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As a type of regulated cell death (RCD)mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced
by diferent stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the
formation of the infammasomes. Te canonical pathway is triggered by the assembly of infammasomes, and the activation of
caspase-1 and then the cleavage of efector protein gasdermin D (GSDMD) are promoted.While in the noncanonical pathway, the
caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of infammasomes.
Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal
carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical
pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and
curcumin have efect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be
an important therapeutic target for cancer.

1. Introduction

Cancer seriously threatens human health worldwide. Based
on the most recent data compiled by the International
Agency for Research on Cancer (IARC), 19.3 million new
cancer cases were diagnosed in 2020 [1]. In 2022, 1,918,030
new cancer cases and 609,360 cancer deaths are predicted to
occur in the United States [2]. Lung, stomach, liver, breast,
and colon cancer are the top fve primary causes of cancer-
related death [1]. At present, cancer treatment methods are
limited and inefective, which can only be performed by
surgical resection, radiotherapy, or chemotherapy [3]. In
addition, the high cost of cancer treatment and the large
amount of medical investment also cause a great deal of
economic burden to the individual and society [4, 5]. Ac-
cordingly, it is crucial to search more efcient and cost-
efective ways to treat cancer.

In normal mammalian cells, cells undergo death and
renewal as a result of cell aging, infection, or damage, which
present homeostasis of cells. Currently, several types of cell
death are found, including apoptosis, autophagy, necrosis,

necrotic apoptosis, and pyroptosis [6]. Apoptosis and
autophagy are important targets of anticancer defense and
have been widely studied. Apoptosis is the most common
programmed cell death, which is a physiological process
involving multiple factors, including the immune response,
gene regulation, and signal transduction [7]. Abnormal
apoptosis leads to a series of pathological efects, such as
tumors, while inducing apoptosis in cancer cells may be-
come a viable therapy for treating tumors [8, 9]. Autophagy
is a lysosome-based catabolic process that maintains ho-
meostasis, and the defense capabilities of autophagy are
degrading endogenous and foreign substances which are
held in vesicles [10]. Autophagy suppresses the development
of tumors by eliminating damaged proteins and organelles
and avoiding genome damage [11]. Most traditional che-
motherapy strategies for cancer are inducing apoptosis or
autophagy of tumor cells with erlotinib, paclitaxel, geftinib,
crizotinib, or cisplatin [12–15]. However, studies show that
cancer cells undergo infnite proliferation, and cancer cells
with a epidermal growth factor receptor (EGFR) wild-type is
resistant to chemotherapy drugs [16]; thus, there are few
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cancer cells which execute apoptosis or autophagy. It in-
dicates that under some circumstances, chemotherapy drugs
can not give rise to the apoptosis or autophagy of cancer
cells, thus resulting in drug resistance of chemotherapy [17].
Consequently, in order to improve the treatment of cancer, it
is crucial to induce another type of cell death. Pyroptosis is
a new type of infammatory cell death which is triggered by
the assembly of infammasomes. Te activated caspase-1
results in the cleavage of gasdermin D (GSDMD), the se-
cretion of interleukin-1β (IL-1β) and interleukin-18 (IL-18),
and consequent death of cells [18]. Accordingly, pyroptosis
is considered as an important target to treat cancer. Tis
article aims to review the morphological characteristics,
signaling pathways of pyroptosis, as well as the relationship
between pyroptosis and cancer.

2. Characteristics of Pyroptosis

In 1992, a programmed cell death of host macrophages
caused by Shigella fexneri was mistaken for apoptosis at that
time, but this programmed cell death is actually pyroptosis
[19]. Cookson and Brennan frst proposed the use of
“pyroptosis” to describe this new mode of programmed cell
death, where “Pyro” refers to the release of proinfammatory
cytokines in 2001 [20]. Te Cell Death Nomenclature
Committee (CDNC) classifed cell death into 13 types based
on morphological characteristics, among which pyroptosis
was listed in 2009 [21], and in 2018, the defnition of
pyroptosis was further clarifed as “pyroptosis is a kind of
regulated cell death (RCD) which minutely depends upon
the formation of cell membrane pores by gasdermins and
often is caused by infammatory caspase activation” [6].

Te morphological characteristics of pyroptosis include
cell enlargement, small amount of DNA damage, and
chromatin concentration, but the nucleus remains intact
[22]. In the early stage of pyroptosis, there is a very specifc
DNA damage which is diferent from that of apoptosis.
Compared with apoptosis, the intensity of DNA damage in
pyroptotic cells is lower, and the nucleus is intact [23, 24].
Te pores which are consisted of gasdermin oligomerization
appear on the cell membrane and the cell expands when the
pyroptosis occurs [25]. In addition, the proinfammatory
cytokines such as the IL-1β and IL-18 are released through
those cell membrane pores; consequently, the pyroptosis
continues. Accordingly, pyroptosis is diferent from apo-
ptosis whose morphological characteristics are manifested in
cell shrinkage, DNA degradation, nuclear membrane rup-
ture, and cell membrane integrity [6]. It is generally believed
that apoptosis is a regular form of cell death, while
pyroptosis is induced by intracellular or extracellular
stimulation, such as viral, bacterial, toxin, and chemotherapy
drugs [26].

