
Research Article
Assessing the Prognostic Capability of Immune-Related Gene
Scoring Systems in Lung Adenocarcinoma

Wenhao Liu,1 Ruihong Dong,2 Shuai Gao,3 Xiaodi Shan,1 Mian Li,4 Zhaoyan Yu ,5

and Liang Sun 1

1College of Arti�cial Intelligence and Big Data For Medical Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
2Beijing Mentougou Hospital of Traditional Chinese Medicine, Beijing, China
3Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
4First A�liated Hospital of Shandong First Medical University,
Biomedical Sciences College & Shandong Medicinal Biotechnology Centre,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
5Department of Otorhinolaryngology, Shandong Public Health Clinical Center, Jinan, Shandong, China

Correspondence should be addressed to Zhaoyan Yu; yuzhaoyan@163.com and Liang Sun; sunliang@sdfmu.edu.cn

Received 7 April 2022; Revised 26 May 2022; Accepted 10 June 2022; Published 31 July 2022

Academic Editor: Hongqing Cai

Copyright © 2022 Wenhao Liu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Lung adenocarcinoma (LUAD) is the commonest of the subtypes of lung cancer histologically. For this study, we
intended to analyze the expression pro�ling of the immune-related genes (IRGs) from an independently available public database
and developed a potent signature predictive of patients’ prognosis.Methods. Gene expression pro�les and the clinical data of lung
adenocarcinoma were gathered from the Gene Expression Omnibus database (GEO) and�e Cancer Genome Atlas (TCGA), and
the obtained data were split into a training set (n� 226), test set (n� 83), and validation set (n� 400). IRGs were then gathered
from the ImmPort database. A prognostic model was constructed by analyzing the training set. �en the GO and KEGG analysis
was performed, and a gene correlation prognostic nomogram was constructed. Finally, external validation, such as immune
in�ltration and immunohistochemistry, was performed. Results. �e 110 genes were signi�cant by univariate Cox regression
analysis and randomized survival forest algorithm for the training set and showed a good distinction between the low-risk-score
and high-risk-score groups in the training set (P< 0.0001) by screening for four prognosis-related genes (HMOX1, ARRB1, ADM,
PDIA3) and validated by the test set GSE30219 (P � 0.0025) and TCGA dataset (P � 0.00059). Multivariate Cox showed that the
four gene signatures were an individual risk factor for LUAD. In addition, the genes in the signatures were externally veri�ed using
an online database. In particular, PDIA3 and HMOX1 are essential genes in the prognostic nomogram and play an important role
in the model of immune-related genes. Conclusion. Four immune-related genetic signatures are reliable prognostic indicators for
patients with LUAD, providing a relevant theoretical basis and therapeutic rationale for immunotherapy.

1. Introduction

Lung cancer is major cancer in the world and adenocarci-
noma patients lack tumor-speci�c clinical symptoms in the
early stage, and local in�ltration and even distant metastasis
occur in the middle and late stages of lung cancer, with
poorer e¤cacy and overall survival rate. Currently, 60% of
NSCLC is LUAD, of which NSCLS is the major component
of lung cancer [1, 2]. In the United States, in 2021, the

number of new incidences in a year was 235,760, and the
number of deaths reached 131,880 [3]. For treating patients
with early LUAD, surgical lobectomy is the most frequently
used method. However, 10–44% of them have a less fa-
vorable prognosis �ve years after surgery [4]. �erefore, it is
necessary to develop more e«ective biomarkers to obtain
more e«ective prognostic models of LUAD patients to help
early diagnosis of LUAD and treat di«erent patients with
reasonable treatment plans so that patients can receive more

Hindawi
Journal of Oncology
Volume 2022, Article ID 2151396, 15 pages
https://doi.org/10.1155/2022/2151396

mailto:yuzhaoyan@163.com
mailto:sunliang@sdfmu.edu.cn
https://orcid.org/0000-0002-3017-2984
https://orcid.org/0000-0002-5213-6941
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2151396


appropriate treatment for their own conditions and get the
best treatment results.

