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Hepatocellular carcinoma (HCC), which is among the most globally prevalent cancers, is strongly associated with liver cirrhosis.
Using a bioinformatics approach, we have identified and investigated the hub genes responsible for the progression of cirrhosis
into HCC. We analyzed the Gene Expression Omnibus (GEO) microarray datasets, GSE25097 and GSE17549, to identify
differentially expressed genes (DEGs) in these two conditions and also performed protein-protein interaction (PPI) network
analysis. STRING database and Cytoscape software were used to analyze the modules and locate hub genes following which
the connections between hub genes and the transition from cirrhosis to HCC, progression of HCC, and prognosis of HCC
were investigated. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect the molecular
mechanisms underlying the action of the primary hub genes. In all, 239 DEGs were obtained, with 94 of them showing
evidence of upregulation and 145 showing evidence of downregulation in HCC tissues as compared to cirrhotic liver tissues.
We identified six hub genes, namely, BUB1B, NUSAP1, TTK, HMMR, CCNA2, and KIF2C, which were upregulated and had a
high diagnostic value for HCC. Besides, these six hub genes were positively related to immune cell infiltration. Since these
genes may play a direct role in the progression of cirrhosis to HCC, they can be considered as potential novel molecular
indicators for the onset and development of HCC.

1. Introduction

Global rates of morbidity and death caused by hepatocellular
carcinoma (HCC), which is among the most common can-
cers in the world and the second most lethal, are on the rise
[1]. Currently, both hepatitis B virus (HBV) and hepatitis C
virus (HCV) have been identified as the most important
cause of HCC [2, 3]. HCC is most likely to occur in patients
with severe HBV infections, especially in those who suffer
from posthepatitis cirrhosis. Posthepatitis cirrhosis also

raises the incidence rate of hepatic sclerosis to 84.6%, which
in turn, raises the incidence of HCC to 49.9% [4].

To successfully prevent, diagnose, and treat HCC, it is
crucial to understand how liver cirrhosis transforms into
HCC. Many studies have showed that capillarization of liver
sinusoidal endothelial cells, portal hypertension, immuno-
suppressive tumor microenvironment, etc., were important
factors promoting the development from liver cirrhosis to
HCC [5, 6]. However, mitigating these factors did not
change the progression of the disease. And currently, there
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are no ideal molecular markers that can help in distinguish-
ing HCC from cirrhosis. To close this gap, the molecular
aspects of HCC incidence, progress, and reasons for poor
prognosis need to be further understood.

In this study, we analyzed two mRNA microarrays
from the GEO database to identify differentially expressed
genes (DEGs) that vary in expression levels between HCC
tissues and cirrhotic liver tissues. Following this, protein-
protein interaction (PPI) network analyses and Kaplan-
Meier curves investigated the connections between the
identified genes and those between identified hub genes

and prognosis, respectively. The Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
detected the top different biological events and signaling
pathways in elevated and depressed DEGs. The LASSO
Cox regression model screened the highest predictive value
markers of HCC prognosis. The receiver operating charac-
teristic (ROC) curve and immunoinfiltration analysis were
employed to analyze the role of these hub genes for HCC.
Based on these methods, we identified several genes that
could function as molecular markers to track the onset
and progression of HCC.
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Figure 1: Differentially expressed genes (DEGs) between HCC and cirrhotic liver tissues identified in GSE25097 and GSE17549 datasets. (a)
A total of 627 genes were found to be elevated and 1716 genes depressed in HCC tissues as compared to cirrhotic liver tissues in the
GSE25097 dataset. (b) The expression profiles of each of the top 20 DEGs identified from the GSE25097 dataset. (c) A total of 149 genes
were found to be elevated and 285 genes depressed in HCC tissues as compared to cirrhotic liver tissues in the GSE17548 dataset. (d)
The expression profiles of each of the top 20 DEGs in the GSE17548 dataset.
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2. Materials and Methods

