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Background. Hepatocellular carcinoma (HCC) is one of the most common malignancies, and although there are several treatment
options, the overall results are not satisfactory. Cancer-associated fibroblasts (CAFs) can promote cancer progression through
various mechanisms. Methods. HCC-associated mRNA data were sourced from The Cancer Genome Atlas database (TCGA)
and International Cancer Genome Consortium (ICGC) database. First, the differentially expressed CAF-related genes (CAF-
DEGs) were acquired by difference analysis and weighted gene coexpression network analysis (WGCNA). Moreover, a CAF-
related risk model was built by Cox analysis. Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves
were utilized to evaluate the validity of this risk model. Furthermore, enrichment analysis of differentially expressed genes
(DEGs) between the high- and low-risk groups was executed to explore the functions relevant to the risk model. Furthermore,
this study compared the differences in immune infiltration, immunotherapy, and drug sensitivity between the high- and low-
risk groups. Finally, we verified the mRNA expression levels of selected prognostic genes by quantitative real-time polymerase
chain reaction (qRT-PCR). Results. 107 CAF-DEGs were identified in the HCC samples, and five prognosis-related genes
(ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1) were obtained by Cox analysis and utilized to build a CAF-related risk model.
K-M analysis illustrated a low survival in the high-risk group, and ROC curves revealed that the risk model could accurately
predict the 1-, 3-, and 5-year overall survival (OS) of HCC patients. In addition, Cox analysis demonstrated that the risk score
was an independent prognostic factor. Enrichment analysis illustrated that DEGs between the high- and low-risk groups were
related to immune response, amino acid metabolism, and fatty acid metabolism. Furthermore, risk scores were correlated with
the tumor microenvironment, CAF scores, and TIDE scores, and CAF-related marker genes were positively correlated with all
five model genes. Notably, the risk model was relevant to the sensitivity of chemotherapy drugs. Finally, the results of qRT-
PCR demonstrated that the expression levels of 5 model genes were in accordance with the analysis. Conclusion. A CAF-
related risk model based on ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1 was built and could be utilized to predict the
prognosis and treatment of HCC.

1. Introduction

Liver cancer is one of the commonest malignancies. In
accordance with the Global Cancer Statistics 2020, liver can-
cer is the 6th for incidence and 3rd in mortality among

malignancy-related deaths [1–3]. Secondary, liver cancer
includes hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC), of which HCC accounts for about
75-85%. Although various options such as chemotherapy with
sorafenib, surgical resection, and liver transplantation are
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applied in treating HCC, but there is still a poor overall prog-
nosis, with an overall survival (OS) of 3-5% [4–6]. Therefore, it
is essential to find available targets for HCC treatment [7].

Cancer-associated fibroblasts (CAFs) can secrete growth
factors, cytokines, and inflammatory ligands, which stimu-
late epithelial-mesenchymal transformation (EMT), pro-
mote tumor proliferation and migration, and induce
therapy resistance and immune exclusion [8–10]. Studies
showed that CAFs engaged in bidirectional signaling with
liver progenitor cells and can act as cancer stem cells, sug-
gesting a close link between cirrhosis and liver cancer devel-
opment [11]. In addition, CAFs support tumor growth in
the liver. For example, CAFs can influence tumorigenesis
by altering ECM stiffness. For example, CAFs can influence
tumorigenesis by altering ECM stiffness; moreover, the cyto-
kines and other factors secreted by CAFs may promote
tumor growth, tumor angiogenesis, and epithelial to mesen-
chymal transition (EMT) [12].

In this study, samples in the TCGA dataset were grouped
into high CAF/low CAF score groups with CAF scores, and
then, 107 differentially expressed CAF-associated genes
(CAF-DEGs) were utilized for risk regression analysis. Fur-
thermore, 5 prognostic genes were gotten and utilized to
establish a risk model, which provided a reference for apply-
ing CAF-associated genes (CAFGs) in the clinical prognosis
and treatment outcome of HCC.

2. Materials and Methods

2.1. Data Source. The mRNA expression data of 50 normal
and 371 HCC samples, of which 360 HCC samples have
available survival data, were sourced from The Cancer
Genome Atlas database (TCGA). The mRNA expression
data of 243 HCC samples were acquired from the Interna-
tional Cancer Genome Consortium (ICGC) database as a
validation set.

