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e purpose of this study was to identify the potential diagnostic biomarkers in hepatocellular carcinoma (HCC) by machine
learning (ML) and to explore the signi�cance of immune cell in�ltration in HCC. From GEO datasets, the microarray datasets of
HCC patients were obtained and downloaded. Di�erentially expressed genes (DEGs) were screened from �ve datasets of
GSE57957, GSE84402, GSE112790, GSE113996, and GSE121248, totalling 125 normal liver tissues and 326 HCC tissues. In order
to �nd the diagnostic indicators of HCC, the LASSO regression and the SVM-RFE algorithms were utilized. e prognostic value
of VIPR1 was analyzed. Finally, the di�erence of immune cell in�ltration between HCC tissues and normal liver tissues was
evaluated by CIBERSORT algorithm. In this study, a total of 232 DEGs were identi�ed in 125 normal liver tissues and 326 HCC
tissues. 11 diagnostic markers were identi�ed by LASSO regression and SVM-RFE algorithms. FCN2, ECM1, VIRP1, IGFALS, and
ASPG genes with AUC>0.85 were regarded as candidate biomarkers with high diagnostic value, and the above results were
veri�ed in GSE36376. Survival analyses showed that VIPR1 and IGFALS were signi�cantly correlated with the OS, while ASPG,
ECM1, and FCN2 had no statistical signi�cance with the OS. Multivariate assays indicated that VIPR1 gene could be used as an
independent prognostic factor for HCC, while FCN2, ECM1, IGFALS, and ASPG could not be used as independent prognostic
factors for HCC. Immune cell in�ltration analyses showed that the expression of VIPR1 in HCC was positively correlated with the
levels of several immune cells. Overall, VIPR1 gene can be used as a diagnostic feature marker of HCC and may be a potential
target for the diagnosis and treatment of liver cancer in the future.

1. Introduction

Liver cancer is the sixth most common cancer in the world
and the fourth leading cause of cancer death [1]. e main
risk factors for primary liver cancer are viral infection
(mainly HBV and HCV), alcoholic and nonalcoholic stea-
tohepatitis, a¦atoxin and parasitic infections, etc. Hepato-
cellular carcinoma (HCC) is the most common primary liver
malignancy, accounting for about 75% of all liver cancers
[2, 3]. Although some progresses have been made in the
diagnosis and treatments of HCC [4], more than 70%-80% of
patients are still diagnosed with liver cancer at a later stage,
and more than 15% of patients have extrahepatic spread at

the time of diagnosis, which leads to a poor outcome [5–7].
Up to now, early surgical resection of liver cancer is still the
most important and e�ective treatment. If the tumor is
detected at an early stage and surgically removed, the 5-year
survival rate of patients can exceed 70% and the prognosis is
better [8]. In recent decades, alpha-fetoprotein (AFP) has
been applied for HCC diagnosis [9]. e abnormal level of
AFP in plasma is closely related to the malignancy of liver
cancer, but due to insu©cient sensitivity and speci�city, the
e�ect of early diagnosis of liver cancer is still not ideal [8]. In
addition, AFP also increases in other benign and malignant
diseases, such as other forms of chronic liver disease, other
malignant tumors, pregnancy, and so on [7, 9]. So far,
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specific biomarkers are still needed to improve the accurate
detection of early or very early liver cancer [9]. )erefore, it
is particularly important for the early diagnosis of HCC and
the search for specific diagnostic markers.