2.1. Microarray Data. The GEO database, specifically, the
GSE17548 and GSE25097 series based on GPL570 and

GPL10687 platforms, respectively, was identified to screen
for genes associated with liver cirrhosis and HCC [7]. The
MINiML files, which contained raw data, including those for
all of the platforms, samples, and GSE records, were obtained,
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Figure 3: Screen for hub genes. (a) PPI network. (b) Top 10 hub genes were identified by CytoHubba.
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Figure 2: Identification of common genes from DEGs in the GSE25097 and GSE17548 datasets. (a) 94 genes were common upregulated,
and (b) 145 genes were common downregulated.
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and the extracted data were log transformed for standardiza-
tion. Using preprocessCore, we normalized the data using
the median method. The annotated information included in
the platform was used to convert probes to gene symbols,
which were then used in the normalization process. Probes
that matched more than one gene were excluded from these
datasets. Several probes were utilized to detect the expression
value of each gene, and an average value from these was
obtained. To eliminate the confounding effects of different
batches, we used the “removeBatchEffect” function of the
“limma” package in R. Boxplots were used to analyze the
cleaned datasets. A PCA plot was constructed to demonstrate
the differences in the datasets before and after the removal of
the batch effects [8, 9].

2.2. Identification of DEGs. DEGs between HCC tissues and
liver cirrhotic tissues were identified through GEO2R pro-

gram. GEO2R, as a tool for interactive network, provides
users with the ability to compare two or more datasets that
are part of the GEO series to find DEGs [10]. The thresholds
for statistical significance were set to log jfold changej > 1
and an adjusted p value of < 0.05.

2.3. Enrichment Analysis of DEGs. GO and KEGG databases
were utilized as references, and the “clusterProfiler” R pack-
age carried out an analysis of enrichment [11]. To correct for
multiple comparisons, the Benjamini–Hochberg approach
was utilized, with a false discovery rate ðFDRÞ < 0:05 indicat-
ing statistical significance.

2.4. Screening of Hub Genes. The STRING database (https://
www.string-db.org/) was utilized to get a PPI network, with
a score of 0.4 or higher for minimum participation in inter-
actions [12]. The “Hubba” plug-in included in the Cytoscape
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Figure 4: Functional enrichment analysis of hub genes in HCC. (a) GO analysis of DEGs in high expression samples. (b) GO analysis of
DEGs in low expression samples. (c) KEGG analysis of DEGs in high expression samples. (d) KEGG analysis of DEGs in low expression
samples.
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Figure 5: Continued.
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Figure 5: The prognostic potentials of the genes (a) BUB1B, (b) MELK, (c) MAD2L1, (d) NUSAP1, (e) RRM2, (f) TTK, (g) HMMR, (h)
CCNA2, and (i) KIF2C were investigated. Patients diagnosed with HCC having higher levels of expression of these genes had lower
overall survival statistics as compared to patients with lower levels of expression of these genes (logrank test, p < 0:05). Based on the Cox
pH model, HR was determined, and the 95% CI was shown as a dotted line.
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Figure 6: Continued.
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program was used to identify and choose the top 10 hub
nodes listed by degree [13].

2.5. Survival Analysis. The raw RNA-sequencing data and
accompanying clinical information were obtained from the
Cancer Genome Atlas (TCGA) database. Log-rank tests
obtained p values, hazard ratios (HR), and 95% confidence
intervals (CI) for the two groups (cirrhotic liver tissues and
HCC tissues). These results were then used to plot Kaplan-
Meier (KM) survival analysis to assess distinctions in sur-
vival between the cirrhotic liver and HCC tissue groups
[14, 15].

2.6. Construction of Prognostic Signatures. To investigate the
potential diagnostic utility of the hub genes identified, we
carried out least absolute shrinkage and selection opera-
tor- (LASSO-) penalized Cox regression analysis [16].
The “glmnet” package in R package was used to develop
a model for prognosis. A LASSO regression was carried
out with the assistance of a cross-validation of 10 folds,
with the penalty parameter (λ) adjusted to fulfil the
optimal value. Findings of the LASSO regression were
used as the basis for calculating risk ratings. Patients
diagnosed with HCC who participated in the TCGA
study were grouped into low-risk and high-risk categories
based on the median risk score. A KM survival analysis
was carried out to evaluate and contrast the variations
in overall survival (OS) that were observed in the two
groups [14, 17, 18].