It is generally accepted that cancer is an incredibly
complex disease that involves the interplay between the
tumor and the immune system [5]. .e human immune-
related systems have been confirmed to play a critical part in
the development and progression of aggressive cancer [6, 7].
More recently, immune checkpoint blockade therapy has
shown remarkable efficacy in treating solid tumors (mela-
noma, lung cancer, and so on). .is treatment is based on a
dynamic process between tumor and immunity, and most
current studies predict efficacy based onmarker levels before
or at a point in time during treatment. Programmed death-
ligand (PD-1) and tumor mutation burden (TMB) are
widely used as prognostic biomarkers for immunotherapy
[8]. However, immune-related therapies are only available
for some patients. .ere are remarkable personal differences
in therapeutic effectiveness, illustrating the complexity of
cancer-causing mechanisms and the existence of tumor
heterogeneity [9, 10]. A few studies have reported that
immune-related genes can predict prognosis in tumor
survivors and provide potential targets for immunothera-
peutic treatment [11–13]. However, the prognostic model of
immune-related genes in early-stage LUAD patients is
relatively rare.

.is study explores early LUAD-related prognostic
models based on immune-related genes based on gene ex-
pression datasets from GEO and TCGA. After we matched
the immune-related genes list to the three cohorts, the
resulting genes were screened by a series of methods. An
immune signature based on four genes for prognosis with
outstanding predictive capability was established. .en
enriched for the function of related genes. .e infiltration of
tumors into immune cells was also analyzed, and finally, the
differential expression of the four genes in different cancers
was analyzed. It helps physicians in the prognosis of early
LUAD patients. Furthermore, it provides some theoretical
basis for personalized treatment.

2. Materials and Methods

Figure 1 shows the flow chart of this work.

2.1. Expression Data. .e Gene Expression Omnibus (GEO,
GSE31210, GSE30219) and .e Cancer Genome Atlas
(TCGA) databases, which were widely used and generally
recognized, were selected as the data sources for the study,
from which clinical information and gene expression pro-
files of lung adenocarcinoma patients. GSE31210 were se-
lected as training and GSE30219 and TCGA were selected as
external validation sets, respectively. .e total number of
patients of the three cohorts was 709. .e distribution of
cases in the three data was training set GSE31210 (N� 226)
and the validation sets are GSE30219 (N� 83) and TCGA
(N� 400), respectively. Clinical information and gene ex-
pression profiles related to the dataset were collected
according to the following methods. In addition, the
GSE50081 (N� 128) dataset was also collected for the

validation of the Kaplan–Meier analysis. In addition, the
GPL570 microarray platform was annotated by probes to
obtain the final expression profiles of the GEO data [13].

2.2. Selection of IRGs set. Immunology Database and
Analysis Portal (ImmPort) is an open repository of disci-
pline-level human immunology databases for translation
and clinical research. .e IRGs set was obtained from
ImmPort, and the related R package “clusterProfiler” was
used to match the corresponding ensemble and other related
information. Finally, 1455 IRGs were obtained.

2.3. Development of the Prognostic Gene Signature.
Prognostic immunity-related genes were obtained by uni-
variate Cox regression screening on survival status for each
gene in the training set. Genes that showed significant
differences (P< 0.01) in the Cox regression were subse-
quently analyzed using the stochastic survival forest algo-
rithm (RSFA) for dimensionality reduction [14]. In addition,
the equation is shown below:

Risk Score � 
N

i�1
Exp ri + coeffi( , (1)

.emeaning of each parameter is as follows: in which N
is the amount of IRGs, Expr is the IRGs expression value,
and coeff is the coefficient value of IRGs. In the following
section, patients are classified into low and high-score-risk
groups according to the median value.