In recent years, bioinformatics has developed rapidly
in the field of medicine. Comprehensive bioinformatics
analysis and microarray technology can be used to
identify various disease-related genes and their biological
functions, which is helpful to clarify the potential
mechanisms of disease occurrence and development
[10–13]. However, with the increase of the amount and
complexity of cancer omics research data, cutting-edge
technologies such as ML algorithms have been developed
to deal with the increasingly large and complex cancer and
other multiomics data [14, 15]. ML is a rapidly growing
core subfield of artificial intelligence (AI), which enables
computer technology to learn from data processing and
selfimproves to predict results without explicit pro-
gramming [16, 17]. )ere are two goals for the use of ML
in medical biology: the first is to make accurate pre-
dictions in the absence of experimental data and to guide
the follow-up research work through these predictions;
the second is to use machine learning to deepen our
understanding of medical biology [18]. Today, ML is
widely recognized as a significant innovation and a pio-
neering method in the field of cancer multiomics data
analysis. )is method, which seeks to predict, diagnose,
categorize, and identify biomarkers, plays a vital role in
cancer research. )e combination of ML and traditional
bioinformatics is used to classify and identify diagnostic
biomarkers of cancer, which can greatly improve the
accuracy of identifying biomarkers of cancer and provide
new guidance for the early diagnosis and treatment of
cancer [14, 15, 19].

We downloaded several HCC microarray datasets
from the GEO database for the identification of DEGs
between HCC tissues and nontumor tissues and combined
with ML algorithms to identify diagnosis biomarkers in
DEGs for further research. Our findings suggested VIPR1
as a novel diagnostic and prognostic biomarker for HCC
patients.

2. Materials and Methods

2.1. DataDownload and Processing. )emicroarray datasets
of HCC samples were downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov). After screening, GSE57957,
GSE84402, GSE112790, GSE113996, GSE121248, and
GSE36376 datasets were included in our research (Table 1).
Among them, GSE57957 included 39 normal specimens and
39 liver cancer specimens, and the platform was from
GPL10558; GSE84402 included 14 normal specimens and 14
liver cancer tissues, and the platform was from GPL570;
GSE112790 included 15 normal specimens and 183 liver
cancer tissues, and the platform was from GPL570;
GSE113996 included 20 adjacent nontumor tissues and 20
liver cancer tissues, and the platform was from GPL16043;
GSE121248 included 37 adjacent tissues and 70 liver cancer
tissues, and the platform was from GPL570; and GSE36376

included 193 adjacent nontumor tissues and 240 liver cancer
tissues, and the platform was from GPL10558. Following the
instructions in the platform file, the probes were renamed to
their corresponding gene terms, and the samples were
separated into tumor and normal subgroups. Using the
limma and SVA packages of R software, the data of
GSE57957, GSE84402, GSE112790, GSE113996, and
GSE121248 chips were collected into a metadata queue and
corrected in batches. )e experimental group consisted of
125 cases of nontumor liver tissues and 326 cases of HCC
liver tissues. )e verification group consisted of the
GSE36376 dataset. )e clinical data of HCC patients were
downloaded from TCGA datasets.

2.2. Screening of Differentially Expressed Genes (DEGs).
Using the limma package of R software, the experimental
group microarray datasets (GSE57957, GSE84402,
GSE112790, GSE113996, and GSE121248) were filtered with
|log FC|≥ 1.0 and adj. P.val＜ 0.05 as the thresholds to
obtain DEGs. DEGs were visually drawn with heat map and
volcano map through the pheatmap and ggplot2 packages of
R software.

2.3. Functional Enrichment Analyses of DEGs. Gene Ontol-
ogy (GO) is the most comprehensive gene function database
at present. To explore the biological pathways and functions
of related genes, KEGG can be used for biological in-
terpretation of genomic sequences and other high-
throughput data [20] and can provide additional in-
formation about how genes interact in pathways [21].
Disease Ontology (DO) integrates data about human dis-
eases. It can be used to annotate the human genome and
better show the characteristics of current human diseases to
see which diseases are enriched for differential genes
[22–24]. In this study, we used the clusterProfiler package to
carry out GO, KEGG, and DO enrichment analyses of DEGs
under the conditions of P-value< 0.05 and q-value< 0.05 to
understand the biological functions and involved diseases
of DEGs.

2.4. Gene Set Enrichment Analysis (GSEA). Enrichment
analysis using GSEA was performed in order to identify the
functional items that differed most significantly between the
HCC group and the control group. )e GSEA enrichment
analysis of the gene set was performed by the use of the
clusterProfiler package of the R software. )e

Table 1: Characteristics of mRNA expression profiles of HCC.