2.2. Evaluation of the CAF Status in HCC. xCell can calculate
the abundance of various cells based on the single-sample
gene set enrichment analysis (ssGSEA), which includes
cancer-associated fibroblasts [13]. This study counted the
mass of 21 immune cells in 421 samples of TCGA-HCC
dataset by xCell. The samples were grouped into high and
low CAF with the median number of CAF cells. Kaplan-
Meier (K-M) survival analysis was performed based on the
high and low CAF groups and the survival information of
the HCC samples. Then, we collated the clinical traits of
the samples, STAGE subgroups, and GRADE subgroups
and compared the differences in the proportion of CAF cells
between the STAGE subgroups and GRADE subgroups
using chi-square tests.

2.3. Identification of CAFGs by Weighted Gene Co-expression
Network Analysis (WGCNA). The genes with similar expres-
sion patterns can be gathered, and the module that was
highly correlated with traits can be filtered by WGCNA, thus
finding the target genes relevant to the study [14]. To further
identify CAFGs, we performed a WGCNA analysis. First, we
clustered the 371 HCC samples to see the overall correlation

of all samples in the dataset. The soft threshold was deter-
mined to ensure that the interaction between genes maxi-
mally conformed to the scale-free distribution, and then,
the coefficient of dissimilarity between genes was introduced
based on the adjacency between genes, and the systematic
clustering tree between genes was obtained accordingly.
Similar modules analyzed by the dynamic tree cutting algo-
rithm were merged (MEDissThres = 0:2). Finally, the corre-
lations between the modules and CAF were calculated, and
the key modules were selected with the criteria of jcorj >
0:4, p < 0:05. Moreover, the genes in the key modules were
the CAFGs.

2.4. Identification of CAF-DEGs.We performed a differential
analysis in the TCGA dataset for high CAF samples and low
CAF samples to obtain differentially expressed genes (DEGs)
between high and low CAF samples and differential analysis
for normal and HCC samples. The screening condition for
the differential analysis was p adjust. < 0.05 and jlog 2FCj
> 0:5. To identify CAF-DEGs, we crossed CAFGs, DEGs
between high and low CAF, and DEGs between normal
and HCC samples.

2.5. Construction and Validation of the Risk Model. In this
study, 360 samples containing survival information in the
TCGA dataset were grouped into a training set and a test
set with 7 : 3 (252 : 108), and the data in the training set were
utilized to establish the risk model; firstly, the genes were
verified as risk factors by univariate Cox regression analysis.
Then, the genes with p < 0:05 were used to construct the
multivariate Cox regression model, using the stepwise
regression function step, with the parameter direction set
to both, to adjust the multivariate regression model, and
the obtained genes were used as prognostic factors to build
the model.

The risk value of each patient was counted by the expres-
sion of the genes, and the patients were grouped into high
and low risk with the median risk value. Then, the risk pro-
file was plotted and survival analysis for the high- and low-
risk groups was conducted. In addition, we plotted the
receiver operating characteristic (ROC) curve, and the area
under curve (AUC) was used to indicate the prediction accu-
racy. Finally, the correlations between the risk model and
clinical traits (age, gender, M, N, T, and other clinical data)
were assessed using the chi-square test.

Next, we validated the risk model using the TCGA test
set and the ICGC validation set. In these two datasets, cases
were spanided into high and low risks, respectively, and risk
profiles, survival curves, and ROC plots were plotted, and
correlations between risk factors and clinical traits were
analyzed.

2.6. Correlation of Risk Model and Clinical Traits. The clini-
cal traits in the training set of TCGA-HCC data were col-
lated, including age, sex, disease stage, T, N, and M. The
samples were grouped according to the different clinical
traits, and the risk values were compared between the differ-
ent groups to see if there were significant differences and
visualized by box plots.
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2.6.1. Independent Prognostic Analysis. The clinicopathologi-
cal factors in the training set samples were added to the Cox
analysis to investigate the independent prognosis of the risk
model and clinicopathological factors. On this basis, a
nomogram graph of the survival rate of the risk model and
clinical factors was constructed. The factors that obtained
significant results from the above multivariate Cox analysis
were plotted, and the OS was predicted according to the total
score. The correction curve was utilized to evaluate the pre-
diction results of the model.