We combined the genes generated in RSFA with suffi-
cient scale to prevent overfitting during modeling. .e
obtained combinations of IRGs were tested for their per-
formance using time-correlated receiver operating charac-
teristic (time-ROC) analysis. .e gene combinations with
the largest area under the curve (AUC) were used for
subsequent predictions, and the model is statistically sig-
nificant. .e accuracy of the model for prognosis was
subsequently validated in internal and external validation.

Clinical information about cancer patients in the dataset
may also be an influential factor in prognosis. So we analyzed
the relationship between the two in the following way.
Evaluation of patient prognostic outcomes and their rela-
tionship to clinical characteristics Chi-square analysis was
used to determine the association between the IRGs pre-
diction model and clinical information. KM survival curves
and log-rank test were used to characterize the interaction
between the model and survival time. In addition, the
clinical information in the training and validation sets was
related to OS using multivariate Cox regression analysis..e
final univariate Cox analysis was utilized to determine
whether clinical features could assist immune-related gene
models used together for prognosis.

2.4. Construction and Evaluation of an IRG Nomogram.
A predictive nomogram for gene expression correlation was
developed. Subsequently, we used the calibration curve to
detect its accuracy in the GEO and TCGA cohorts. In
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addition, the prediction bias of the nomogram was assessed
for evaluation.

2.5. Detection of the Infiltration of Immune Cells with Prog-
nosis-Related Irgs in Tumors. Tumor Immune Estimation
Resource (TIMER) is a website that uses gene expression
profiling data to detect the infiltration of immune cells in
tumor tissue. We applied it to explore the infiltration of
immune cells with the four genes (HMOX1, ARRB1, ADM,
and PDIA3) in LUAD and six infiltrating immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages, and dendritic cells) were available for analysis
[9, 15].

2.6. External Validation of the IRGs Signature.
Furthermore, TIMER database was utilized to validate the
differential expression of the four prognostic IRGs in dif-
ferent cancers. .e Human Protein Atlas (HPA) is based on
proteomic, transcriptomic, and systems biology data and
covers protein expression not only in tumors but also in
normal tissues. It was used to verify the protein levels in the
model.

2.7. Functional Enrichment Analysis. Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were applied using the cluster-
Profiler package to analyze the underlying biological pro-
cesses of the prognostic IRGs [16].

2.8. Statistical Analysis. Data analysis was performed by R
(version 4.1.2). KM and cox analyses were applied in three
separate datasets using the R package “survival.” Cox
analysis was utilized to identify prognostic IRGs and detect
the models. Chi-square or rank-sum tests were applied to
stratified variables. “ROC” and “TimeROC” can be used to
validate the model’s viability. Functional annotation is
performed using the “Clusterprofiler” package. .e P-values
involved in the analysis were < 0.05, which was a significant
statistical value.

3. Results

3.1. Patient Population Information. .e number of LUAD
patients was obtained from GSE31210 and GSE30219, which
were 226 and 83, respectively, and 400 LUAD patients were
gathered from the TCGA database. A sum of 1084 IRGs was

Immune-related genes for prognostic analysis in OS (n=709)

GSE31210 cohort
(N=226) GSE30219 cohort (N=83)

TCGA-LUAD cohort (N=400)

IRG Identification
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Figure 1: Flow chart of this study.
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identified for expression in the GSE31210 dataset. In Table 1,
we can easily obtain the median age of the patients as
61 years. .e number of male and female cases in the
training set was 105 and 121, respectively, with 35 deaths and
191 living cases, and the median OS was 5.33 years. Data per
sample from GSE31210 and TCGA data were distributed in
pathological stages I-II of LUAD, and data per sample from
GSE30219 data were distributed in T stages T1-T2 of LUAD.