GEO series Expression type Platform
Sample number
Normal Tumor

GSE57957 mRNA GPL10558 39 39
GSE84402 mRNA GPL570 14 14
GSE112790 mRNA GPL570 15 183
GSE113996 mRNA GPL16043 20 20
GSE121248 mRNA GPL570 37 70
GSE3637 mRNA GPL10558 193 240
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c2.cp.kegg.v7.4.symbols.gmt gene set was chosen as the
enrichment analysis gene set.

2.5. Identification of Diagnostic Biomarkers by LASSO Re-
gression and SVM-RFE Algorithms. LASSO is a regression-
based algorithm performed through successive shrinking
operations that minimize regression coefficients to reduce
the possibility of overfitting [25], thereby reducing re-
dundancy and eliminating irrelevant genes from these an-
alyses [26]. SVM is one of the best choices for feature
selection, and it is also the most commonly used classifier for
the microarray data [27]. SVM-RFE is a feature selection
algorithm based on SVM [28]. In order to define the
minimum classification error and avoid overfitting, the
SVM-RFE algorithm is used to select the optimal genes
[27, 29]. )erefore, two ML algorithms have been widely
used to identify biomarkers and predict accurate and in-
terpretable models. In our research, we used glmnet package
to run LASSO regression algorithm and e1071 package to
build SVM model. )e value with the least cross-validation
error was found as the feature markers of HCC by two ML
algorithms of LASSO regression and SVM-RFE.

2.6. Diagnostic Value of Feature Biomarkers in HCC. )e
AUC value was analyzed to determine how valuable each
feature gene was as a diagnostic tool. )e ROC curve of each
feature gene was generated from the mRNA expression data
of 125 normal liver tissues and 326 HCC tissues in the
experimental group by using the pROC package of R
software. )e accuracy of disease diagnosis was judged by
AUC value, and genes with AUC> 0.85 were identified as
high diagnostic value genes for further research.

2.7. Validation of the Differential Expression and Diagnostic
Value. We used the GSE36376 dataset to verify expressions
and diagnostic values of the candidate genes in order to
further investigate whether the candidate genes exhibited
a diagnostic significance for HCC patients.

2.8. �e Correlations of Diagnostic Genes with OS and Clin-
icopathological Characteristics of Patients. Analyses of the
associations of diagnostic genes with overall survival and
clinicopathological characteristics of patients were per-
formed using data from the TCGA-LIHC transcriptome as
well as clinical information. Kaplan–Meier methods were
applied to investigate the connections between diagnostic
genes and OS, and the survminer package of the R software
was applied to develop the survival curves. Both of these
analyses were performed using the survival package. )e
univariate and multivariate assays were applied to in-
vestigate the predictive power of each diagnostic gene
in HCC.

2.9. Evaluation of Immune Cell Infiltration. In recent years,
we have come to the realization that immune cell infiltration
was involved in tumor progression. )e percentage of

infiltrating immune cells that can be found in malignant
tumors has a direct bearing on the growth and spread of
tumors, as well as the development of cancer and the pa-
tients’ overall prognoses [30, 31]. CIBERSORT is a bio-
informatics analysis tool that can evaluate the proportions of
immune cells [32]. )e content of immune cell infiltration
can be obtained from each sample, and then the correlations
between immune cells can be analyzed. When comparing
the amounts of immune cell infiltration seen in liver cancer
tissues and normal liver tissues, we employed the CIBER-
SORT algorithm to do our comparisons. Following the
exclusion of the data containing the value 0, the corrplot
package of the R software was utilized to generate the
pertinent heat map in order to identify correlations between
the immune cells contained within the samples.

2.9.1. Correlations between Diagnostic Genes and Immune
Cells. Spearman rank correlation analysis was applied for
the study of the relationships between the identified di-
agnostic markers and immune cells.

2.10. Statistical Analysis. All the above analyses were per-
formed using R (4.1.3) and Perl software. Comparisons
between two independent groups were analyzed by Student’s
t-test. )e survival curves were calculated by the
Kaplan–Meier method and the difference by the log-rank
test. Moreover, the prognostic significance of the related
genes was valued by Cox regression analysis. A P< 0.05 was
considered statistically significant.