2.6.2. Enrichment Analysis. We divided the TCGA dataset
into the high- and low-risk groups. The samples in the high-
and low-risk groups were analyzed for differences using the
“limma” R package, and the log2|FC| were then sorted from
highest to lowest. Gene Set Enrichment Analysis (GSEA)
was conducted using the “clusterProfiler” R package to find
the common functions and related pathways of a large num-
ber of genes in the differentially expressed gene set [15]. The
thresholds set were jNESj > 1, NOM p < 0:05, and q < 0:25,
and the databases used for GSEA were Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO).

2.7. Correlation of Risk Score with Other Scores. To further
validate the accuracy of the risk model in predicting CAF,
we executed Spearman correlation analysis on the risk score,
stroma score, immune score, ESTIMATE score, tumor score,
the proportion of CAF predicted by xCell, and the propor-
tion of CAF predicted by EPIC, MCP-counter, and Tumor
Immune Dysfunction and Exclusion (TIDE). Firstly, the
“ESTIMATE” R package was utilized for ESTIMATE analy-
sis to obtain the immune score, stromal score, ESTIMATE
score, and tumor score for each sample. The EPIC algorithm
analyzed the percentage of infiltration of eight-cell types,
including CAFs, based on expression data [16]. We used
the MCP-counter to attribute the content of CAFs in the
samples. The xCell algorithm can also predict the proportion
of CAFs. Finally, the CAF content was obtained using TIDE.
The correlations between risk scores and each index were
calculated using the Spearman correlation analysis. p < 0:05
represents significant correlation.

2.8. Correlation between CAF Marker Genes and Prognostic
Genes. There were 23 CAF-associated marker genes, includ-
ing ACTA2, ASPN, CAV1, COL11A1, COL1A1, COL1A2,
COL3A1, EMILIN1, FAP, FN1, FOXF1, MFAP5, MMP11,
MMP2, OGN, PDGFRA, PDGFRB, PDPN, S100A4, SLC16A4,
SPARC, TNC, and ZEB1 [17, 18]. Then, we calculated the cor-

relations between prognostic genes and risk scores with CAF
marker genes.

2.9. Inferring Immune Cell Abundance in High- and Low-
Risk Groups Using the ssGSEA Algorithm. ssGSEA is a
single-sample GSEA method by which we can obtain the
immune cell, of each sample [19]. Using 28 immune-
related gene sets, we can get the immune activity. Then,
the differences in 28 immune activities between the high-
and low-risk groups were compared, and the differential
immune activities were related to the risk scores.

2.10. Chemotherapy Drug Sensitivity Prediction. We know
that the Genomics of Drug Sensitivity in Cancer (GDSC)
database has many drug sensitivity and genomic datasets
that are important for the discovery of potential oncology
therapeutic targets. IC50 refers to the half amount of a drug
that inhibits specific biological processes. The “pRRophetic-
Predict” R package (version 0.5) was utilized to calculate 138
drugs included in the database and compare differences in
drug IC50 between the high- and low-risk groups.

2.11. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR) Validation. First, RNA was extracted from con-
trol cells WRL68 and HCC cells Huh7, Hepg2, and sk-sep-
1, followed by a reverse transcription reaction, and finally,
the target gene was amplified by PCR reaction. The RNA
extraction kit was TRIzol Reagent (ref.: 15596018) kit pro-
vided by Ambion. The reverse transcription kit was the Swe-
Script RT I First-strand cDNA Synthesis All-in-OneTM

First-Strand cDNA Synthesis Kit (cat.: G33330-50) from
Servicebio. PCR reactions were performed with the 2x Uni-
versal Blue SYBR Green qPCR Master Mix (cat.:G3326-05)
kit from Servicebio. Primer sequences are shown in Table 1.
The PCR reaction process was 95°C predenaturation for
1min and then 40 cycles. Each cycle included 95°C denatur-
ation for 20 s, 55°C annealing for 20 s, and 72°C extension for
30 s. The internal reference for gene detection is GAPDH.
The expression of ACTA2, IGJ, CTHRC1, CXCL12, and
LAMB1 in normal cell WRL68 and HCC cells Huh7, Hepg2,
and sk-sep-1 were compared by analysis of variance
(ANOVA), and p < 0:05 was a difference.