2.7. Immunoinfiltration Analysis. The immunogene module
of the TIMER tool (https://cistrome.shinyapps.io/timer/)
was used to analyze correlations between the expression of
hub genes and immunological infiltration (including infiltra-
tion levels of B cell, CD4+T cell, CD8+T cell, macrophage,
neutrophil, and dendritic cell) in HCC tissues from the
TCGA [19, 20].

3. Results

3.1. Screening for Differentially Expressed Genes. Two data-
sets from the GEO database, namely, GSE25097 and
GSE17548, were used to identify DEGs between cirrhotic liver
and HCC tissues. We identified 2343 DEGs in GSE25097
dataset, of which 627 were elevated and 1716 were depressed
in HCC tissues when compared to cirrhotic liver tissues
(Figure 1(a)). In the GSE17548 dataset, we identified 434
DEGs, of which 149 were upregulated and 285 were downreg-
ulated in HCC tissues when compared to cirrhotic liver tissues
(Figure 1(c)). The heatmap shows the expression levels of each
of the top 20 DEGs (Figures 1(b) and 1(d)).

3.2. Screening for Hub Genes. To further analyze the com-
mon genes in the two datasets, Venn diagram was employed
to find 94 common upregulated genes and 145 common
downregulated genes in HCC tissues as compared to cir-
rhotic liver tissues (Figures 2(a) and 2(b)). Using STRING
and Cytoscape, we analyzed these 239 DEGs to identify
those with interaction scores > 0:4. PPI network obtained a
total of 183 nodes and 2193 edges (Figure 3(a)). CytoHubba
was utilized to get the top 10 hub genes, namely, BUB1B,
MELK, MAD2L1, CCNB2, NUSAP1, RRM2, TTK, HMMR,
CCNA2, and KIF2C (Figure 3(b)).

3.3. GO and KEGG Enrichment Analyses of DEGs. To fur-
ther examine the biological roles of the identified DEGs,
we used the “clusterProfiler” package in R for GO and
KEGG pathway enrichment analyses. The results of the
GO analysis of upregulated DEGs indicated that this
group contained genes related to biological processes
(including mitotic nuclear division, chromosome segrega-
tion, nuclear division, and organelle fission), cellular
components (including spindle, chromosomal region,
chromosome, centromeric region, and condensed chromo-
some), and molecular functions (including tubulin bind-
ing, microtubule binding, microtubule motor activity, and
cyclin-dependent protein serine/threonine kinase regulator
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Figure 6: The prognostic potentials of the genes (a) BUB1B, (b) MELK, (c) MAD2L1, (d) CCNB2, (e) NUSAP1, (f) RRM2, (g) TTK, (h)
HMMR, (i) CCNA2, and (j) KIF2C were investigated. Patients diagnosed with HCC having higher levels of expression of these genes
had lower cancer-free intervals as compared to patients with lower expression levels of these genes (logrank test, p < 0:05). Based on the
Cox pH model, HR was determined, and the 95% CI was shown as a dotted line.
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activity) (Figure 4(a)). Analysis of the downregulated
DEGs indicates that this group contains genes linked to
biological processes (including complement activation, lec-
tin pathway, complement activation, protein activation
cascade, and protein kinase B signaling), cellular compo-
nents (including pore complex, high-density lipoprotein
particle, collagen trimer, and collagen-containing extracel-
lular matrix), and molecular functions (including mannose
binding, steroid hydroxylase activity, heme binding, and
tetrapyrrole binding) (Figure 4(b)). In addition, KEGG
analysis revealed that the elevated DEGs were intimately
connected to the cell cycle, human T-cell leukemia virus
1 infection, oocyte meiosis, progesterone-mediated oocyte
maturation, and the p53 signaling pathway (Figure 4(c)).
The downregulated DEGs were connected to amoebiasis,
NF-kappa B signaling pathway, chemical carcinogenesis,
tryptophan metabolism, and histidine metabolism
(Figure 4(d)).