3. Results

3.1. Identification of theDEGs inHCCDatasets. In this study,
the data of 125 normal liver tissues and 326 HCC tissues in
the experimental group (GSE57957, GSE84402, GSE112790,
GSE113996, and GSE121248) were analyzed by the use of the
limma package. A total of 232 DEGs were screened, of which
58 genes were significantly upregulated and 174 genes were
significantly downregulated (Figures 1(a) and 1(b)).

3.2. Functional Enrichment Analyses of DEGs. )e biological
functions of DEGs were analyzed by GO, KEGG, and DO
enrichment analyses. GO enrichment analysis showed that
BP of DEGs was enriched in terpenoid metabolic process,
olefinic compound metabolic process, amino acid metabolic
process, and small molecule catabolic process. )e CC is
mainly enriched in collagen-containing extracellular matrix;
MF was remarkably enriched in oxidoreductase activity
(Figure 2(a)). KEGG assays revealed that DEGs were mainly
concentrated in retinol metabolism, cytochrome P450,
chemical carcinogenesis-DNA adducts, various amino acids,
and other biological metabolic activities, etc (Figure 2(b)).
DO assays indicated that DEGs were involved in cancer-
related diseases such as hepatitis, nonsmall cell lung carci-
noma, liver cirrhosis, biliary tract cancer, chol-
angiocarcinoma, esophageal cancer, and so on (Figure 2(c)).
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3.3. GSEA Enrichment Analysis. )e GSEA enrichment
analysis showed that complement and coagulation cascades,
cytochrome P450, glycine serine and threonine metabolism,
retinol metabolism, and tryptophan metabolism were highly
active in normal liver tissues, while spliceosome, ribosome,
proteasome, DNA replication, and cell cycle were highly
active in HCC samples (Figures 3(a) and 3(b)).

3.4. Identification of Feature Biomarkers. We used two dif-
ferent ML algorithms of LASSO regression and SVM-RFE to
identify potential biomarkers of HCC. 26 genes were ob-
tained as diagnostic markers of HCC by using LASSO re-
gression algorithm to narrow the range of DEGs
(Figure 4(a)). 31 feature genes in DEGs were identified by the
SVM-RFE algorithm (Figure 4(b)). )en, 11 diagnostic
feature genes were obtained by intersecting the two sets of
algorithms (Figure 4(c)).

3.5. Diagnostic Value of Feature Biomarkers in HCC.
With AUC> 0.85 as the threshold, five diagnostic feature
genes of FCN2, ECM1, VIPR1, IGFALS, and ASPG were
identified for further research. As shown in the Figures 5(a)–
5(e), the AUC values of FCN2, ECM1, VIPR1, IGFALS, and
ASPG were 0.877 (95% CI 0.832-0.915), 0.870 (95% CI
0.827-0.908), 0.871 (95% CI 0.827-0.912), 0.856 (95% CI
0.811-0.899), and 0.857 (95% CI 0.813-0.898), which in-
dicated that these five feature genes had a high diagnostic
ability.

3.6. Validation of the Differential Expressions and Diagnostic
Values. In order to obtain more reliable results, we used the
GSE36376 dataset to validate our results. )e results showed
that the expressions of FCN2, ECM1, VIPR1, IGFALS, and
ASPG were significantly downregulated in HCC (P< 0.05,

Figures 6(a)–6(e)), and all of them had high diagnostic
values (AUC> 0.85) (Figures 6(f )–6(j)).

3.7. �e Correlations of Diagnostic Genes with OS and Clin-
icopathological Characteristics of Patients. First of all, we
analyzed the relationships between diagnostic genes and OS of
patients. )e results showed that the patients with lower ex-
pression of VIPR1 and IGFALS predicted shorter OS (P< 0.05),
while the expressions of FCN2, ECM1, and ASPG had no
statistical significance with OS (Figure 7(a)). To further screen
the diagnostic genes with clinical prognostic value, we analyzed
the relationships between the diagnostic genes and clinico-
pathological characteristics of HCC patients and performedCox
regression analyses. )e results showed that the lower expres-
sion of VIPR1 was associated with the poor differentiation of
tumor grade classification and malignant progression of clinical
stage (P< 0.05) (Figures 7(b) and 7(c)). Multivariate assays
demonstrated that VIPR1 could be used as an independent
prognostic factor for HCC (P< 0.05), while other diagnostic
genes could not be used as independent prognostic factors for
HCC (Figures 8(a)–8(e)). Finally, we identified VIPR1 as
a prognostic feature biomarker gene for diagnosing HCC.