3.2. Identifying four Prognostic IRGs in the Training Set.
After univariate cox analysis and ROC curve analysis, 110
prognosis-related genes were obtained by screening based
on P< 0.01 and AUC> 0.6, and the results are shown in
Supplementary Table S1. Nine IRGs were next obtained by
importance scoring in a randomized survival forest, and
subsequent permutations of these nine genes yielded
29–1� 511 prediction models (Figure 2(a) and 2)(b). .en,
these models were evaluated by AUC, and the combination
of four genes, HMOX1, ARRB1, ADM, and PDIA3, was
found to have the most considerable AUC value of 0.779
(Figure 2)(c), which had the optimal predictive power. .e
risk score was shown in the following formula:

Risk Score � (1.32004 × HMOX1) +(−1.36259 × ARRB1)

+(1.17434 × ADM) +(1.44023 × PDIA3)

(2)

where the gene name represents the expression level of this
gene in a particular sample. From the equation, we can get
the coefficients of 1.32004, −1.36259, 1.17434, and 1.44023
for HMOX1, ARRB1, ADM, and PDIA3, respectively.

We computed the risk scores for each patient using the
RSF formula and plotted heat maps for the four genes
(Figures 3(a)–3)(c)..e number of deaths increased with the
increase of risk score in the three datasets. In the high-risk-
score group, two genes, HMOX1, ADM, were highly
expressed and ARRB1 was lowly expressed, with the same
pattern in all three data sets. However, there was no sig-
nificant pattern in the expression of the PDIA3 gene. Among

the relevant clinical features, relapses become more frequent
as risk scores increase, but no significant trends were found
for age and gender following the score during the three
cohort. By cox analysis, ARRB1 was highly expressed in the
low-risk-score group, which was a protective factor
(Table 2).

3.3. Evaluation of a Prognostic IRGs Signature. A risk score
was computed for each individual with the prognostic
models of immune-related genes. In the training cohort, the
KM analysis was used to confirm the difference in survival
between the high-risk-score (N� 113) and low-risk-score
(N� 113) populations classified by a median score [17, 18].
In Figure 4(a), the 5-year survival incidence was 58.07%
(N� 66) in the low -risk-score group vs. 32.74% (N� 37) in
the high-risk-score group. In the training cohort, significant
OS was observed in the low-risk-score group. To explore this
in the validation set, the same methodology was then
adopted for the GSE30219 (Figure 4)(b), and the model
showed significant differentiation capability (the 5-year
survival rate was 69.05% in the low-risk-score group (N� 42)
vs. 36.59% in the high-score-risk group (N� 41), log rank
P � 0.0025). In Figure 4(c), TCGA data (N� 400) with a
large sample size was used for survival prediction. LUAD in
this cohort was also classified into high- or low-risk-score
groups (the 5-year survival incidence was 13.50% in the low-
risk-score group (N� 200) vs. 9.00% in the high-risk-score
group (N� 200), log rank P � 0.0025). In Figure 4(d), ad-
ditional selected GSE50081 data were used for the validation
of the survival model (the 5-year survival incidence was
50.00% in the low-score-risk group (N� 64) vs. 35.94% in
the high-score-risk group (N� 64), log rank P � 0.16). Al-
though not significant, it still has some predictive power.
From the results of the four cohorts, it can be obtained that
the four prognostic IRGs model had excellent prognostic
ability.

3.4. Correlation Analysis Between Signature and Clinical
Features. In Table 3, the association between the IRGs
signature and clinical features in the three datasets was
validated by the chi-square test. .ere was a significant
correlation between the pathological stage and the prog-
nostic IRGs signature in the GSE31210 and TCGA cohort
(P< 0.05). In the GSE31210 cohort, gender and age both had
no obvious correlation with the prognostic IRGs signature.
In the TCGA dataset, gender and the prognostic IRGs
signature had a significant relationship (P< 0.05), but the
age had not with this model. .e GSE30219 cohort has a
different clinical characteristic T-stage than the GSE31210
and TCGA cohort, and no statistically significant between
the three clinical features and the prognostic IRGs signature
in the GSE30219.

In Table 4, the IRGs signature was shown to be statis-
tically significant by multivariate COX regression, affirming
it as an independent adverse predictor. In all three data sets,
signatures proved to be powerful predictors of clinical
outcomes in LUAD patients (high- vs. low-risk, GSE31210,
HR� 32.11, 95% CI 4.32–238.91, P< 0.001, n� 226;

Table 1: Clinical information of the Gene Expression Omnibus
(GEO) and .e Cancer Genome Atlas (TCGA) datasets.