3. Signal Pathways of Pyroptosis

Te main pathways of pyroptosis are divided into the ca-
nonical pathway and the noncanonical pathway according to
the upstream signal transducing mechanism [27]. In the
canonical pathway, the upstream stimuli lead to the NOD-

like receptors (NLRs) which are the members of pattern-
recognition receptors (PRRs) that assemble into infam-
masomes and then trigger the maturation of pro-caspase-1
to cleave the GSDMD, the pro-IL-1β, and the pro-IL-18
[28, 29]. While in the noncanonical pathway, upstream
stimuli directly trigger the cleavage of GSDMD by caspase-4/
5/11 (caspase 4/5 in humans and caspase 11 in mice) rather
than the assembly of the infammasomes [30].

3.1. Canonical Pyroptosis Pathway. Te pattern-recognition
receptor (PRR) is a vital part of our natural immune system
[31]. PRRs recognize pathogen-associated molecular pat-
terns (PAMPs) and damage-associated molecular patterns
(DAMPs), degrading pathogens and endogenous substances
by assembling into infammasomes [32–34]. In pyroptosis, it
is the NLRs which are the PRRs that assemble into
infammasomes [35]. Except for NLRP1, NLRs contain three
usual domains: C-terminalleucine-rich repeat (LRR) do-
main, central nucleotide-binding and oligomerization
(NACHT) domain, and N-terminal pyrin domain (PYD) or
caspase activation and recruitment domain (CARD)
[23, 36]. Te LRR domain has the function of ligand rec-
ognition as well as automatic inhibition, the NACHT do-
main activates signal complexes with the help of ATP, and
the PYD domain or CARD domain mediates isotypic
protein-protein reciprocities [28, 37]. When immune
stimulation occurs, the PYD domain binds NLR to
apoptosis-associatedspeck-like protein (ASC) which also
incorporates a PYD domain through PYD-PYD interaction
[38]. Te binding reaction triggers the formation of ASC
focal points, which recruit pro-caspase-1 and assemble into
infammasome through CARD-CARD interaction [38, 39].
Subsequently, the assembly of infammasome results in the
transformation of pro-caspase-1 to catalytically activated
P10 and P20 subunits, which boosts the activation and
maturation of pro-IL-1β and pro-IL-18 [40–42].

Activated caspase-1 also facilitates the cleavage of gas-
dermins besides the pro-IL-1β and pro-IL-18 [43]. Te
gasdermins are proteins which assemble membrane pores by
polymerization, thus causing the outfow of cell contents
[44]. Most of gasdermins such as gasdermin A (GSDMA),
gasdermin B (GSDMB), gasdermin C (GSDMC), gasdermin
D (GSDMD), and gasdermin E (GSDME) except DFNB59
have similar structures and functions of forming pores on
the cell membrane [44]. When gasdermin is unactivated, the
inhibitory C-terminal domain and the functional N-
terminal domain connect together to form complete gas-
dermin, which cannot assemble membrane pores. However,
when gasdermin is activated, the N-terminal domain breaks
away from the C-terminal domain so that gasdermin as-
sembles membrane pores and triggers further reactions [45].
Increasing evidence suggest that the GSDMD is more im-
portant in membrane pores formation compared with other
gasdermins [46, 47]. However, the cellular functions and
activation mechanisms of gasdermins remain unclear [48].

Te upstream signaling of canonical pyroptosis
pathway stimulates the assembly of infammasome whose
PRR is generally NLRP3 [49]. Te NLRP3 infammasome
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transforms pro-caspase-1 into activatory caspase-1,
which promotes the activation of pro-IL-1β and pro-
IL-18 [28, 37, 50]. At the same time, caspase-1 causes the
cleavage of GSDMD and activates the GSDMD [29, 51].
Te activated GSDMD forms the membrane pores, which
make cell contents, such as IL-1β and IL-18, to be released
[52, 53]. Consequently, the infammatory response oc-
curs. Undoubtedly, caspase-1 and GSDMD take up ir-
replaceable roles in the canonical pyroptosis pathway,
and the activation of caspase-1 is mainly sparked by the
assembly of NLRP3 infammasome, so the NLRP3
infammasome ought to occupy another important role in
pyroptosis. It is reported that the reactive oxygen species
(ROS)/nuclear factor kappa B (NF-κB) signaling pathway
takes part in the activation of NLRP3 infammasome [54].
ROS promotes the release and activation of proin-
fammatory transcription factors such as NF-κB, which
mainly regulates the NLRP3 infammasome [55, 56]
(Figure 1).