3. Results

3.1. Evaluation of the CAF Status in HCC. We calculated the
immune cell content of 421 samples in the TCGA dataset
(Figure 1(a)). After screening out the normal samples, there

Table 1: Primer sequences of genes used in qRT-PCR validation.

Gene Forward Reverse

GAPDH CCCATCACCATCTTCCAGG CATCACGCCACAGTTTCCC

ACTA2 CACAGAGCAAAAGAGGAATC TCAGCAGTAGTAACGAAGGA

IGJ CTCAAGAAGGTGAAAGGATT TTTTTACAGAGGTCAGACAA

CTHRC1 AAGGAAGCCCTGAAATGAAT CCACAGAAGAAGTGCGATGA

CXCL12 CACTCCAAACTGTGCCCTTC CTTGTCTGTTGTTGTTCTTC

AMB1 GTTGTAAATCTTGTGCTTGC CTCCGCTTCATAGAGGTAGT
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were 158 high CAF samples and 213 low CAF samples. The
results of K-M analysis of the high and low CAF groups were
shown (Figure 1(b)), and it can be seen that there was a sig-
nificant survival difference between the high and low CAF
groups. The results of clinical trait correlation between high
and low CAF groups showed that CAF cells were different
between different STAGE groups and between different
GRADE groups (Figures 1(c) and 1(d)).

3.2. Identification of CAFGs by WGCNA Analysis. The clus-
tering of the samples in the TCGA dataset was shown in
Figure 2(a), and the samples were not deleted. The power
threshold was chosen as 13, so that the interactions between
genes conformed to the scale-free network (Figure 2(b)).
From the module clustering tree, we can see that 12 modules
were clustered, and after merging, 6 modules were obtained
(Figure 2(c)). Finally, the key modules were filtered accord-
ing to their correlation with CAF, and we got the green mod-
ule (Figure 2(d)). Therefore, 898 genes in the green module
were used as CAFGs.

3.3. Identification of CAF-DEGs. There were 676 DEGs
between the high and low CAF groups (Figure 3(a)). 6265
DEGs were found between normal and HCC samples
(Figure 3(b)). CAFGs and DEGs between high and low
CAF and DEGs between normal and HCC samples were
crossed to obtain 107 CAF-DEGs, and the Venn diagram
is shown (Figure 3(c), Table S1).

3.4. A Risk Model Based on 5 Genes Was Built. In the TCGA
training set, univariate Cox analysis yielded 7 genes
(Figure 4(a), Table 2). After multivariate Cox analysis, 5
genes appeared in multivariate Cox analysis (Figure 4(b),
Table 3): ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1.
The risk value of each patient was counted from the expres-
sion of these five genes, and the cases were classified into
high and low risks (median value = 0:988) (Figure 4(c)).
The survival analysis of the high- and low-risk groups illus-
trated there was a significant survival difference between the
high- and low-risk groups (Figure 4(d)). The AUC at 1, 3,
and 5 years in the ROC curve were 0.661, 0.686, and 0.608,
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Figure 1: The changing trend of CAF in the TCGA-LIHC queue analyzed by the XCELL algorithm. (a) Heat map of different cell
concentrations calculated by xCell. (b) K-M curve of high and low CAF group. (c) Correlation of CAF cells in different STAGE groups.
(d) Correlation of CAF cells in different GRADE groups.
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Figure 4: Identification of prognostic genes and evaluation of risk regression models. (a) Forest map of univariate Cox results. (b) Forest
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Table 2: Univariate Cox regression analysis results.

Id z HR HR.95L HR.95H p value

ACTA2 -2.382667536 0.7794916 0.635062344 0.956767726 0.017187709

MMP14 2.354059963 1.237687278 1.036344401 1.478147415 0.018569615

IGJ -2.321172984 0.861330023 0.759325083 0.977037931 0.02027751

CTHRC1 2.184086222 1.176830023 1.016848758 1.361981212 0.028955913

CXCL12 -2.086278679 0.833517888 0.702454325 0.989035222 0.036953387

LAMB1 2.044172937 1.224712344 1.008385361 1.487447541 0.040936466

MFAP4 -1.973675604 0.871707401 0.760598958 0.999046587 0.048418641

Table 3: Multivariate cox regression analysis results.