Characteristic GSE31210 GSE30219 TCGA
Age (years)
>61 122 37 251
≤61 104 46 149

Sex
Female 121 65 217
Male 105 18 183

Vital status
Alive 191 39 278
Dead 35 42 122

Pathological stage
Stage I 168 — 280
Stage II 58 — 120

T stage
T1 — 69 —
T2 — 12 —
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Figure 2: Prognosis prediction. (a, b) Selection of prognosis-related IRGs using RSFA. (c) AUC values of different IRGs prognostic models.
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GSE30219, HR� 2.49, 95% CI 1.29–4.78, P< 0.001, n� 83;
TCGA, HR� 1.73, 95% CI 1.18–2.54, P< 0.001, n� 400).
Univariate Cox also suggests that prognostic IRGs signature
is a risk factor. Interestingly, the P-values for the patho-
logical stage in GSE31210 and TCGA were less than 0.5.
Unfortunately, this clinical feature was not available in
GSE30219, so this information could not be further judged
by the three datasets. Gender and age cannot be considered
as risk factor for prognosis in the three cohorts.

3.5. Exploring the Functions of the IRG Panel. To begin with,
we obtained 110 IRGs by survival analysis and AUC analysis.
.en we analyzed the pathways and functions of IRGs using
GO and KEGG. Top 10 functional annotations of biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs) were selected, among which the main
outcomes of BPs were regulation of chemotaxis, leukocyte
migration, and cytokine production. .e preliminary results
of CCs were linked to the membrane. MFs enrichment
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Figure 3: Evaluation of the risk predictive model. (a–c) Clustering Heatmap, the scatter plot of survival time, and the risk score curve of
GSE31210, GSE30219, and TCGA sets. Gene expression levels, survival information, and clinical information are given.

Table 2: Prognosis of the four genes in the signature.

ENSEMBL ID Symbol ID Gene name Coef P-value Prognostic indicator
ENSG00000100292 HMOX1 Heme Oxygenase 1 1.32 <0.01 high
ENSG00000137486 ARRB1 Arrestin Beta 1 −1.36 <0.01 low
ENSG00000148926 ADM Adrenomedullin 1.17 <0.01 high
ENSG00000167004 PDIA3 Protein Disulfide Isomerase Family A Member 3 1.44 <0.01 high
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analysis can be obtained concerning molecular activity and
molecular binding (Figures 5(a)–5(c).

In Figure 5(d), the KEGG-Gene-Concept Network
provides a clear view of the distribution of IRGs in different
pathways. Most genes are associated with neuroactive li-
gand-receptor interactions in the KEGG-Gene-Concept
Network.

3.6. IRGs Survival Prediction Nomogram. In Figure 6(a), to
enable comprehensive prediction, predictive models for the
four genes were translated into a nomogram to provide a
visual projection of OS at 1, 3, and 5 years. For instance,
different scores were obtained from the expression of the
four genes, and the total scores were summed to calculate the
survival rates at different years. As can be seen from the
nomogram, the two genes HMOX1 and PDIA3 in the

prognostic IRGs model require focused attention in the
model for prediction.

To evaluate how well this nomogram simulates the real
situation, calibration curves using 1000 bootstrap tests were
plotted. As shown in Figure 6(b), the actual case and the
predicted situation show a good agreement in the training
set. Furthermore, the calibration curve still showed a good
deal in the validation set (Figures 6(c) and 6)(d). .ese
results indicate that our nomogram is a good predictor of
reality, and both independent validation databases show that
the nomogram has excellent utility.