3.2.NoncanonicalPathwayofPyroptosis. Tedownstream of
noncanonical pyroptosis pathway is the same as that of
canonical pyroptosis pathway and presents GSDMD as the
efector protein which causes the formation of cell mem-
brane pores [30, 47]. In addition, the morphological char-
acteristics of the noncanonical pyroptosis pathway are
basically the same as that of the canonical pyroptosis
pathway. However, the upstream of noncanonical pyroptosis
pathway is substantially diferent from that of the canonical
pathway. In the canonical pathway, the assembly of the
infammasomes promotes the maturation of caspase-1,
which not only boosts the proteolytic maturation of pro-IL-
1β and pro-IL-18 but also promotes the cleavage of GSDMD
to form cell membrane pores. While in the noncanonical
pyroptosis pathway, the caspase-4/5/11 directly receives
stimulation, binding to stimulating protein which mainly is
the lipopolysaccharides (LPS) of Gram-negative bacteria and
then promote the cleavage of GSDMD to form pores rather
than assemble into infammasomes [29, 30, 43, 57, 58]. At
the same time, the amino-terminal fragments which are
produced in the process of caspase-11 cleaving GSDMD
promote the NLRP3 infammasome and the caspase-1 to be
activated, which suggest that the noncanonical pathway
crosstalks with the canonical pathway [30] (Figure 1).

4. Pyroptosis and Cancer

4.1. Pyroptosis and Lung Cancer. Lung cancer (LC) seriously
threatens human health worldwide. Te survival rate for
a period of 5 years is less than 15% [59, 60]. Lung cancer is
included into two subtypes which are small-cell lung cancer
(SCLC) and nonsmall-cell lung cancer (NSCLC), and the
NSCLC accounts for about 85% of lung cancer cases [61].
Chemotherapy is one of the conventional treatment
methods of LC [62]. However, chemotherapy is less sensitive
and less efective in the therapy of LC [63] because cancer
cells have multiple strategies to circumvent or limit apo-
ptosis which is a normal mechanism to protect cells [64].

Accordingly, it is very important for LC to propose new
therapeutic strategies.

SCLC accounts for approximately 15% of all lung cancers
and is classifed as a high-grade neuroendocrine (NE) tumor
which has a high death rate and poor prognosis [65].
However, there are only a few studies to explore the re-
lationship between SCLC and pyroptosis. It is reported that
chemosensitivity is related to the pyroptosis which is con-
nected with the expression of yes-associated protein (YAP)
and GSDME, and the activation of YAP suppresses GSDME
expression to enhance the chemoresistance in SCLC cells,
while the inactivation of YAP in SCLC tumor cells switches
cell death from apoptosis to pyroptosis [66].

In pyroptosis, it is clear that the assembly of NLRP3
infammasome is closely related to the activation of caspase-
1, which is involved in the cleavage and maturation of the
GSDMD, and the GSDMD is the executor of pyroptosis. It
indicates that NLRP3 infammasome, caspase-1, and
GSDMD are crucial factors in the process of pyroptosis.
Accordingly, inducing pyroptosis of NSCLC cells through
the NLRP3/caspase-1/GSDMD pathway may be potential
targets for inhibiting the tumor progression of NSCLC [54].
Wang et al. demonstrated that caspase-1 was downregulated
in NSCLC tumor tissues and found that simvastatin (SIM),
an anti-hyperlipidaemia drug, inhibits the growth of NSCLC
by activating caspase-1-dependent pyroptosis in xenograft
mousemodels and in A549 andH1299 lung cancer cells [67].
Additionally, it is suggested that SIM also induces apoptosis
by downregulating the cyclin-dependent kinases (CDKs)
and matrix metalloproteinases-9 (MMP-9) levels or by
inhibiting the activity of proteasome and upregulating p21
and p53 [68, 69]. Further research confrms that SIM induces
ROS generation and accumulation in mitochondria and
cytosol, thus leading to apoptosis of NSCLC cells [70–72].
Te polyphyllin VI (PPVI), a chief saponin extracted from
trillium tschonoskii maxim (TTM), induces caspase-1-de-
pendent pyroptosis through the ROS/NF-κB/NLRP3/
GSDMD signal axis and inhibits the progression of NSCLC
[54]. In addition, PPVI promotes the accumulation of ROS
and the cleavage of caspase-3, downregulates the B-
celllymphoma-2 (Bcl-2) expression, upregulates the Bcl-2-
associated X (Bax) and p53 expression, and arrests the cell
cycle in G2/M; thus, apoptosis of NSCLC cells is triggered
[73, 74]. Meanwhile, PPVI also exerts the anti-NSCLC efect
by inducing apoptosis through the phosphatidylinositol-3-
kinase (PI3K)/Akt/mammalian target of rapamycin
(mTOR) pathway [75]. Te cucurbitacin B (CuB), a com-
pound extracted from muskmelon pedicel, inhibits NSCLC
by bounding to toll-like receptor 4 (TLR4) to activate the
NLRP3 infammasome and triggering GSDMD dependent
pyroptosis [76]. Also, CuB enhances the mitochondrial ROS
to trigger pyroptosis of NSCLC cell [76]. Moreover, CuB
induces the apoptosis of NSCLC cells by inhibiting the long
noncoding RNA Xinactive-specifc transcript (lncRNA-
XIST)/miR-let-7c/IL-6/signal transducer and activator of
transcription 3 (STAT3) axis and suppressing the mitogen-
activated protein kinases (MAPK) and PI3K pathways
[77, 78]. Additionally, CuB arrests the cell cycle of NSCLC
cells at the G2/M phase and downregulates the level of Bcl-2,
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thus inducing apoptosis via the STAT3 pathway [79, 80]. In
addition, CuB induces apoptosis by interfering with EGFR
activation and its downstream signal path which includes
Akt and extracellular-signal-regulated kinases (ERK)
[81, 82]. It is presented that dasatinib (DAS), a multikinase
inhibitor, promotes the cleavage and secretion of the
GSDMD and GSDME which induce the pyroptosis of A549
cells, which thus inhibits the progress of NSCLC [83]. DAS
also induces the apoptosis of lung cancer cells by upregu-
lating the ROS level or downregulating the Bcl-2 family
member Bcl-xL [84, 85]. In addition, CD8 (+) Tcells require
GSDMD for an immune response to NSCLC, while GSDMD
defciency results in the cytolytic capacity of CD8 (+)
T cells [86].

