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RING finger (RNF) proteins are frequently dysregulated in human malignancies and are tightly associated with tumorigenesis.
However, the expression profiles of RNF genes in hepatocellular carcinoma (HCC) and their relations with prognosis remain
undetermined. Here, we aimed at constructing a prognostic model according to RNF genes for forecasting the outcomes of
HCC patients using the data from The Cancer Genome Atlas (TCGA) program. We collected HCC datasets to validate the
values of our model in predicting prognosis of HCC patients from International Cancer Genome Consortium (ICGC)
platform. Then, functional experiments were carried out to explore the roles of the representative RNF in HCC progression. A
total of 107 differentially expressed RNFs were obtained between TCGA-HCC tumor and normal tissues. After comprehensive
evaluation, a prognostic signature composed of 11 RNFs (RNF220, RNF25, TRIM25, BMI1, RNF216P1, RNF115, RNF2,
TRAIP, RNF157, RNF145, and RNF19B) was constructed based on TCGA cohort. Then, the Kaplan-Meier (KM) curves and
the receiver operating characteristic curve (ROC) were employed to evaluate predictive power of the prognostic model in
testing cohort (TCGA) and validation cohort (ICGC). The KM and ROC curves illustrated the good predictive power in
testing and validation cohort. The areas under the ROC curve are 0.77 and 0.76 in these two cohorts, respectively. Among the
prognostic signature genes, BMI1 was selected as a representative for functional study. We found that BMI1 protein level was
significantly upregulated in HCC tissues. Moreover, the inhibitor of BMI1, PTC-209, displayed an excellent anti-HCC effect
in vitro. Enrichment analysis of BMI1 downstream targets showed that BMI1 might be involved in tumor immunotherapy.
Together, our overall analyses revealed that the 11-RNFs prognostic signature might provide us latent chances for evaluating
HCC prognosis and developing novel HCC therapy.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignancies worldwide. HCC resulted in approximately
781,000 deaths worldwide in 2018, ranking as the fourth
leading cause of cancer-related death according to the assess-

ment by GLOBOCAN [1, 2]. Despite a series of treatment
strategies for HCC have been developed, the overall outcome
of HCC patients is poor. In the current, the optimal therapy
is curative resection for HCC at early stage, while lots of cases
are diagnosed in advanced stage with missing surgical timing
[3]. Upon tumor progression, the accumulated somatic DNA
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alterations constantly help cancer cells gain malignant behav-
iors [4, 5]. Due to the wide application of high-throughput
sequencing method, researchers gain the chance to globally
understand the molecular changes in hepatic cancer cells
and establish molecular model for evaluating the status of
HCC [6]. It has been found that HCC patients with the same
clinical stage own specific molecular subtypes and gene sig-
natures [7]. This further supports the possibility to predict
HCC patients’ outcomes at molecular level. The establish-
ment of prognosis-related molecular model and the discov-
ery of new therapeutic targets for HCC will be helpful for
improving the survival rates of HCC patients.

RING finger (RNF) proteins comprise a large family of
proteins which play pivotal roles in protein ubiquitination.
Ubiquitination is mainly involved in mediating protein degra-
dation, which in turn regulates cellular activities [8, 9]. It has
been reported that ubiquitination participates in lots of intra-
cellular biological processes, such as affecting DNA damage
repair, modulating cell metabolism, regulating cell death, and
altering therapeutic effect [10]. Ubiquitination is defined as a
multistep biochemical reaction, which transfers ubiquitin mol-
ecules to the substrates. The indispensable enzymes in this
reaction include ubiquitin-activating enzyme (E1), ubiquitin-
binding enzyme (E2), and ubiquitin ligase (E3) [11]. Among
the enzymes, E3 ligases are responsible for specifically recog-
nizing the substrates and transferring ubiquitin to substrates.
In eukaryotes, hundreds of E3 ligases have been identified.
Generally, E3s mainly fall into three classes based on the
conserved domains for ligase activity, namely HECT, RING
finger, and U-box [12]. RNF proteins belong to RING finger
E3 harboring RINF finger domain [13]. Dysfunction of RNFs
leads to intricate alterations of the transcriptome and proteome
in tumor cells, further causing changes in cellular activities,
including cell growth, proliferation, apoptosis, migration, and
invasion [14, 15]. Increasing number of studies have reported
that some RNFs are exceptionally expressed in human cancers
and are associated with poor prognosis of patients [16, 17],
indicating that the certain RNFsmight be latent targets for can-
cer diagnosis and therapy.

Recent studies have found that some RNF proteins play
momentous roles in development and progression of HCC.
RNF147, also named TRIM25, enhances the HCC cell survival
upon cellular stress by targeting Keap1-Nrf2 pathway [18].
RNF2 promotes ubiquitination of SIK1 in HCC cells and pro-
motes cell growth [19]. The overexpression of RNF40, as an E3
ligase of H2B ubiquitination, indicates poor prognosis of HCC
patients [20, 21]. These studies indicate that some RNFs are
tightly associated with the progression of HCC. The aberrant
expression and function of these RNFs offer us new chances
for developing inhibitors of HCC. However, the prognostic
roles of RNFs in HCC remain undetermined and this urges
us to explore the comprehensive roles of RNF-related genes
in HCC.