3.8. Evaluation of Immune Cell Infiltration. We used the
CIBERSORT algorithm to calculate the proportions of im-
mune cells in the data set of normal liver tissues and HCC
tissues (Figure 9(a)). )en, the correlations between dif-
ferent immune cells were evaluated. )e heat map showed
that T cells CD8 was positively correlated with T cells CD4
memory activated (R� 0.35), T cells follicular helper
(R� 0.33), and macrophages M1 (R� 0.30); mast cells ac-
tivated was positively correlated with neutrophils (R� 0.33);
and monocytes were positively related to dendritic cells
activated and NK cells resting (R� 0.33). )e heat map also
showed that T cells CD4 memory resting was negatively
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Figure 1: DGSs between normal liver tissues and HCC tissues in GSE57957, GSE84402, GSE112790, GSE113996, and GSE121248 datasets.
(a) )e volcano plots of DEGs. (b) )e heat map of DEGs.
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correlated with T cells CD8 (R� −0.52) and T cells follicular
helper(R� −0.41); mast cells activated was negatively related
to mast cells resting (R� −0.42); and macrophages M0 was
negatively correlated with macrophages M1(R� −0.41)
(Figure 9(b)). In addition, the results of the CIBERSORT
algorithm showed that the proportions of T cell regulator-
y(Tregs) and macrophages M0 in HCC tissues were sig-
nificantly higher than that in normal tissues (P< 0.05), while

the proportions of T cell gamma delta and macrophages M1
in HCC tissues were significantly lower than that in normal
tissues (P< 0.05) (Figure 9(c)).

3.9. Correlation between VIPR1 and Immune-Infiltrating
Cells. As shown, VIPR1 was positively correlated
with T cell gamma delta (R � 0.33), T cell CD4 memory
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Figure 2: Functional enrichment analyses of DEGs. (a) GO enrichment analysis of DEGs, including BP, CC, andMF. (b) KEGG enrichment
analysis of DEGs. (c) DO enrichment analysis of DEGs.
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resting (R � 0.25), macrophages M2 (R � 0.2), and
monocytes (R � 0.2) (P< 0.05). VIPR1 was negatively
correlated with macrophages M0 (R � −0.41), NK cells
activated (R � −0.29), T cell regulatory (Tregs)
(R � −0.25), and T cells follicular helper (R � −0.23)
(P< 0.05) (Figures 10 and 11).

4. Discussion

Despite the significant leaps forward that have been achieved
in both the diagnosis and treatment of HCC, there are still
a significant number of patients who are diagnosed with the
disease at a more advanced stage, which results in a low rate
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of patient survival. AFP is the most commonly used bio-
marker for monitoring liver cancer, but it is still not ideal for
early diagnosis of liver cancer due to its lack of sensitivity
and specificity. )erefore, it is of great significance to find
and study specific biomarkers for early diagnosis of HCC. In
this study, we identified VIPR1 as a diagnostic feature
biomarker for HCC based on a combination of the ML
algorithms and traditional bioinformatics. In addition, we
compared the immune cell infiltration seen in HCC tissues
to that shown in normal liver tissues, and we also in-
vestigated the relationship between VIPR1 and immune cell
infiltration.

We downloaded multiple HCC microarray datasets from
the GEO database. 232 DEGs were identified in 125 normal
liver tissues and 326 HCC tissues. )e DEGs were mainly
enriched in small molecule catabolic process, amino acid
metabolic process, and other biological processes. Small
molecules are natural compounds with relatively small mo-
lecular weight, usually referring to biological molecules with
relative molecular weight less than 1000 Dalton (especially less
than 400 Dalton), which can participate in many biological
processes including metabolic reactions. Studying the small
molecules in metabolic pathway will help people design drugs
for human diseases more effectively [33]. In addition, small
molecular metabolites are sensitive to endogenous and exog-
enous changes in the body and have great potential and value in
identifying the state and phenotype of liver cancer cells [34, 35].