Id Coef HR HR.95L HR.95H p value

ACTA2 -0.379760522 0.684025199 0.531595384 0.880162783 0.003153906

IGJ -0.152683995 0.858400938 0.751217636 0.980877092 0.024851869

CTHRC1 0.236265717 1.266510799 1.075666699 1.491214339 0.004578553

CXCL12 -0.153407609 0.857780012 0.69754989 1.054815661 0.145913422

LAMB1 0.313651044 1.368412138 1.104754211 1.694994017 0.004075463
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Figure 5: Continued.
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respectively (Figure 4(e)). In addition, in both the TCGA test
set and ICGC validation set, the survival of the high-risk
group was lower, and the AUC at 1, 3, and 5 years was more
significant than 0.65 (Figures 5(a)–5(g)). In addition, in the
ICGC validation set, grade was different between the high-
and low-risk groups. It indicated that the risk model could
be effectively used as a prognostic model.

3.5. Correlation of Risk Model and Clinical Traits. The corre-
lation between the risk model and clinical traits showed that
the risk values differed significantly between stages I-II and
stages III-IV. And the risk values were quite different
between T1 − 2 and T3 − 4 stages. The results were shown
(Figures 6(a)–6(f)).

3.6. Risk Score and Stage Were Independent Prognostic
Factors. The factors with p < 0:05 in the univariate Cox regres-
sion analysis were T, risk score, and stage (Figure 7(a),
Table 4). The three significant factors were added to the mul-
tivariate Cox analysis (Figure 7(b), Table 5), and the results
showed that risk score and stage were significant. The survival
nomogram graph was shown (Figure 7(c)). In the corrected
curve, the c-index was 0.703, and the corrected c-index was
0.696, and the slopes were calculated to be 0.697, 0.406, and
0.300 at 1, 3, and 5 years, which demonstrated the best predic-
tion at one year (Figure 7(d)).

3.7. Enrichment Analysis of High- and Low-Risk Groups. A
total of 73 KEGG paths and 1968 GO paths were enriched

by GSEA, and we selected the top 10 KEGG paths and GO
paths to visualize them. As can be seen (Figure 8(a)), the
top 10 KEGG pathways obtained have activation of the
immune response, alcohol metabolic process, alpha-amino
acid metabolic process, and B cell-mediated immunity. The
top 10 GO functions were autoimmune thyroid disease, cell
cycle, graft versus host disease, peroxisome, PPAR signaling
pathway, and retinol metabolism (Figure 8(b)).

3.8. Correlation of Risk Scores with Other Scores and
Correlation of CAF Marker Genes with Prognostic Genes.
The correlation results of the risk score with other scores
suggested that the risk score was negatively relevant to the
immune score, ESTIMATE score, stromal score, xCell-
predicted CAF ratio, and TIDE-predicted CAF ratio, and
positively relevant with the tumor score (Figure 9(a)). The
correlations between prognostic genes and risk scores with
CAF marker genes were calculated, and the results were as
follows. The correlation results illustrated that risk scores
were negatively related toACTA2, ASPN, COL1A1, COL1A2,
COL3A1, EMILIN1, FAP, FOXF1, MFAP5, MMP2, OGN,
PDGFRA, PDPN, S100A4, SLC16A4, SPARC, and TNC
genes. FN1 with LAMB1, CTHRC1, and SLC16A4 was pos-
itively associated with ACTA2, IGJ, CXCL12, and LAMB1. In
addition, the remaining 21 CAF-related marker genes were
positively associated with five prognostic genes (Figure 9(b)).

3.9. Inferring Immune Cell Abundance Using the ssGSEA
Algorithm. As can be seen (Figure 10(b)), among the 28 cells,
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Figure 5: Testing and validation of the risk model. (a) K-M survival curve of risk score in the test set. (b) Risk curves for the high- and low-
risk groups in the test set. (c) ROC curve in the test set evaluating the validity of the risk model. (d) K-M survival curve of risk score in the
validation set. (e) Risk curves for the high- and low-risk groups in the validation set. (f) ROC curve in the validation set evaluating the
validity of the risk model. (g) Overview of the correlation between risk score and clinical features in validation.
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20 cells were different between the high- and low-risk
groups, including activated B cell, CD56bright natural killer
(NK) cell, CD56dim NK cell, central memory CD4 T cell,

central memory CD8 T cell, and Type 1 T helper cell, and
the 20 significant cells were plotted separately from the risk
score in a lollipop plot as follows (Figure 10(a)).
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Figure 7: Risk model-independent prognosis in the training set. (a) Forest map of univariate Cox results. (b) Forest map with multivariate
Cox results. (c) Survival nomogram graph. (d) Correction curve for line graph.