In the present study, we collected RNA-sequencing data of
HCC samples from TCGA and ICGC platforms. After evaluat-
ing transcriptomic alterations of RNF genes between HCC and
nontumorous tissues, we constructed a risk score model with
11 prognostic RNFs. Moreover, BMI1 was selected as the rep-
resentative to explore its roles in HCC through functional

experiments. Ultimately, we uncovered an RNF-related signa-
ture related to the pathogenesis of HCC, which might be
applied as latent prognosis-related biomarkers and drug targets
for HCC.

2. Materials and Methods

2.1. Patient Samples and Immunoblot. In total, 18 paired HCC
tissues and noncancerous tissues were obtained from the
Peking University Cancer Hospital. The study was approved
by the ethics committee of the Peking University Cancer Hos-
pital. Western blot was carried out according to the previous
reports [22, 23]. Anti-BMI1 antibody (A0211) and Anti-β-
actin antibody (AC026-100) were purchased from Abclonal
Technology (China). PTC-209 (S7372-PTC-209) was pur-
chased from Selleck Chemicals (USA).

2.2. Cell Culture. HepG2, SMMC-7721, or Huh7 cell lines
were purchased from the National Infrastructure of Cell Line
Resource (NSTI, China). We cultured cells using DMEM or
RPMI 1640 medium added with 10% fetal bovine serum.
After passage or indicated treatment, cells were cultured in
a humidified chamber in 5% CO2 at 37

°C.

2.3. Cell Proliferation Evaluation. Cell proliferation was ana-
lyzed using MTS kit (Promega, USA). Briefly, cells were
digested and seeded into the 96-well plate. Then, the drugs
were added to the cells as indicated. Cell number was deter-
mined for each day by MTS assay according to the manufac-
turer’ protocol.

2.4. Colony Formation Experiment. Colony formation assay
was carried out according to previously published protocol
[24]. Briefly, cells were treated with the indicated concentra-
tions of PTC-209 and subsequently seeded into 6-well plate.
Fourteen days later, the colonies were fixed with paraformal-
dehyde and stained with 0.1% crystal violet (Beyotime, China).
The visible colonies were counted using ImageJ software.

2.5. Data Collection and Analysis. The RNA sequencing data
and the related clinical data of HCC were obtained from
TCGA website (https://portal.gdc.cancer.gov/). The RNF
gene set including 227 genes was obtained from GEPIA web-
site [25]. We preprocessed the raw data using Limma pack-
age in R software. Then, we collected the RNFs expression
profile from LIHC (Liver Hepatocellular Carcinoma) dataset
including 374 tumorous and 50 normal samples for the fol-
lowing analyses. The differentially expressed RNFs were
identified using the criteria: jlog2FC ≥ 1j and FDR < 0:05.
The “pheatmap” package was employed for unsupervised
clustering analysis in R software. The validation dataset of
gene expression and clinical trait data (the Liver Cancer-
RIKEN JP) was collected from the ICGC database (https://
dcc.icgc.org/). GSE97172 dataset was downloaded from
GEO database (https://www.ncbi.nlm.nih.gov/gds/). Simi-
larly, the raw data was preprocessed using R software.

2.6. KEGG (Kyoto Encyclopedia of Genes and Genomes)
Pathway and GO (Gene Ontology) Enrichment Analyses. Briefly,
GO and KEGG pathway enrichment analyses were carried out
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using the DAVID platform (https://david.ncifcrf.gov/) [26].
The GO analysis terms contain molecular function (MF), cellu-
lar component (CC), and biological process (BP). The GO
enrichment results and KEGG pathways were visualized
through the “GOplot package” in R software. We used p <
0:05 as the threshold for statistical significance.

2.7. PPI (Protein-Protein Interaction) Network Construction
and KeyModules Identification. The PPI network of the differ-
entially expressed genes was established through the STRING
database (http://www.string-db.org/) [27]. The results gained
by STRING database were further analyzed and visualized
using Cytoscape 3.7.1 software. The key modules were discov-
ered using Molecular Complex Detection (MCODE) plug-in
based on MCODE score and node counts.

2.8. RNFs-Based Prognostic Model Construction. We per-
formed univariate Cox regression analysis to identify the
prognosis-related RNF genes using the “survival” package
in R software. p < 0:05 was used as the statistically signifi-
cant. Lasso Cox regression analyses were further performed
for uncovering prognostic signatures using the “glmnet”
package in R software. The risk score for each sample was
calculated according to RNFs expression (Expi) and coeffi-
cient value (βi): Risk score = exp (0:20∗RNF220 + 0:33∗
RNF25 + 0:04∗TRIM25 + 0:11∗BMI1 + 0:057∗RNF216P
1 + 0:007∗RNF115 + 0:019∗TRAIP + 0:12∗RNF2 +
0:039∗RNF157 + 0:14∗RNF145 + 0:21∗RNF19B).

According to the median of risk score values, HCC patients
were divided into high-risk and low-risk groups for the subse-
quent analyses. The “survival” package was utilized to calculate
the differences of overall survival (OS) time between the two
groups. Besides, the ROC curve analysis was also performed
to evaluate the prognostic capability of this model using the
“survivalROC” package in R software.

2.9. Genomic Analysis and Drug Prediction for Prognostic RNFs.
The mutation of RNF genes was analyzed through cBioPortal
(https://www.cbioportal.org/), which is a public platform used
for analyzing and visualizing the cancer genomics datasets.
All data for RNFs-related drugs were analyzed through Phar-
macoDB (https://pharmacodb.pmgenomics.ca/) [28].

