDX1 high expression group, while sunitinib and axitinib
showed a worse therapeutic efect in the FDX1 low ex-
pression group. Also, as for the FDX1 high expression group,
some new treatment strategies, such as drug delivery systems
in combination with elesclomol, may have had a better
performance in tumor treatment [66, 67]. Above all, these
fndings implied that the expression of FDX1 could predict
immune and target treatment responses in ccRCC.
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Figure 9:Te TMB and immune cell infltration levels in diferent FDX1 expression groups in KIRC. (a) Mutation landscape of tumor in the
FDX1 high expression groups and low expression groups. (b) Te score of TMB in FDX1 high expression groups and FDX1 low expression
groups. Te statistical diferences between diferent groups were compared through the Wilcoxon test. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.
(c) Te correlation of TMB score and the expression of FDX1. (d) Comparison of the infltration levels of T cell CD4+, T cell CD8+,
endothelial cell, B cell, macrophage, andNK cell between FDX1 high expression groups and low expression groups.Te statistical diferences
between diferent groups were compared through the Wilcoxon test. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. (e) Te correlation between
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Despite the strengths of our study, some limitations
should be acknowledged. A larger sample size would be
required for further validation of CRGs’ prognostic model.
In addition, more experiments are required to verify the
DNA methylation and immune correlates for the hub gene
of cuproptosis, FDX1.

On the whole, we constructed CRGs prognostic model
and observed excellent performance. Ten, we identifed the
hub gene for cuproptosis. FDX1 was an independent
prognostic biomarker, especially in ccRCC. Te lower ex-
pression of FDX1may be related to DNA hypermethylation.
FDX1 could be a biomarker, which could predict immune
and target therapeutic responses. In conclusion, our study
will contribute new insights to clinical surveillance and help
physicians with treatment decision-making.
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