In the Figure 6(e), the time-AUC values in the GSE31210
at years of 1,3 and 5 were 0.755 (95% CI: 0.722–0.787), 0.752
(95% CI: 0.690–0.814), and 0.803 (95% CI: 0.748–0.859),
respectively. All three AUC values of GSE31210 were greater
than 0.7, which indicates a high degree of confidence in its
prediction. Other cohorts (GSE30219 and TCGA) were used
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Figure 4: Immune-related gene modeling predicts overall survival in patients with LUAD. (a–d) Kaplan–Meier survival curves in the
GSE31210, GSE30219, GSE50081, and TCGA. P values were calculated by log-rank test.
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to demonstrate the accuracy of OS prediction.: .e time-
AUCs of GSE30219 at years of 1,3 and 5 were 0.593 (95% CI:
0.394–0.791), 0.707 (95% CI: 0.605–0.808), and 0.700 (95%

CI: 0.595–0.805) (Figure 6)(f ). .e AUCs of TCGA set at
years of 1,3 and 5 were 0.563 (95% CI: 0.475–0.650), 0.643
(95% CI: 0.576–0.710), and 0.604 (95% CI: 0.516–0.692)

Table 3: .e IRG signature and clinical characteristics Chi-square table in LUAD patients.

Variables Status low high P
GSE31210 dataset (N� 226)

Age
0.69

≤61 63 59
>61 50 54

Gender
0.11

Female 67 54
Male 46 59

Pathological stage
<0.01

I 103 65
II 10 48

GSE30219 dataset (N� 83)

Age
1.00

≤61 23 22
>61 18 18

Gender
0.30

Female 11 6
Male 30 34

T stage
0.32

T1 37 32
T2 4 8

TCGA dataset (N� 400)

Age
0.62

≤61 67 73
>61 128 123

Gender
0.04

Female 119 98
Male 81 102

Pathological stage
0.02

I 151 129
II 49 71

Table 4: Cox regression analysis of the IRG signature and clinical information with lung adenocarcinoma (LUAD) survival.

Variables
Univariable cox Multivariable cox

HR
95% CI of HR

P HR
95% CI of HR

P
right left right left

GSE31210 (N� 226)
Age >61 vs. ≤61 1.4 0.73 2.78 0.29 1.38 0.7 2.71 0.35
Sex Male vs. Female 1.52 0.78 2.96 0.22 1.22 0.63 2.39 0.56
Pathological stage II vs. I 4.23 2.17 8.23 <0.01 2.07 1.04 4.1 0.03
Signature High risk vs. low risk 42.31 5.79 309.3 <0.01 32.11 4.32 238.91 <0.01
GSE30219 (N� 83)
Age >61 vs. ≤61 1.63 0.88 3.01 0.12 1.55 0.83 2.88 0.17
Sex Male vs. Female 1.37 0.61 3.09 0.44 1.11 0.49 2.56 0.8
T stage T2 vs. T1 2.14 1.06 4.32 0.03 1.68 0.82 3.42 0.15
Signature High risk vs. Low risk 2.65 1.39 5.06 <0.01 2.49 1.29 4.78 <0.01
TCGA (N� 400)
Age >61 vs. ≤61 1.07 0.73 1.56 0.73 1.18 0.8 1.73 0.4
Sex Male vs. Female 1.03 0.72 1.47 0.87 0.92 0.63 1.33 0.64
Pathological stage II vs. I 2.48 1.73 3.57 <0.01 2.2 1.52 3.18 <0.01
Signature High risk vs. Low risk 1.88 1.3 2.7 <0.01 1.73 1.18 2.54 <0.01
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Figure 5: GO and KEGG analysis for the prognosis-related IRGs. (a–c) Function enrichment of biological process (BP), cellular component
(CC), and molecular functions (MFs). (d) KEGG-Gene-Concept Network.
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(Figure 6)(g). .e results from these two datasets show
that our prognostic IRGs model has excellent prognostic
accuracy.
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immune cells. We utilized TIMER to explore the potential
association of infiltration of immune cells with prognosis-
related IRGs in tumors. Interestingly, HMOX1, ARRB1,
ADM, and PDIA3 were positively associated with B cells and
macrophages (P< 0.05). .ese results validate that the four
IRGs are closely associated with the level of B cells and
macrophages infiltration. Conversely, there is no significant
association between these four genes and infiltration of
purity, CD8+ T cells, CD4+ T cells, neutrophils, and den-
dritic cells (Figure 7(a)–7(d)).