3.4. Relationship between HCC Prognosis and Expression of
Hub Genes. A univariate Cox regression analysis was carried
out to identify which hub genes were linked to HCC progno-
sis. We find that nine of the 10 identified hub genes (BUB1B,
MELK, MAD2L1, NUSAP1, RRM2, TTK, HMMR, CCNA2,
and KIF2C) showed prognostic significance (Figures 5 and
6). The expression profiles of these nine genes were then
evaluated in 374 HCC tissue samples and 50 normal liver tis-
sue samples obtained from the TCGA database. Our findings
indicated that the expression levels of these nine hub genes
in HCC tissues were significantly higher than those in nor-
mal tissues (Figures 7 and 8).

3.5. Construction of Prognostic Signatures of Hub Genes in
HCC. The LASSO Cox regression model was utilized to
choose genes with the highest predictive value as potential
markers of HCC prognosis. The value (λ = 0:0088) was
detected because it was the lowest when compared to the
median of the sum of the squared residuals (Figures 9(a)
and 9(b)). Six possible predictors (BUB1B, NUSAP1, TTK,

HMMR, CCNA2, and KIF2C) were shown to have high pre-
dictive value for HCC prognosis. Patients diagnosed with
HCC were split into two categories according to their risk
scores. Figure 9(c) depicts the distributions of risk scores,
survival statuses, and expression levels of these six genes in
the patient population (Figure 9(c)).

In TCGA, the data on 374 HCC samples with detailed
clinicopathological information (Table 1) were evaluated
for clinically relevant markers. These hub genes were mea-
sured at mRNA levels in HCC tissues and normal tissues,
as well as the data was used to generate ROC curve. Our
results indicated that BUB1B, NUSAP1, TTK, HMMR,
CCNA2, and KIF2C were all upregulated in HCC at the
mRNA levels. And the six hub genes had a high diagnostic
value, with AUCs of 0.961, 0.949, 0.971, 0.968, 0.970, and
0.981, respectively (Figure 10).

3.6. Relationship between Hub Gene Expression and the
Infiltration of Immune Cells. It has been shown that
tumor-associated fibroblasts in the stroma of the tumor
microenvironment may affect a wide range of immune cells
that infiltrate the tumor. The effects of the hub genes identi-
fied here on the recruitment of immune cells in the tumor
microenvironment and hence on the prognosis of HCC are
as yet unknown. To investigate this, we analyzed the connec-
tions between BUB1B, NUSAP1, TTK, HMMR, CCNA2,
and KIF2C with immune infiltration in HCC and found that
the expression levels of them were positively associated with
the immune infiltration level of immune cells (Figure 11).

4. Discussion

Globally, HCC is the second deadliest and fifth most com-
monly occurring cancer [21]. The disease progression is quick
with malignancy at a high level, which combined with low
incidences of early detection, usually points to a bad prognosis.
A high risk of developing HCC is associated with HBV or
HCV infections, cirrhosis, and alcohol intake. Of these,
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Figure 7: Differential expression analysis of hub genes in TCGA dataset consisting of HCC tissue samples and normal tissue samples. The
expression levels of (a) BUB1B, (b) MELK, (c) MAD2L1, (d) NUSAP1, (e) RRM2, (f) TTK, (g) HMMR, (h) CCNA2, and (i) KIF2C in HCC
tissues (n = 374) were significantly higher than those in normal tissues (n = 50).
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Figure 8: Differential expression analysis of hub genes in TCGA dataset consisting of HCC tissue samples and paired adjacent normal tissue
samples. The expression levels of (a) BUB1B, (b) MELK, (c) MAD2L1, (d) NUSAP1, (e) RRM2, (f) TTK, (g) HMMR, (h) CCNA2, and (i)
KIF2C in HCC tissues (n = 50) were significantly higher than those in paired adjacent tissues (n = 50).
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cirrhosis is the most significant risk factor, since 80–90% of
HCC patients usually suffered from cirrhosis [22, 23].