2.10. Detection of the Risk Genes in Protein Level. The pro-
tein expression level of these risk genes was evaluated
through the Human Protein Atlas (HPA) database for
further verifying the transcriptional level of the related genes
(https://www.proteinatlas.org/).

2.11. Statistical Analyses. Statistical analyses were conducted
using the SPSS software (Inc., Chicago, IL) or R software.
Univariate and multivariate Cox analyses were utilized to
identify independent prognostic factors. The overall survival
(OS) and disease-free survival (DFS) curves were calculated
using Kaplan-Meier analysis, and the statistical significance
between different groups was calculated by log-rank test. A
Student’s t-test was used to calculate the significance
between two groups of the indicated samples. p < 0:05 was
used as statistically significant.

3. Results

3.1. The Differently Expressed RNFs Were Identified between
Hepatic Normal and Tumorous Tissues. To study the roles of
RNFs in HCC, we downloaded the transcriptomic file from
the TCGA-LIHC dataset consisting of 50 normal tissue sam-
ples and 374 HCC samples. Then, we screened the differently
expressed RNFs using the cut-off values of FDR < 0:05 and j
log2FCj ≥ 1. Totally, 105 upregulated and 2 downregulated
RNF genes were uncovered (Figure 1(a)). The expression pro-
file of these identified RNFs is described in Figure 1(b).

3.2. GO and KEGG Pathway Analyses Were Performed with
the Differently Expressed RNFs. To analyze the function of
these identified RNFs, we conducted GO enrichment and
KEGG pathway analyses. GO analyses categorized RNFs into
three groups including GOBP, GOCC, and GOMF. The top
10 enriched GOBP, GOCC, and GOMF are presented in
Figures 2(a)–2(c), respectively. Based on the GO analyses, dif-
ferently expressed RNFs weremainly involved in protein poly-
ubiquitination, ubiquitin ligase complex, and zinc-ion binding
pathways. Furthermore, KEGG analysis suggest that the top 5
enriched pathways were “ubiquitin mediated proteolysis”,
“Notch signaling pathway”, “signaling pathways regulating
pluripotency of stem cells”, “pathways in cancer”, and “protein
processing in endoplasmic reticulum” (Figure 2(d)). These
pathways are tightly associated with protein ubiquitination
and tumorigenesis. Thus, these enrichment analyses of these
differently expressed RNFs in HCC revealed that the alter-
ations of ubiquitination network caused by these RNFs con-
tribute to HCC development and progression.

3.3. The PPI Network Was Constructed Using the Differently
Expressed RNFs. Next, we explored the critical protein associ-
ation networks of these 107 RNFs. STRING platformwere uti-
lized to establish PPI network for exploring the interactions
among these RNFs. We obtained 103 nodes and 548 edges
using a p value of PPI concentration<1.0e-16 as selection cri-
teria. The top two enriched clusters in the PPI network were
identified using the Cytoscape with MCODE plug-in
(Figures 2(e) and 2(f)). The function of each cluster was next
analyzed by pathway enrichment analysis. The results revealed
that Module 1 was mainly involved in ubiquitin-mediated
proteolysis. Module 2 mainly participated in regulating pluri-
potency of stem cells and ER (endoplasmic reticulum)-related
protein processing. Thus, the PPI analysis confirmed that
RNFs play an important role in protein ubiquitination, which
is tightly associated with HCC progression.

3.4. Recognition of Prognosis-Related RNFs and Establishment
of Prognostic Model in HCC. To explore the prognostic value
of the differently expressed RNFs, the univariate Cox regres-
sion analyses were conducted using corresponding TCGA
clinical data. As shown in Supplementary Figure S1, 29
candidate RNFs were found to be associated with the overall
survival (OS) of HCC patients. Moreover, we performed
Lasso Cox regression analysis to select the prognostic RNFs
for constructing prognostic model (Figures 3(a) and 3(b)).
According to the integrated prognostic relevance, 11 RNF
genes (RNF220, RNF25, TRIM25, BMI1, RNF216P1,
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RNF115, RNF2, TRAIP, RNF157, RNF145, and RNF19B)
were selected to construct a risk score model. We calculated
the risk score for each patient according to expression values
of 11 RNFs as follows: Risk score = exp ð0:20∗RNF220 +
0:33∗RNF25 + 0:04∗TRIM25 + 0:11∗BMI1 + 0:057∗RNF216
P1 + 0:007∗RNF115 + 0:019∗TRAIP + 0:12∗RNF2 + 0:039∗
RNF157 + 0:14∗RNF145 + 0:21∗RNF19BÞ. According to
results from Lasso-penalized Cox regression, all these RNFs
had positive coefficients and acted as independent prognostic
factors for OS of the patients with HCC.

Based on the median of risk score values, the patients with
HCC were divided into low-risk and high-risk groups. Com-
pared with the patients in the low-risk, HCC patients in high-
risk group had a worse outcome by OS analysis in TCGA
cohort (Figure 3(c)). In addition, we employed the ROC analy-
sis to evaluate the prognostic ability of the risk model. As shown
in Figure 3(d), the areas under the ROC curve (AUC) of our
model were 0.778, 0.675 and 0.698 at 1 year, 3 years, and 5 years,
respectively, using the data of TCGA cohort. This result sug-
gests that the risk score model is more accurate in the short-
term follow-up. Moreover, the risk scores of these patients were
ranked and exhibited according to risk score (Figure 3(e)). The
survival status of each HCC patient in TCGA-LIHC cohort was
shown in Figure 3(f). Consistently, there were shorter OS time
and higher mortality rates in the patients with high-risk than
those in the low-risk (Figure 3(f)). These data confirmed the

utility of our risk score model in evaluating the prognosis of
HCC patients. Additionally, the expression profiles of these
prognosis-related RNFs between the two groups were presented
in Figure 3(g). The result revealed that all the prognostic RNFs
were upregulated in the HCC patients with high-risk.