3.8. IRGs Expression and Immunohistochemistry in Online
Databases. In Figure 8(a), PDIA3 was highly expressed, and
the results were consistent with the training set and TCGA
set. ARRB1 was lowly expressed, and the results were
consistent with the three independent data sets, interest-
ingly, in LUAD, statistically significant differences in the
expression of HMOX1, ARRB1, and PDIA3. However,
ADM were not differentially expressed between LUAD-
normal and LUAD-cancer. .e differential expression levels
of HMOX1, ARRB1, and PDIA3 in the prognostic IRGs

model in LUAD also provide positive evidence that the
model and LUAD have a strong correlation and can be used
effectively for prognosis.

According to the immunohistochemical analyses in the
HPA database, representative protein expressions of
HMOX1, ARRB1, ADM, and PDIA3 in normal and can-
cerous tissues were compared (Figures 8(b) and 8)(c). .e
staining intensity of these two genes (HMOX1, ADM) in
tumor cells is higher than in normal pneumocytes. .e
staining intensity of ARRB1 in tumor cells is lower than in
normal pneumocytes, while PDIA3 did not show a striking
difference.

4. Discussion

When immunotherapy was not well established, early
treatment of LUAD was importantly based on surgical lo-
bectomy, with suboptimal outcomes because of the malig-
nant nature of LUAD and the limited results of surgery.
However, with the increasing maturity and clinical use of
immune checkpoint inhibitors and targeted therapies, the
prognosis of patients has improved significantly [19, 20]. In
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Figure 7: Association of infiltration of immune cells with prognosis-related IRGs in LUAD. (a) HMOX1. (b) ARRB1. (c) ADM. (d) PDIA3.
P< 0.05 is significant. Each point means a case in the GSE31210 dataset.
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this study, we choose three separate datasets, GSE31210,
GSE30219, and TCGA, for the establishment and validation
of an IRGs prognostic model. First, we carried out a di-
mensionality reduction on the obtained IRGs and subse-
quently avoided overfitting the model. Finally, we obtained
511 combinations by recombination and performed
screening to obtain four gene prediction signatures.

Several recent studies have used IRG characteristics to
predict the prognosis of LUAD patients. However, not all
models showed an excellent prognosis. Wu et al. developed a
21-IRGs prognostic model. In this study, multivariate re-
gression was used to screen for genes of relevance, but there
is no practical method to prevent overfitting. Unfortunately,
the AUC was only 0.61, 0.65, and 0.62 for 1, 3, and 5-year
survival in the training set [21]. While the present study
avoided overfitting and predicted 1, 3, and 5-year survival by
four immune-related genes models, the AUC obtained was
0.755, 0.752, and 0.803 in the training set.

.e included IRGs for signature were HMOX1, ARRB1,
ADM, and PDIA3. HMOX1 (Heme Oxygenase 1) is a
protein-coding gene whose related functions include protein
homodimerization activity and oxidoreductase activity
[22]. Several published pieces of evidence support the

overexpression of HMOX-1 in several human malignant
tumors, including kidney, gastrointestinal, lung, and breast
cancers [23]. Tsai et al. research discovered that HMOX1 is
a negative prognostic NSCLC gene. Its high expression may
increase the metastasis ability of cancer cells of NSCLC pa-
tients, and HMOX1 has the potential as a therapeutic target
for NSCLC in the future [24].

ARRB1 (Arrestin Beta 1) plays an important role in
transcription factor binding and ubiquitin protein ligase
binding functions, and it is also a protein-coding gene [25].
Li et al. suggest that ARRB1 may be associated with the
prognosis of LUAD, and it is considered as a new molecular
biomarker for the diagnosis and prognosis of LUAD [26].