Patients diagnosed with HCC who undergo curative
therapy in the early stages of the disease have significantly
higher five-year survival rates [24]. However, the mechanism
for liver cirrhosis progresses into HCC is as yet unknown,
though there are two theories about this process. One theory
assumes that liver cirrhosis itself is a precancerous stage that
leads to HCC due to internal hepatic interstitial changes and
modulations in cell proliferation. The second theory postu-
lates that cirrhosis affects hepatocyte proliferation by making
the cells more sensitive to carcinogenic factors in the
external environment, which predisposes them to damage
that leads to the development of HCC [25]. Since the
rapid rate of cellular reproduction does not allow these
cells sufficient time for DNA repair, mutations accumulate
in newly produced cells, which pave the way to malignant
transformation.

We tried to address this gap in knowledge by analyzing
the differences in gene expression profiles between normal
liver tissues, cirrhotic liver tissues, and HCC tissues. We
screened several databases to get hub genes that may be
responsible for the progression of cirrhosis into HCC. We
found that genes linked to mitotic nuclear division, chromo-
somal segregation, nuclear division, and organelle fission are
all intimately connected to this process. Through a series of

bioinformatics analyses using data from two gene chip data-
sets (from cirrhotic liver and HCC tissues), we identified 239
DEGs, of which 94 were elevated and 145 were depressed.
Using Cytoscape, we were able to identify ten possible hub
genes from these DEGs. The genes with the highest prognos-
tic potential were identified using the LASSO Cox regression
model. The hub genes that we have identified are intricately
connected to the incidence, progression, and prognosis of
HCC and therefore may be very useful in the early detection
and treatment of HCC.

We have identified BUB1B, NUSAP1, TTK, HMMR,
CCNA2, and KIF2C as potential predictive markers for
HCC. Previous studies indicate that expression levels of
BUB1B, which is a spindle-assembly checkpoint gene
[26], were highly upregulated in multiple myeloma
patients and that these levels were strongly correlated with
unfavorable outcomes [27]. Another marker, NUSAP1,
which is a microtubule-associated protein involved in
mitosis, is also known to participate in cell proliferation,
apoptosis, and repairing DNA damage in glioblastoma
multiforme cells [28]. The protein kinase encoded by the
TTK gene is necessary for mitotic checkpoints as well as
the DNA damage response [29]. Elevated HMMR in
mouse mammary epithelium enhances the rate of Brca1-
mutant carcinogenesis as it is involved in modifying the
phenotype of tumor cell and tumor microenvironment
[30]. The CCNA2 gene also plays an important role in
HCC, as the HBV genome integrates into one of the
CCNA2 introns and forms an in-frame chimeric fusion
with CCNA2 [31]. The KIF2C gene, belonging to the
Kinesin family, has been shown to be significantly overex-
pressed in several human malignancies [32].

Since mRNA is an essential component of all cells,
including tumor cells, changes in mRNA levels of hub genes
can be used as molecular indicators for a variety of disorders,
including cancer [13, 33, 34]. We find that the AUCs for
BUB1B, NUSAP1, TTK, HMMR, CCNA2, and KIF2C were
all >0.9, which indicates the expression levels of these genes
can be used to differentiate between HCC tissues and normal
liver tissues. Besides, immune cells that have invaded a
tumor are called tumor-infiltrating cells. These cells are a
key part of the microenvironment of a tumor and are
strongly related with carcinogenesis, progression, or metas-
tasis. In our results, we found the six hub genes were all pos-
itively associated with the immune infiltration level of
immune cells. All these results collectively suggested that
these hub genes could serve as diagnostic molecular markers
for HCC.

Considering that the predictive signature was developed
and verified by the use of data from public databases, more
experimental proof on top of the statistical evidence that
we supplied will be required.