In cancer, malignant cells usually exhibit greater pro-
liferative capacity and metabolism than nonmalignant cells.
Due to the increased demand for growth andmetabolism, an
adequate supply of amino acids is necessary for cancer cells
to maintain their ability to proliferate. In addition, this rapid
growth and metabolism may also exhibit a vulnerability
specific to cancer, which is an increase in the demand for
amino acids [36, 37]. KEGG assays revealed that DEGs were
mainly enriched in retinol metabolism, cytochrome P450,
chemical carcinogenesis-DNA adducts, various amino acids,
and other biological metabolic activities and other tumor-
related pathways. DO assays suggested that DEGs were
involved in various cancers and related diseases such as
hepatitis, nonsmall cell lung carcinoma, liver cirrhosis,
biliary tract cancer, cholangiocarcinoma, and esophageal
cancer.)ese results suggest that DESs are activated in many
cancer-related pathways.

)e retinoid metabolites are involved in a wide range of
biological processes, such as cell differentiation, apoptosis,
and inflammatory reaction [38]. In the human body, more
than 70% of retinol metabolites are stored in the liver, so
changes in their content may be involved in the occurrence
and development of liver cancer [39]. Cytochrome P450
(CYP450) refers to an enzyme that is abundant in the
smooth endoplasmic reticulum of hepatocytes and small
intestinal epithelial cells. It is involved in the synthesis of
various hormones and affects hormone-related cancer,
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Figure 5: ROC curves of feature genes in experimental data set. (a) FCN2. (b) ECM1. (c) VIPR1. (d) IGFALS. (e) ASPG.
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Figure 6: Validation of diagnostic genes differential analysis and diagnostic value. (a)-(e) Differential analysis of diagnostic genes in the
GSE36376 dataset. (f )-(j) ROC curves of diagnostic genes in the GSE36376 dataset.
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Figure 7: Correlations of diagnostic genes with OS and clinicopathological characteristics. (a))e correlations of diagnostic genes with OS,
(b) the correlations of diagnostic genes with tumor grade classification, and (c) the correlations of diagnostic genes with clinical stage.
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which plays an important role in the metabolism of many
anticancer drugs [40]. Long-term exposure to chemical
carcinogens has been linked in certain studies to the for-
mation of DNA adducts, and experts believe that a higher
concentration of these adducts may raise the risk of
tumorigenesis [41].

GSEA enrichment results showed that cell cycle, DNA
replication, proteasome, ribosome, and spliceosome were
highly active in hepatocellular carcinoma, which may be
closely related to the occurrence and development of he-
patocellular carcinoma. In order to improve the diagnostic
and clinical availability of HCC diagnostic markers, we used
the LASSO regression algorithm to minimize regression
coefficients to reduce overfitting and the SVM-RFE algo-
rithm to generate the minimal classification error, and the
two ML algorithms took the intersection to select the op-
timal feature genes. )en, the feature genes were analyzed
for the correlations with survival prognosis and clinico-
pathological characteristics for further screening. Finally,
VIPR1 was identified as a diagnostic feature marker of HCC.

VIPR1 is a G protein-coupled receptor that is primarily
found in normal tissues and plays a vital role in a variety of
physiological tasks, including the metabolism of glycogen
and the regulation of the immune system [42]. According to
the findings of earlier research, VIPR1 has been found to
have a variety of expressions and functions, depending on
the specific type of malignant tumor. For example, VIPR1