Table 4: Independent prognostic univariate cox analysis results.

Variable Coef HR HR.95 L HR.95H p value

riskScore 0.554622883 1.741284194 1.41049963 2.149642991 2.47E-07

STAGE 0.543228104 1.721555261 1.274933191 2.324633586 0.000392502

T 0.499131316 1.647289675 1.245504476 2.178686088 0.000467059

M 1.131809556 3.101263336 0.748842494 12.8436011 0.118512375

Age 0.016505353 1.016642319 0.993511015 1.040312175 0.15985152

Gender -0.17646729 0.838226197 0.472510705 1.486999448 0.546261178

N 0.15060375 1.162535912 0.159530784 8.471654902 0.88185331

Grade 0.011591034 1.01165847 0.696375217 1.469685933 0.951493367

Table 5: Independent prognostic multivariate cox analysis results.

Id Coef HR HR.95L HR.95H p value

STAGE 0.47806429 1.612949176 1.181104647 2.202688011 0.002639371

riskScore 0.493909346 1.638709999 1.323983571 2.028250591 5:65E − 06
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3.10. Chemotherapy Drug Sensitivity Prediction. According
to the calculation results, 65 drugs showed differences in
the high- and low-risk groups, which were temsirolimus,
CI.1040, NU.7441, AZD8055, AICAR, AMG.706, DMOG,
KU.55933, Metformin, EHT.1864, Dasatinib, NVP.BEZ235,
PD.0325901, AZD.0530, NVP.TAE684, AKT.inhibitor.VIII,
Vorinostat, GDC0941, PD.173074, Erlotinib, Docetaxel,
WO2009093972, Rapamycin, AZD6244, JNJ.26854165,
BI.D1870, MG.132, BX.795, A.770041, PD.0332991,
Z.LLNle.CHO, AP.24534, Parthenolide, GW.441756, Niloti-
nib, OSI.906, X17.AAG, GDC.0449, AZD6482, WH.4.023,

PF.4708671, Axitinib, TW.37, SB590885, Thapsigargin,
NSC.87877, Cyclopamine, CMK, RDEA119, Gefitinib, Sorafe-
nib, CEP.701, Imatinib, Methotrexate, ABT.263, Vinblastine,
AZD7762, Lapatinib, AZ628, GNF.2, Bryostatin.1, Campto-
thecin, Nutlin.3a, FH535, and ZM.447439 (Table S2); they
were visualized as a box plot as shown in the figure below.
Figure 11 showed box plots for just the six drugs in the high-
and low-risk groups.

3.11. qPCR Validation. The results of qPCR demonstrated
that expression levels of ACTA2, IGJ, CTHRC1, CXCL12,
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Figure 8: Enrichment analysis of the high- and low-risk groups. (a) The top10 KEGG pathways. (b) The top10 GO pathways.

1

0.94

0.25

0.35

0.31

0.3

0.67

−0.93

−0.2

0.94

1

0.36

0.51

0.47

0.52

0.89

−0.99

−0.27

0.25

0.36

1

0.36

0.33

0.44

0.42

−0.35

−0.14

0.35

0.51

0.36

1

0.97

0.51

0.63

−0.55

0.05

0.31

0.47

0.33

0.97

1

0.48

0.57

−0.5

0.06

0.3

0.52

0.44

0.51

0.48

1

0.7

−0.52

−0.22

0.67

0.89

0.42

0.63

0.57

0.7

1

−0.88

−0.31

−0.93

−0.99

−0.35

−0.55

−0.5

−0.52

−0.88

1

0.25

−0.2

−0.27

−0.14

0.05

0.06

−0.22

−0.31

0.25

1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Im
m

un
e s

co
re

Es
tim

at
e s

co
re

TI
D

E.
CA

F

M
CP

.C
A

F

EP
IC

.C
A

F

Xc
el

l.C
A

F

St
ro

m
al

 sc
or

e

Tu
m

or
 p

ur
ity

Ri
sk

 sc
or

e

Immune score

Estimate score

TIDE.CAF

MCP.CAF

EPIC.CAF

Xcell.CAF

Stromal score

Tumor purity

Risk score

(a)