It is concluded that BUB1B, NUSAP1, TTK, HMMR,
CCNA2, and KIF2C can be considered as potential novel
molecular indicators for the onset and development of
HCC, since they are linked to the transition from cirrhosis
to HCC. This study will prove important reference for trans-
lational medicine scientists, liver disease specialists, and bio-
informatics specialists.

Table 1: Baseline clinical information.

Characteristic Levels Overall

n 374

T stage, n (%)

T1 183 (49.3%)

T2 95 (25.6%)

T3 80 (21.6%)

T4 13 (3.5%)

N stage, n (%)
N0 254 (98.4%)

N1 4 (1.6%)

M stage, n (%)
M0 268 (98.5%)

M1 4 (1.5%)

Gender, n (%)
Female 121 (32.4%)

Male 253 (67.6%)

Age, n (%)
≤60 177 (47.5%)

>60 196 (52.5%)

AFP (ng/ml), n (%)
≤400 215 (76.8%)

>400 65 (23.2%)

Vascular invasion, n (%)
No 208 (65.4%)

Yes 110 (34.6%)

OS event, n (%)
Alive 244 (65.2%)

Dead 130 (34.8%)

Child-Pugh grade, n (%)

A 219 (90.9%)

B 21 (8.7%)

C 1 (0.4%)

Age, median (IQR) 61 (52, 69)
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Figure 10: Receiver operating characteristic analysis (ROC) of (a) BUB1B, (b) NUSAP1, (c) TTK, (d) HMMR, (e) CCNA2, and (f) KIF2C in
HCC patients’ data (n = 424).
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Figure 11: Relationships between immune infiltration in HCC tissues and expression levels of (a) BUB1B, (b) NUSAP1, (c) TTK, (d)
HMMR, (e) CCNA2, and (f) KIF2C from the TIMER database.

15Journal of Oncology



Data Availability

The datasets analyzed during the current study are available
in TCGA (https://portal.gdc.cancer.gov/) and GEO reposi-
tory (https://www.ncbi.nlm.nih.gov/geo/).

Conflicts of Interest

The authors declare no competing interests.

Authors’ Contributions

Yuanbin Chen and Hongyan Qian are equal first authors.

Acknowledgments

This study was supported by the Nantong Science and Tech-
nology Bureau (grant no. JC2020025), the Health Commit-
tee of Nantong (grant no. MB2020021), and the Clinical
Medicine Special Program from Nantong University (grant
no. 2019JY017). This work was also supported by Scientific
Research Project of Health Commission of Jiangsu Province
(grant no. M2020009)

References

[1] W. Shi, L. Feng, S. Dong et al., “FBXL6 governs c-MYC to pro-
mote hepatocellular carcinoma through ubiquitination and
stabilization of HSP90AA1,” Cell Communication and Signal-
ing: CCS, vol. 18, no. 1, p. 100, 2020.

[2] H. Nordenstedt, D. L. White, and H. B. El-Serag, “The chang-
ing pattern of epidemiology in hepatocellular carcinoma,”
Digestive and Liver Disease, vol. 42, Supplement 3, pp. S206–
S214, 2010.

[3] L. Kulik and H. B. El-Serag, “Epidemiology and management
of hepatocellular carcinoma,” Gastroenterology, vol. 156,
no. 2, article e471, pp. 477–491.e1, 2019.

[4] G. V. Papatheodoridis, P. Lampertico, S. Manolakopoulos, and
A. Lok, “Incidence of hepatocellular carcinoma in chronic
hepatitis B patients receiving nucleos(t)ide therapy: a system-
atic review,” Journal of Hepatology, vol. 53, no. 2, pp. 348–
356, 2010.

[5] W. L. Tsai and R. T. Chung, “Viral hepatocarcinogenesis,”
Oncogene, vol. 29, no. 16, pp. 2309–2324, 2010.

[6] H. Li, “Intercellular crosstalk of liver sinusoidal endothelial
cells in liver fibrosis, cirrhosis and hepatocellular carcinoma,”
Digestive and Liver Disease, vol. 54, no. 5, pp. 598–613, 2022.