ADM (Adrenomedullin) gene encodes a protein that is a
prohormone with several functions, including vasodilation,
hormone secretion regulation, angiogenesis promotion, and
antimicrobial activity [27]. Some studies suggest that
NSCLC cells are essential targets for ADM, and it may
regulate the activity of these malignant lung cells through
differential induction of different early response genes [28].

PDIA3 (Protein disulfide isomerase A3) gene encodes a
protein that is a member of the PDI family. PDIA3 has high
expression levels in response to cellular stress and blocks
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(a)

HMOX1
Patient id: 1303
Tumor cells
Staining: Low
Intensity: Weak
Quantity: 75%-25%

ARRB1
Patient id: 1394
Tumor cells
Staining: Low
Intensity: Weak
Quantity: 75%-25%

ADM
Patient id: 1907
Tumor cells
Staining: High
Intensity: Strong
Quantity: 75%-25%

PDIA3
Patient id: 3144
Tumor cells
Staining: Medium
Intensity: Moderate
Quantity: 75%-25%

(b)

HMOX1
Patient id: 218
Pneumocytes
Staining: Not detected
Intensity: Negative
Quantity: None

ARRB1
Patient id: 4840
Pneumocytes
Staining: Medium
Intensity: Moderate
Quantity: >75%

ADM
Patient id: 1678
Pneumocytes
Staining: Low
Intensity: Moderate
Quantity: <25%

PDIA3
Patient id: 4840
Pneumocytes
Staining: Medium
Intensity: Strong
Quantity: <25%

(c)

Figure 8: Expression of the four predictive genes. (a) HMOX1, ARRB1, ADM, and PDIA3 expression level in LUAD-tumor vs. LUAD-
normal in TIMER (https://cistrome.shinyapps.io/timer/). (b) Expression of four IRGs-encoded proteins in tumor cells and normal
pneumocytes in the HPA database.
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apoptotic cell death associated with endoplasmic reticulum
(ER) stress and protein misfolding. PDIA3 is highly
expressed in most cancers, and its expression is associated
with overall low cell survival, metastasis, and invasiveness
[29]. Wang et al. demonstrated the potential prognostic
value of PDIA3 through a proteomic biomarker discovery
approach [30].

Using nomogram to show the prediction of survival by
IRGs signatures, it visually exhibits excellent prognostic
capability. .e calibration curves also show good agreement
between the predictions value and the actual situation in
training. We also present the cellular functions and pathway
enrichment of the selected IRGs based on GO analysis and
KEGG analysis. According to GO analysis, regulation of
chemotaxis, leukocyte migration, and cytokine production
were significantly enriched functions and most genes as-
sociated with neuroactive ligand-receptor interactions based
on KEGG-Gene-Concept Network.

By exploring the potential association of infiltration of
immune cells with prognosis-related IRGs in tumors, we
found that the four IRGs were closely associated with the
level of B-cell and macrophage infiltration. HMOX1,
ARRB1, and PDIA3 were significantly differentially
expressed in LUAD-normal and LUAD-cancer..e proteins
encoded by the three genes HMOX1, ADM, and ARRB1 also
differ significantly in tumor cells and normal pneumocytes.
.ese results suggest that the four IRGs have prognostic
potential.

.is study also has some restrictions. Firstly, the cohorts
of GEO and TCGA databases we used for the construction of
immune-related gene prognostic models are retrospective
experiments and lack large clinical samples to prospectively
validate the prognostic value of LUAD patients. Addition-
ally, due to the lack of experimental exploration in these
immune genes’ potential functions and mechanisms, the
potential functions and mechanisms of these immune genes
need to be further validated in clinical trials.

5. Conclusion

In summary, our study systematically analyzed the ex-
pression, prognostic value, and potential functions of IRGs.
Ultimately, a four-immune-related genes signature was
constructed that can be independently used as a biomarker
for OS prediction in LUAD. Eventually, our study provides
an essential theoretical basis for further research on the role
of IRGs in LUAD.
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