⁎⁎ ⁎⁎ ⁎

ACTA2

CTHRC1

CXCL12

IGJ

LAMB1

Risk score

ACTA2
ASP

N
CAV1

COL11
A1

COL1A
1

COL1A
2

COL3A
1

EMILIN
1

FAP
FN1

FOXF1

MFAP5

MMP11
MMP2

OGN

PDGFRA

PDGFRB
PDPN

S1
00

A4

SL
C16

A4

SP
ARC

TNC
ZEB1

0.0

0.5

1.0
Correlation

⁎
p<0.05
⁎⁎
p<0.01

⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎ ⁎ ⁎

(b)

Figure 9: Correlation of risk scores with other scores and correlation of CAF marker genes with prognostic genes. (a) Heat map of
correlations between risk score and other scores. (b) Heat map of correlations between CAF marker genes and prognostic genes.
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and LAMB1 genes were different in normal cells WRL68 and
HCC cells Huh7, Hepg2, and sk-sep-1. Specifically, ACTA2,
CTHRC1, and LAMB1 genes were significantly upregulated
in HCC cells Huh7, Hepg2, sk-sep-1, and IGJ, CXCL12 were
downregulated in HCC cells (Figure 12).

4. Discussion

While there have been advances in diagnostic techniques
and treatment of HCC, [20, 21] the survival prognosis
remains poor because of its high recurrence and metastasis

rates [22]. CAFs are the main cellular component that can
affect the formation of liver fibrosis, which in turn results
in the development of HCC [10, 12]. Many prognostic
models for HCC have been presented by far. Zhang et al.
built a prognostic model which was able to reasonably pre-
dict the prognosis of HCC patients and provided a new idea
to study HCC of different histological grades [21]. Long et al.
developed a four-gene prognostic model to probe the differ-
ences in mRNA expression between HCC and neighboring
liver to obtain potential genetic biomarkers [2]. Wang et al.
screened immune-related differentially expressed genes
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Figure 10: Inferring immune cell abundance in the high- and low-risk groups by the ssGSEA algorithm. (a) Correlation between cell
contents and risk values. (b) Box plots of cell contents between the high- and low-risk groups.
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closely related to HCC and further detected genes associated
with prognosis [23]. However, because of the limitations of
the public database data, further validation of the proposed
prediction models is necessary or regression modeling
methods need to be applied to determine if the prediction
accuracy can be further improved. More than that, the valid-
ity of the prediction model should be confirmed in a large
sample of HCC. In this study, we sought five biomarkers
basing CAFGs for a prognostic model for HCC by bioinfor-
matics method, conducted an independent prognostic anal-
ysis and functional enrichment analysis, and calculated the
differences between immunoassay (immune infiltration,
immunotherapy) and drug sensitivity at all levels. At last,
qRT-PCR verified the expression levels of ACTA2, IGJ,
CTHRC1, CXCL12, and LAMB1 genes in normal and HCC
cells, which is a relatively complete work for the prognostic
building.

In the present study, five genes have been obtained for
the HCC prognostic model. ACTA2, actin alpha 2, which
contributed to cell-generated mechanical tension and main-
tenance of cell shape and movement, was highly expressed in
carcinomas [24]. Meanwhile, a previous study showed that
CAFs enhanced the tumor-initiating and tumorigenic prop-
erties of HCC cells, and ACTA2 was exactly a biomarker of
CAFs. The upregulation of ACTA2 level indicated poor sur-
vival HCC patients [25]. It was demonstrated that a linking
chain of multisomal IgA and IgM is also present in IGJ
[26]. It is possible that their upregulation may enhance the
anticancer immune response to sorafenib treatment and
facilitate the survival of HCC [27, 28]. In addition, overex-

pression of CTHRC1 contributes to tumorigenesis and
progression through positive regulation of tumor spread,
invasion, migration, adhesion, and metastasis [29–31].
Immunohistochemical analysis demonstrated that CTHRC1
expression levels were elevated in HCC tissues [32]. Stromal-
derived-factor-1 (SDF-1) was expressed in more than 23
different types and participated in tumor metastasis [33].
Interestingly, SDF-1 protein for the HCC cells was expressed
in the cytoplasm and nucleus [34]. Notably, the level of SDF-
1 was lower in HCC. Patients with relatively high SDF-1
showed longer OS [35]. LAMB1 consists of laminins [36].
LamB1 mediated β1 integrin signaling and can regulate cell
migration, proliferation, and survival by activating specific
p67kDa laminin receptors (LamR) [37–39]. HCC patients
have shown elevated levels of LamB1 in cirrhotic tissues,
with further increased expression in HCC [40]. In HCC,
the expression of the b1 integrin receptor and LamR were
upregulated, which was relevant with enhanced tumor
aggressiveness and poor patient survival [41, 42].