3.5. Independent Prognostic Value of the Risk Score Model
Was Analyzed in HCC. Subsequently, we performed univar-
iate Cox regression analysis to explore the relations of clinic-
pathological characteristics and the risk score with prognosis
in the TCGA-LIHC patients. As shown in Figure 4(a), tumor
stage and risk score were tightly related to the overall sur-
vival. The following multivariate Cox regression analysis fur-
ther confirmed that risk score and TNM stage were two
independent prognostic factors of survival for patients with
HCC (Figure 4(b)). Next, we compared the AUC values of
these clinical factors at 1-year, 3-year, or 5-year. The results
indicated that our model more precisely forecasted 1-year
OS rate compared to TNM stage (Figures 4(c)–4(e)).

3.6. The Prognostic Signature Was Validated for OS Prediction
in ICGC Cohort. For confirming the predictive power of our
model, HCC patients with clinical information from the ICGC
were enrolled as a validation cohort. Based on the expression
level of the 11 RNFs, the risk score of each patient were calcu-
lated using the risk score formula. Then, we used the median
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of risk score values as cut-off and subdivided the patients into
high-risk and low-risk groups. We analyzed the difference of
survival of these two groups by survival analysis and found
that patients with high-risk had a shorter OS compared with
the patients with low risk (Figure 4(f)). Then, the risk scores
of these HCC patients were ranked and exhibited in
Figure 4(g). The survival status of each ICGC-HCC patient
was estimated. As shown in Figure 4(h), there were shorter
OS time and higher mortality rates in the patients with high-
risk than those in the low-risk group. ROC curve was further
calculated and the AUC for the OS model at 1-year and 3-
year were 0.766 and 0.662, respectively, in ICGC cohort
(Figure 4(i)). Together, these data indicated that our risk score
model is useful for estimating the outcome of ICGC HCC
patients. Together, our risk score model based on RNF gene
expression precisely predicts the prognosis of HCC patients.

3.7. The Relationships between the Prognosis-Related RNFs
and Clinicopathological Features Were Analyzed. Next, we
explored the associations of these prognostic RNFs and clin-
icopathological features, including TNM stage and tumor
grade. As shown in Figure 5(a), nine RNFs (RNF220,
RNF25, TRIM25, RNF216P1, RNF115, TRAIP, RNF2,
RNF157, and RNF145) were found to be upregulated in
HCC patients with advanced grade (p < 0:05). Moreover,
six RNFs were increased in patients with advanced stage,
including RNF220, BMI1, RNF216P1, TRAIP, RNF145,
and RNF19B (Figure 5(b)). Importantly, the risk scores of
patients with advanced grade or stage are much higher, indi-
cating that our prognostic model was associated with both
tumor grade and TNM stage.

The genetic changes of these RNFs were further determined
using the cBioPortal website. Mainly, the genetic alterations of
these RNF genes include truncating mutation, missense muta-
tion, deep deletion, structural variant, and amplification. The
top 5 most significantly altered genes are RNF115, RNF2,
RNF157, TRIM25, and TRAIP in HCC samples (Figure 5(c)).

3.8. The Protein Levels of Prognostic RNFs Expression Were
Analyzed through the HPADatabase.Wenext assessed the pro-
tein levels of the 11 prognostic RNFs through the HPA data-
base. We found that eight RNFs including RNF220, RNF25,
TRIM25, BMI1, RNF115, TRAIP, RNF157, and RNF19B were

overexpressed inHCC cells compared to normal cells by immu-
nohistochemistry (IHC) staining (Figures 6(a)–6(h)). Finally,
the staining of RNF2 and RNF145 proteins was missing and
needs further analysis.

3.9. Functional Study of the Roles of BMI1 in HCCCells.Due to
the prognostic values of the 11 RNFs for HCC patients, we
next explored the potential drugs for these RNFs through the
PharmacoDB database. Only BMI1 was identified as small
molecule targets among these prognostic RNFs. As a core ele-
ment of polycomb repressive complex 1(PRC1), BMI1 has
been found to be associated with various human cancers and
become an attractive therapeutic target. One of the specific
BMI1 inhibitors, PTC-209, displays high potency in repressing
the growth of some types of cancer cells [29, 30]. However, it is
unknown whether PTC-209 shows the potential capability in
anti-HCC therapy.

Survival analysis using TCGA-LIHC cohort revealed that
the high BMI1 expression was associated with shorter OS
and DFS in the HCC patients (Figure 7(a)). Moreover, the
expression of BMI1 on 18 paired cancerous andmatched non-
cancerous sections of HCC tissues from our center was evalu-
ated by immunoblotting. As shown in Figure 7(b), BMI1 was
upregulated in cancerous tissues compared to peritumoral tis-
sues. Importantly, the MTS assay showed that the prolifera-
tion of HCC cells was significantly repressed by PTC-209
treatment (Figures 7(c)–7(e)). To further confirm our results,
we randomly selected SMMC-7721 and HepG2 cells to per-
form colony formation assay. Consistently, colony formation
of HCC cells was significantly decreased upon PTC-209 treat-
ment (Figure 7(f)). Together, these data indicated that PTC-
209 inhibits HCC cell proliferation and growth in vitro.