was highly expressed in breast, gastric, and colon cancers,
while it was significantly low expressed in lung, liver, and
other cancers [42–45]. In breast cancer, VIP or VPAC1
receptor antagonists can enhance the killing ability of
chemotherapy on breast cancer cells [46]. Functionally,
elevated VIPR1 expression in gastric cancer promotes the
malignant progression of gastric cancer by increasing the
potential of gastric cancer cells to metastasis to distant re-
gions. Ca2+ signaling is required for the carcinogenesis and
progression of gastric cancer, and activation of VIPR1 by
VIP can stimulate TRPV4-mediated Ca2+ entry [43]. It has
been shown that the overexpression of VIPR1 in colon
cancer may be related to the activation of EGFR, which can
lead to poor differentiation of colon cancer, thereby pro-
moting cancer progression. In addition, the overexpression
of VIPR1 in tumor vessels and macrophages may play an
important role in cancer invasion [44]. However, the ex-
pression of VIPR1 is lower in lung cancer tissues than in
adjacent tissues, and overexpression of VIPR1 in lung cancer
cells can inhibit cell proliferation, invasion, and migration
[45, 47]. In HCC, VIPR1 mRNA expression is negatively
correlated with DNA methylation, and the transcriptional
silencing of VIPR1 caused by DNA methylation may con-
tribute to the development of HCC [42]. )e above studies
have shown that VIPR1 plays different roles in different
cancers, which is involved in the proliferation, invasion,
migration, and differentiation of cancer cells.
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Figure 8: Univariate and multivariate Cox regression analyses between diagnostic genes and other clinical characteristics. (a) FCN2, (b)
ECM1, (c) VIPR1, (d) IGFALS, and (e) ASPG.
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In recent years, it has been abundantly obvious that
the infiltration of immune cells plays a key role in both the
beginning and the progression of malignancies. )is in-
formation was uncovered as a direct consequence of re-
cent research. )erefore, investigating the components of
immune infiltration cells in HCC and locating diagnostic
biomarkers for the diagnosis of HCC could potentially
impact the clinical results of HCC patients. We used
a bioinformatics technique known as CIBERSOTR to
determine the relative amounts of immune cell infiltration
in normal liver tissues and HCC tissues so that we could
further investigate the function that immune cell in-
filtration plays in the development of HCC. We found that
the proportions of T cell regulatory (Tregs) and macro-
phages M0 in HCC tissues were significantly higher than
that in normal tissues.

In addition, the expression of VIPR1 in HCC was
positively correlated with the levels of T cell gamma delta
(0.33), T cell CD4 memory resting (0.25), macrophages
M2 (0.2), and monocytes (0.2), while the expression of
VIPR1 was negatively correlated with macrophages M0

(0.41), NK cells activated (0.29), T cell regulatory (Tregs),
and T cell follicular helper (0.23). According to the pre-
vious studies, macrophages are central players in liver
fibrosis and play a bidirectional role in the regulation of
matrix deposition and catabolism [48]. Monocytes can
influence the tumor microenvironment through mecha-
nisms such as induction of immune tolerance, angio-
genesis, and increased tumor cell dissemination [49]. In
addition, peritumoral monocytes can induce autophagy of
tumor cells and promote the occurrence and development
of liver cancer [50]. In hepatocellular carcinoma (HCC),
T cell gamma delta shows potent antitumor efficacy and
has played an important role in tumor monitoring and
antitumor immunity [51]. Tregs have the ability to pro-
duce an immunosuppressive tumor environment by re-
leasing a variety of inhibitory cytokines. Additionally,
Tregs have the potential to lead to immunological dys-
function in HCC through a number of different mecha-
nisms [52]. )e above research evidence and our findings
suggested that various types of immune cell infiltrations
played an important role in the pathogenesis of HCC.
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Figure 9: Evaluation of immune cell infiltration. (a) Pattern of infiltration of immune cells in normal and tumor tissues. (b) Correlations
between different immune cells. (c) )e difference of immune cell infiltration between normal liver tissues and HCC tissues.
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Figure 11: Scatter plot of the correlations between VIPR1 and infiltrating immune cells.
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5. Conclusions

In summary, VIPR1 can be used as a diagnostic feature
marker of HCC, which is distinctly related to the occur-
rences, developments, and immune cell infiltration of HCC.
It can also be used as an independent prognostic factor of
HCC and may become a potential target for the early di-
agnosis and treatment of HCC in the future.
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