[7] G. Yildiz, A. Arslan-Ergul, S. Bagislar et al., “Genome-wide
transcriptional reorganization associated with senescence-to-
immortality switch during human hepatocellular carcinogene-
sis,” PLoS One, vol. 8, no. 5, article e64016, 2013.

[8] X. Zhang, W. Zhang, Y. Jiang, K. Liu, L. Ran, and F. Song,
“Identification of functional lncRNAs in gastric cancer by inte-
grative analysis of GEO and TCGA data,” Journal of Cellular
Biochemistry, vol. 120, no. 10, pp. 17898–17911, 2019.

[9] J. Sun, J. Huang, J. Lan et al., “Overexpression of CENPF cor-
relates with poor prognosis and tumor bone metastasis in
breast cancer,” Cancer Cell International, vol. 19, no. 1,
p. 264, 2019.

[10] S. Davis and P. S. Meltzer, “GEOquery: a bridge between the
Gene Expression Omnibus (GEO) and BioConductor,” Bioin-
formatics, vol. 23, no. 14, pp. 1846-1847, 2007.

[11] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[12] D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10:
protein-protein interaction networks, integrated over the tree
of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–
D452, 2015.

[13] C. Zhang, W. Zhang, H. Cui et al., “Role of hub genes in the
occurrence and development of testicular cancer based on bio-
informatics,” International Journal of General Medicine,
vol. 15, pp. 645–660, 2022.

[14] Z. Zhang, E. Lin, H. Zhuang et al., “Construction of a novel
gene-based model for prognosis prediction of clear cell renal cell
carcinoma,” Cancer Cell International, vol. 20, no. 1, p. 27, 2020.

[15] W. Lin, S. Wu, X. Chen et al., “Characterization of hypoxia sig-
nature to evaluate the tumor immune microenvironment and
predict prognosis in glioma groups,” Frontiers in Oncology,
vol. 10, p. 796, 2020.

[16] R. Tibshirani, “The lasso method for variable selection in the Cox
model,” Statistics in Medicine, vol. 16, no. 4, pp. 385–395, 1997.

[17] F. Xu, X. Huang, Y. Li, Y. Chen, and L. Lin, “m6A-related
lncRNAs are potential biomarkers for predicting prognoses
and immune responses in patients with LUAD,” Molecular
Therapy-Nucleic Acids, vol. 24, pp. 780–791, 2021.

[18] Y. Ji and Y. Xue, “Identification and clinical validation of 4-
lncRNA signature for predicting survival in head and neck
squamous cell carcinoma,” Oncotargets and Therapy, vol. 13,
pp. 8395–8411, 2020.

[19] J. Wang, J. Sun, L. N. Liu et al., “Siglec-15 as an immune sup-
pressor and potential target for normalization cancer immu-
notherapy,”Nature Medicine, vol. 25, no. 4, pp. 656–666, 2019.

[20] R. Ravi, K. A. Noonan, V. Pham et al., “Bifunctional immune
checkpoint-targeted antibody-ligand traps that simultaneously
disable TGFβ enhance the efficacy of cancer immunotherapy,”
Nature Communications, vol. 9, no. 1, p. 741, 2018.

[21] N. Wen, Y. Cai, F. Li et al., “The clinical management of hepa-
tocellular carcinoma worldwide: a concise review and compar-
ison of current guidelines: 2022 update,” Bioscience Trends,
vol. 16, no. 1, pp. 20–30, 2022.

[22] M. Walker, H. B. El-Serag, Y. Sada et al., “Cirrhosis is under-
recognised in patients subsequently diagnosed with hepatocel-
lular cancer,” Alimentary Pharmacology & Therapeutics,
vol. 43, no. 5, pp. 621–630, 2016.

[23] L. A. Beste, S. L. Leipertz, P. K. Green, J. A. Dominitz, D. Ross,
and G. N. Ioannou, “Trends in burden of cirrhosis and hepato-
cellular carcinoma by underlying liver disease in US veterans,
2001-2013,” Gastroenterology, vol. 149, no. 6, pp. 1471–
1482.e5, 2015.