To explore the mechanisms underlying BMI1-induced
HCC progression, we analyzed the differentially expressed
genes in liver tissues from BMI1-knockout mice
(GSE97172). As shown in Figure 7(g), 624 genes were found
to be differentially expressed. KEGG analysis suggested that
immune system-related pathways were significantly altered
upon BMI1 loss (Figure 7(h)). These results indicated that
BMI1 might be involved in regulating tumor immune micro-
environment. Tumor-infiltrating lymphocytes can be used as
an independent indicator of the survival and sentinel lymph
node status in human cancers [31]. Therefore, we analyzed
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whether BMI1 expression was correlated with the infiltration
of immune cells in HCC using TIMER website. The results
show that BMI1 expression has positive correlations with
CD8+ T cell, CD4+ T cell, neutrophil, B cell, and dendritic cell
infiltration levels while BMI1 expression is negatively associ-
ated with natural killer cell infiltration level (Figure 7(i)). We
also assessed the correlation between BMI1 expression and
immune checkpoint-related molecules, including PD-L1,
Galectin 9, HVEM, and IDO1, all of which are important
marker genes for cancer immune therapy [32]. As shown in
Figure 7(j), there were positive correlations between BMI1
expression level and the expression levels of these four marker
genes. Together, these data suggest that BMI1might be a novel
target in HCC immunotherapy.

4. Discussion

Metastasis and recurrence after resection are common for
HCC, which causes treatment failure and cancer-related death
[33–35]. Development of prognostic assessment systemwill be
favorable for follow-up after treatment, in order to attenuate
tumor progression caused by metastasis or relapse, especially
in patients with high-risk. Clinically, prognostic evaluation

includes tumor status, cancer-related symptoms, and liver
function of the patient [36]. Recently, with the improvement
of high-throughput technologies, it is possible to develop
molecular typing for cancer diagnosis and treatment. In the
present study, we identified RNF-based molecular biomarkers
and constructed a risk score model to forecast outcomes of
HCC patients using TCGA-LIHC cohort. We further vali-
dated the risk model using ICGC-LIHC dataset. Moreover,
we also explored the roles of a typical prognostic RNFs and
BMI1, in HCC progression. Recently, some latent biomarkers
and therapeutic targets have been identified for HCC by bioin-
formatics strategies. The eleven RNA-binding proteins (RBPs)
were screened to construct a prognostic model for indicating
overall outcomes of HCC patients [37]. A four-gene metabolic
signature predicting OS for HCC was built [38]. The immune-
related gene prognostic signature for HCC was also con-
structed [39]. Currently, the prognosis model based on the
RNFs of HCC has not been reported. Thus, our study deter-
mines the prognostic values of RNF genes in HCC and pro-
vides a new idea for HCC diagnosis and treatment.

Dysregulation of some RNFs leads to abnormal ubiquitina-
tion of the important proteins in tumor cells and drives tumor-
igenesis, including HCC [40]. Here, we aimed at studying the
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universal roles of RNF genes in forecasting OS ofHCCpatients.
Through screening differentially expressed genes between
HCC and normal tissues, total 107 RNFs were identified as
differentially expressed RNFs using TCGA cohort. Then, GO
enrichment and KEGG pathway analyses revealed that the
differentially expressed RNFs were greatly involved in
ubiquitin-mediated proteolysis. We uncovered 29 prognosis-
associated candidate RNFs by univariate Cox regression analy-
sis. With Lasso Cox regression, eleven RNFs genes (RNF220,
RNF25, TRIM25, BMI1, RNF216P1, RNF115, RNF2, TRAIP,
RNF157, RNF145, and RNF19B) were identified to construct
a risk score model. We confirmed the stability and reliability
of this model using ICGC data as the validation set. The results
suggested that the model is accurate for distinguishing HCC
patients with different survival outcomes. Univariate and mul-
tivariate analyses further confirmed that this prognosis model
could independently indicate overall prognosis of patients with
HCC. ROC curve also manifested that our model based on the
11 RNFs had a good predictive ability. These results suggest
that our risk model might be applied to screen high-risk
patients for personalized detection or follow-up.

Among the eleven RNF genes, the majority (RNF220,
RNF25, TRIM25, RNF115, BMI1, TRAIP, RNF2, RNF157,

RNF145, and RNF19B) have been reported to function in
ubiquitination and play roles in tumorigenesis. RNF220 is
associated with progression of leukemia or medulloblastoma
[41, 42]. RNF25 upregulates gefitinib resistance via promot-
ing ERK reactivation in EGFR-mutant NSCLC cells [43].
TRIM25 takes part in tumor growth, metastasis, and chemo-
resistance with its ubiquitin ligase activities [18, 44]. RNF115
is correlated with the prognosis of patients with lung adeno-
carcinoma or invasive breast cancer [45, 46]. As a master
regulator of DNA repair, dysfunction of TRAIP is associated
with tumor development and progression [47, 48]. Overex-
pression of RNF2 is positively correlated with progression
of many cancers, including HCC, melanoma, pancreatic
cancer, and gastric cancer [49].