Based on the enrichment analysis of the high- and low-
risk groups by GSEA, function ways of fatty acid metabo-
lism, amino acid metabolism, and immune response were
related to the progress of HCC seriously. Firstly, a specific
reprogramming xiang of fatty acid metabolism has been
found in the nonalcoholic steatohepatitis (NASH) stage of
nonalcoholic fatty liver disease (NAFLD). The liver is
involved in the context of MetS and simple steatosis can
progress to liver fibrosis or even cirrhosis, and eventually
to HCC [43]. Metabolic reprogramming can support hepa-
tocyte proliferation by participating in fatty acid synthesis
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Figure 12: Validating the expression levels of the five genes in normal and HCC cells by RT-qPCR.
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and oxidation [44]. Second, the synthesis of nonessential
amino acids is vital for the maintenance of liver function
[45, 46]. In HCC, abnormalities in amino acid and protein
metabolism occur [47].

Tumor immune cells can be participated in the immune
response to cancer and also predict treatment efficacy and
survival [48]. In the current study, there were 20 immune
cells that differed between the high- and low-risk groups,
including B cells, T cells, and NK cells. Regulatory B (Breg)
cells accumulate in the tumor environment, and it can pro-
duce high levels of IL-10. Breg can suppress the host
immune responses to promote tumorigenesis in HCC [49].
Regulatory T cells (Tregs), expressing CD25 and forkhead
boxP3 (FoxP3), were negative during immune surveillance,
resulting in tumor tolerance [50]. There are fewer NK cells
in HCC tissue and NK cells can inhibit cytokine produc-
tion and cytotoxic activity [51]. Zhu et al. constructed
the prognostic model and the recurrence risk model and
found that patients with high risk scores responded
strongly to immune checkpoint inhibitor therapy and that
low-risk patients may derive more significant clinical ben-
efit from chemotherapy [52].

65 drugs showed differences in the high- and low-risk
groups. Temsirolimus is a prodrug of sirolimus. Studies have
shown that temsirolimus has an inhibitory effect on HCC
cells, and in phase I/II clinical trial, it was well-tolerated in
HCC patients [53]. Moreover, temsirolimus is an mTOR
inhibitor that can block cell cycle transition and affects cell
proliferation by inhibiting mTOR and growth factors [54].
CI-1040, another drug predicted by our prognostic model,
is an oral inhibitor of extracellular signal-regulated kinase
(MEK) [55], It is a new candidate for targeted treatment of
HCC because of its potential antitumor efficacy [56].
ZM447439 (ZM) induces apoptosis in HCC cells by interfer-
ing with spindle integrity and chromosome segregation [57].
These three drugs are representatives of anti-HCC drugs.
However, among the 65 drugs, there are also some news,
of which the effects on HCC are not definite. For example,
GNF-2 inhibits the enzymatic and cellular kinase activities
of ABL1, ABL2, and recombinant ABL and can inhibit the
proliferation of fibroblasts. Still, its effect on anti-HCC have
not been elucidated [58]. Then, AZ628, another new drug
for HCC, can be involved in fibrosarcoma formation, and
AstraZeneca can effectively inhibit cancer cell proliferation
by inhibiting the activity of Raf [59]. CEP-701 can effectively
inhibit trk receptors, leading to cell death in prostate cancer
(PC), and it can also limit tissue penetration by binding
serum proteins [60].

5. Conclusion

This study concentrated on the prognostic value of CAFs for
HCC and identified CAF-related genes. A prognostic model
of 5 CAFGs for HCC was developed in this research, and the
expression of the five genes were verified by the qRT-PCR
method. It provides new directions for the treatment of
HCC. Nonetheless, one shortcoming of this study should
be addressed, there are no clinical trials.
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