[24] H. B. El-Serag, “Hepatocellular carcinoma,” The New England
Journal of Medicine, vol. 365, no. 12, pp. 1118–1127, 2011.

[25] S. A. Sharma, M. Kowgier, B. E. Hansen et al., “Toronto HCC
risk index: a validated scoring system to predict 10-year risk of
HCC in patients with cirrhosis,” Journal of hepatology, vol. 68,
no. 1, pp. 92–99, 2018.

[26] T. Rio Frio, J. Lavoie, N. Hamel et al., “Homozygous BUB1B
mutation and susceptibility to gastrointestinal neoplasia,”
The New England Journal of Medicine, vol. 363, no. 27,
pp. 2628–2637, 2010.

16 Journal of Oncology

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


[27] X. Tang, M. Guo, P. Ding et al., “BUB1B and circBUB1B_
544aa aggravate multiple myeloma malignancy through evok-
ing chromosomal instability,” Signal Transduction and Tar-
geted Therapy, vol. 6, no. 1, p. 361, 2021.

[28] Y. Zhao, J. He, Y. Li, S. Lv, and H. Cui, “NUSAP1 potentiates
chemoresistance in glioblastoma through its SAP domain to
stabilize ATR,” Signal Transduction and Targeted Therapy,
vol. 5, no. 1, p. 44, 2020.

[29] F. Chen, E. P. Szymanski, K. N. Olivier et al., “Whole-exome
sequencing identifies the 6q12-q16 linkage region and a candi-
date gene, TTK, for pulmonary nontuberculous mycobacterial
disease,” American Journal of Respiratory and Critical Care
Medicine, vol. 196, no. 12, pp. 1599–1604, 2017.

[30] F. Mateo, Z. He, L. Mei et al., “Modification of BRCA1-
associated breast cancer risk by HMMR overexpression,”
Nature Communications, vol. 13, no. 1, p. 1895, 2022.

[31] Y. T. Chiu, J. K. Wong, S. W. Choi et al., “Novel pre-mRNA
splicing of intronically integrated HBV generates oncogenic
chimera in hepatocellular carcinoma,” Journal of Hepatology,
vol. 64, no. 6, pp. 1256–1264, 2016.

[32] S. Wei, M. Dai, C. Zhang et al., “KIF2C: a novel link between
Wnt/β-catenin and mTORC1 signaling in the pathogenesis
of hepatocellular carcinoma,” Protein & Cell, vol. 12, no. 10,
pp. 788–809, 2021.

[33] Y. Zheng, Y. Luo, X. Chen et al., “The role of mRNA in the
development, diagnosis, treatment and prognosis of neural
tumors,” Molecular Cancer, vol. 20, no. 1, p. 49, 2021.

[34] E. Wieczorek and E. Reszka, “mRNA, microRNA and lncRNA
as novel bladder tumor markers,” Clinica Chimica Acta,
vol. 477, pp. 141–153, 2018.

17Journal of Oncology


	Screening of the Key Genes for the Progression of Liver Cirrhosis to Hepatocellular Carcinoma Based on Bioinformatics
	1. Introduction
	2. Materials and Methods
	2.1. Microarray Data
	2.2. Identification of DEGs
	2.3. Enrichment Analysis of DEGs
	2.4. Screening of Hub Genes
	2.5. Survival Analysis
	2.6. Construction of Prognostic Signatures
	2.7. Immunoinfiltration Analysis

	3. Results
	3.1. Screening for Differentially Expressed Genes
	3.2. Screening for Hub Genes
	3.3. GO and KEGG Enrichment Analyses of DEGs
	3.4. Relationship between HCC Prognosis and Expression of Hub Genes
	3.5. Construction of Prognostic Signatures of Hub Genes in HCC
	3.6. Relationship between Hub Gene Expression and the Infiltration of Immune Cells

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