BMI1 is a core element of the PRC1 complex which medi-
ates gene silencing via monoubiquitination of histone H2A.
The polycomb group (PcG) proteins encoding transcriptional
repressors are indispensable for maintenance of stem cell plur-
ipotency [50, 51]. The PcG proteins form multimeric protein
complexes to regulate transcription of development-related
genes, which are called as polycomb repressive complexes
(PRCs) [52]. Currently, two major PRCs have been identified,
PRC1 and PRC2, both of which modify chromatin to stably
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Figure 4: Validation of the reliability of the risk score model. (a) Univariate Cox regression analysis of the indicators. (b) Multivariate Cox
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the TCGA HCC cohort. (f) Kaplan-Meier curve of ICGC patients was analyzed according to the risk score. (g) ICGC-LIHC patients were
divided into high-risk and low-risk groups based on the median of risk score. (h) Scatter plots displayed the relationships of risk score status
with the survival outcome in the ICGC HCC patients. (i) Time-dependent ROC curves were calculated according to risk scores in the ICGC
HCC cohort.

10 Journal of Oncology



5
RNF220 (p = 0.0002)

G
en

e e
xp

re
ss

io
n 4

3

2

1

0
G1+G2 G3+G4

Grade Grade

5
RNF25 (P = 0.0079)

G
en

e e
xp

re
ss

io
n 4

3

2

1

0
G1+G2 G3+G4

5
TRIM25 (P = 0.0069)

G
en

e e
xp

re
ss

io
n 4

3

2

1

0
G1+G2 G3+G4

Grade

RNF216P1 (P < 0.0001)

G
en

e e
xp

re
ss

io
n

4

3

2

1

0
G1+G2 G3+G4

Grade

5
RNF115 (p < 0.0001)

G
en

e e
xp

re
ss

io
n 4

3

2

1

0
G1+G2 G3+G4

Grade

5
RNF157 (p = 0.0103)

G
en

e e
xp

re
ss

io
n 4

3

2

1

0
G1+G2 G3+G4

Grade

TRAIP (p < 0.0001)
G

en
e e

xp
re

ss
io

n
4

3

2

1

0
G1+G2 G3+G4

Grade Grade

RNF2 (p = 0.0026)

G
en

e e
xp

re
ss

io
n

4

3

2

1

0
G1+G2 G3+G4

RNF145 (p = 0.0005)

G
en

e e
xp

re
ss

io
n

6

4

2

0
G1+G2 G3+G4

Grade

Risk score (p = 0.0001)

G
en

e e
xp

re
ss

io
n

6

4

2

0
G1+G2 G3+G4

Grade

(a)

0
I+II

1

2

G
en

e e
xp

re
ss

io
n

3

4

5

III+IV

Stage

RNF220 (p = 0.0056)

0
I+II

2

G
en

e e
xp

re
ss

io
n

4

6

III+IV

Stage

BMI1 (p = 0.0109)

0
I+II

1

2

G
en

e e
xp

re
ss

io
n

3

4

III+IV

Stage

RNF216P1 (p = 0.0119)

0
I+II

1

2
G

en
e e

xp
re

ss
io

n
3

4

III+IV

Stage

TRAIP (p = 0.0007)

0
I+II

2

G
en

e e
xp

re
ss

io
n

4

6

III+IV

Stage

RNF145 (p < 0.0001)

0
I+II

2

1

3

G
en

e e
xp

re
ss

io
n 4

5

III+IV

Stage

RNF19B (p = 0.0291)

0
I+II

2

G
en

e e
xp

re
ss

io
n

4

6

III+IV

Stage

Risk score (p = 0.0003)

(b)

Figure 5: Continued.

11Journal of Oncology



RNF220 0.8%
0.3%

2%
1.1%
0.3%
10%

1.4%
7%
3%

1.1%
0.6%

RNF25
TRIM25
BMI1
RNF216P1
RNF115
TRAIP
RNF2
RNF157
RNF145
RNF19B

Genetic alteration

Deep mutation Amplification
Structural variant

No alterationsTruncating mutation

Missens mutation

(c)

Figure 5: The relevance between prognostic RNFs and clinicopathologic features was analyzed. (a) The association of these prognostic RNFs
with tumor grade was evaluated. (b) The relationship between prognostic RNFs and tumor stage was analyzed. (c) Oncoplot for each
prognostic RNF gene.

Normal tissue

RNF220
Patient ID: 2429
Hepatocytes
Staining:

Medium
Intensity:

Moderate
Quantity:

75%-25%
Location:

Cytoplasmic/
membranous

RNF220
Patient ID: 2280
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

75%-25%
Location:

Cytoplasmic/
membranous

Tumor tissue Normal tissue

(a) (b)

(c) (d)

(e) (f)

(g) (h)

RNF25
Patient ID: 3222
Hepatocytes
Staining:

Low
Intensity:

Weak
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

RNF25
Patient ID: 2766
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

TRIM25
Patient ID: 1846
Hepatocytes
Staining:

Not detected
Intensity:

Negative
Quantity:

None
Location:

None

TRIM25
Patient ID: 879
Tumor cells
Staining:

Low
Intensity:

Weak
Quantity:

75%-25%
Location:

Cytoplasmic/
membranous

BMI1
Patient ID: 3222
Hepatocytes
Staining:

Low
Intensity:

Weak
Quantity:

75%-25%
Location:

Nuclear

BMI1
Patient ID: 2279
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

> 75%
Location:

Nuclear

RNF115
Patient ID: 2429
Hepatocytes
Staining:

Medium
Intensity:

Moderate
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

RNF115
Patient ID: 2279
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

TRAIP
Patient ID: 2429
Hepatocytes
Staining:

Low
Intensity:

Weak
Quantity:

75%-25%
Location:

Cytoplasmic/
membranous

TRAIP
Patient ID: 3196
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

RNF157
Patient ID: 2429
Hepatocytes
Staining:

Low
Intensity:

Weak
Quantity:

75%-25%
Location:

Cytoplasmic/
membranous

RNF157
Patient ID: 3196
Tumor cells
Staining:

High
Intensity:

Strong
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

RNF19B
Patient ID: 1720
Hepatocytes
Staining:

Low
Intensity:

Weak
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

RNF19B
Patient ID: 2766
Tumor cells
Staining:

Medium
Intensity:

Moderate
Quantity:

> 75%
Location:

Cytoplasmic/
membranous

Tumor tissue

Figure 6: The protein levels of the prognostic RNFs were evaluated in the HPA database. (a–h) IHC staining of prognostic RNF in HCC
tumor tissues and normal liver tissues.

12 Journal of Oncology



100

80
n (high) = 124
n (low) = 124

n (high) = 124
n (low) = 12460

40

20 Logrank p = 0.0043
HR (high) = 1.8 Logrank p = 0.048

HR (high) = 1.4

Pe
rc

en
t s

ur
vi

va
l (

%
)

0
0 20 40 60

TCGA (overall survival) TCGA (disease free survival)

Months
80 100

Low BMI1
High BMI1

120

100

80

60

40

20

Pe
rc

en
t s

ur
vi

va
l (

%
)

0
0 20 40 60 80 100 120

(a)

6
p = 0.0045

4

2

Re
la

tiv
e B

M
I1

pr
ot

ei
n 

le
ve

l

0
P T

1P

45 BMI1
𝛽-Actin

BMI1
𝛽-Actin

BMI1
𝛽-Actin

45

45
45

45
45
(Kd)

1T 2P 2T 3P 3T 4P 4T 5P 5T 6P 6T

7P 7T 8P 8T 9P 9T 10
P

10
T

11
P

11
T

12
P

12
T

13
P

13
T

14
P

14
T

15
P

15
T

16
P

16
T

17
P

17
T

18
P

18
T

(b)

1.0
SMMC-7721

0.8
0.6
0.4
0.2

0
0 1 2 3 4 5 6

Days

A
bs

or
ba

nc
e

(O
D

 =
 4

90
 n

m
)

p < 0.01

Control
0.5 𝜇M PTC-209
1 𝜇M PTC-209
5 𝜇M PTC-209
10 𝜇M PTC-209

(c)

0.40
Huh 7

0.35
0.30
0.25
0.20
0.15

0 1 2 3 4 5 6

Days

A
bs

or
ba

nc
e

(O
D

 =
 4

90
 n

m
)

p < 0.01

Control
0.5 𝜇M PTC-209
1 𝜇M PTC-209
5 𝜇M PTC-209
10 𝜇M PTC-209

(d)

p < 0.01

1.5
HepG2

1.0

0.5

0
0 1 2 3 4 5 6

Days

A
bs

or
ba

nc
e

(O
D

 =
 4

90
 n

m
)

Control
0.5 𝜇M PTC-209
1 𝜇M PTC-209
5 𝜇M PTC-209
10 𝜇M PTC-209

(e)

Figure 7: Continued.

13Journal of Oncology



PTC-209

H
ep

G
2

SM
M

C-
77

21

0 𝜇M 0.5 𝜇M 1 𝜇M
400

HepG2

300

200

100

0

Co
nt

ro
l

0.
5 
𝜇

M
 P

TC
-2

09

1 
𝜇

M
 P

TC
-2

09

Co
lo

ny
 n

um
be

r ⁎⁎⁎⁎
300

SMMC-7721

200

100

0

Co
nt

ro
l

0.
5 
𝜇

M
 P

TC
-2

09

1 
𝜇

M
 P

TC
-2

09

Co
lo

ny
 n

um
be

r

⁎⁎⁎⁎

(f)

6

4

2

0

–4 –2 0 2 4

LogFC

–L
og

10
 (a

dj
.P

va
lu

e)

Up
Down
n.s.

(g)

Top10 of pathway enrichment

Systemic lupus erythematosus

Staphylococcus aureus infection

Prion diseases

PPAR signaling pathway

Phagosome

Herpes simplex infection

Complement and coagulation cascades

Circadian rhythm

Bile secretion

Antigen processing and presentation

Fold enrichment
4 8 12 16

5
6
7

8
9

Gene number

–Log10 (Qvalue)

2.5

2.0

1.5

1.0

(h)

6

6

T cell CD4+_EIPC

B cell_TIMER Macrophage_TIMER NK cell_EIPC

T cell CD8+_TIMER
Myeloid dendritic

cell_TIMER

5
4
3
2

4

2

0 0.5 1.0

Infiltration level

Re
la

tiv
e B

M
I 1

 ex
pr

es
sio

n
Re

la
tiv

e B
M

I 1
 ex

pr
es

sio
n 

1.5 0 0.5 1.0

Infiltration level

1.5 0 0.02 0.04

Infiltration level

0.06

0 0.5 1.0

Infiltration level

1.5 2.0 0.5 1.0

Infiltration level

1.5 2.00 0.1 0.2

Infiltration level

0.3

(i)

9

8

7

6

5

4

3

2

1 2 3 4 5 6

Relative BMI1 mRNA level

Re
la

tiv
e g

al
ec

tin
-9

 m
RN

A
 le

ve
l p-value = 3.8e–05

R = 0.21
7

6

5

4

3

1 2 3 4 5 6

Relative BMI1 mRNA level

Re
la

tiv
e H

V
EM

 m
RN

A
 le

ve
l p-value = 0.0064

R = 0.144

3

2

1

Re
la

tiv
e P

D
-L

1 
m

RN
A

 le
ve

l

0
1 2 3 4 5 6

Relative BMI1 mRNA level

6

5

7

4

3

2

1

Re
la

tiv
e I

D
O

1 
m

RN
A

 le
ve

l

0

21 3 4 5 6

Relative BMI1 mRNA level

p-value = 0.0063
R = 0.14

p-value = 0.0034
R = 0.15

(j)

Figure 7: Functional studies of BMI1 in HCC progression. (a) Kaplan-Meier survival analysis for overall survival and disease-free survival of
the TCGA-LIHC patients based on BMI1 mRNA level. (b) Western blot analysis of BMI1 expression in 18 individual paired HCC tissues.
(c–e) Cell proliferation assay was performed in HCC cells after PTC-209 treatment. (f) Colony formation assay was conducted in HCC cells
treated with PTC-209. (∗∗∗∗p < 0:0001) (g) Volcano plot for DEGs between BMI1 wild-type and BMI1 knockout mice liver tissues using
GSE97172 dataset. (h) KEGG pathway analysis for DEGs identified in (g). (i) The correlation of BMI1 expression with immune
infiltration level was analyzed in HCC tissues. (j) Coexpression analysis between the expression level of PD-L1, Galectin 9, HVEM, IDO,
and BMI1 using TCGA-LIHC data.

14 Journal of Oncology



silence transcription at targeted genes [53]. As an E3 ubiquitin
ligase, BMI1 works with its partners to catalyze the PcG-
dependent ubiquitination of histone H2A in order to modulate
transcription [54]. In tumorigenesis, BMI1 plays important
roles in promoting cancer stemness, leading to tumor metasta-
sis, recurrence, and drug resistance [55]. Thus, the development
of small molecule inhibitors against BMI1 will offer potential
opportunities for cancer treatment. PTC-209, as an important
inhibitor of BMI1, downregulated BMI1 by reducing mRNA
level. PTC-209 exerts inhibitory effects for several cancers, such
as breast cancer, non-small cell lung cancer, and acute myeloid
leukemia [30, 56, 57]. However, the effect of PTC-209 in anti-
HCC is unclear. Here, we found that BMI1 is critical in con-
structing the risk score model. Our further studies show that
BMI1 is upregulated in HCC tissues and the upregulation of
BMI1 is associated with poor outcomes of HCC patients, con-
firming that BMI1 plays important roles in hepatocarcinogen-
esis. Importantly, we found that PTC-209 significantly inhibits
HCC cell growth and proliferation. Thus, our results identify
the inhibition of BMI1 as a potential strategy for HCC treat-
ment. We also analyzed the downstream targets of BMI1 by
comparing expression profiles of BMI1 wild-type and BMI1-
knockout tissues. Strikingly, we found that these targets are
enriched in immune-related events. Moreover, the expression
of BMI1 correlates with immune cells’ infiltration level in
HCC, suggesting that BMI1might be a novel target for improv-
ing HCC immune therapy.

Recently, the proteolysis targeting chimeras (PROTACs)
technology attracts growing attention of scientific institutes and
pharmaceutical companies [58]. PROTACs are designed based
on the ubiquitin-proteasome system to induce the degradation
of targeted protein. Briefly, the ligands in PROTACs combine
with E3 ligase and the targeted protein, respectively, and the
linker connects the two ligands and pulls them closer together.
PROTACs show positive results for degrading the “undrug-
gable” oncoproteins which lack of binding pockets by small mol-
ecule inhibitors [59]. The PROTACs-related new drugs are
tested in clinical trials for cancer therapy [59]. Due to the impor-
tance of RNF protein-related ubiquitination in tumorigenesis, it
is possible that the PROTACs based on RNFs could be useful for
cancer treatment. This will be further studied in the future.

In addition, some limitations should be addressed in the
future to increase the possibility of our risk model in HCC
diagnosis. First, our study was a retrospective study based
on the public datasets. It will be better to validate our model
using data from prospective clinical trials. Second, the
detailed molecular mechanisms of the RNF genes in hepato-
cellular carcinogenesis are not fully understood. Moreover,
discoveries of effective drugs for targeting prognostic RNFs
will be more helpful for HCC treatment by in vivo experi-
ments and clinical trials. In the future study, we will try to
address this issue in subsequent studies.

In summary, using a systematic and comprehensive bio-
marker discovery and validation approach, we uncovered that
an RNF-related gene signature could act as a prognostic indi-
cator for evaluating prognosis of HCC patients and guide
HCC treatment. We also identified that BMI1 is tightly associ-
ated with HCC progression, which might be a new therapeutic
target for HCC.
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