Te ROS/NF-κB pathway is involved in the expression of
NLRP3 infammasome which indicates that both the ROS
and the NF-κB act vital roles in pyroptosis [56, 87, 88].
Likewise, both ROS and NF-κB are targeted to induce
pyroptosis in NSCLC therapy [54]. Chalcone, a natural

structure, induces pyroptosis by the upregulation of ROS
and inhibits the progress of A549 and H1975 cells [89].
Meanwhile, chalcone upregulates the caspase-3, caspase-8,
Bax, and ROS and inhibits the cell cycle at the G2/M phase
ultimately resulting in apoptosis of A549 cell [90, 91].
Metformin (MET), a biguanide drug, induces pyroptosis of
tumors by the adenosine monophosphate (AMP)-activated
protein kinase (AMPK)/Sirtuin-1 (SIRT1)/NF-κB/caspase-
3/GSDME pathway [92]. Te mechanisms are that MET
upregulates the AMPK/SIRT1 pathway and increases the
expression of NF-κB, activating the cleavage of GSDME by
caspase-3 [92]. Moreover, MET induces caspase-3-de-
pendent apoptosis through regulating SIRT1 and activating
the c-junN-terminal kinase (JNK)/p38 MAPK pathway
[93, 94]. Piperlongumine (PL) analogue L50377, a natural
product with less toxicity, is applied to induce pyroptosis of
NSCLC through upregulating the level of ROS and acti-
vating the expression of NF-κB [95]. It is shown that PL also
induces apoptosis and autophagy of NSCLC cells through

Figure 1: In the canonical pathway of pyroptosis, NLRP3 recognizes stimulus (DAMPS/PAMPS) and binds to the ACS through PYD-PYD
interaction and then occurs the formation of ASC focal points which triggers the recruitment of pro-caspase-1 to assemble into NLRP3
infammasome. In the infammasome, pro-caspase-1 is cleaved into the active forms, which catalyzes the cleavage of pro-IL-1β, pro-IL-18,
and GSDMD. Mature GSDMD forms pores on cell membrane, leading to the outfow of cell contents such as IL-1β and IL-18, thus
exhibiting an infammatory response. It is noteworthy that the transcription of NLRP3 genes is regulated by the ROS/NF-κB signaling
pathway. In the noncanonical pathway of pyroptosis, caspase-4/5/11 directly recognizes stimulus and gets activated, then causing cleaving
GSDMD to promote pyroptosis.
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activating the PI3K/Akt/mTOR pathway, upregulating the
microRNA-34b-3p, and downregulating the transforming
growth factor beta type I receptor (TGFBR1) [96, 97]. It is
reported that 13 d (a modifed EF24 with low toxicity) or
L61H10 (a thiopyran derivative) may mediate the apoptosis-
pyroptosis switch in NSCLC through the NF-κB signaling
pathway [98, 99]. Furthermore, EF24 analogues promote
ROS generation and accumulation, resulting in apoptosis of
NSCLC cells [100, 101].

Apurinic endonuclease 1 (APE1) acts as a key factor in
base excision repair (BER) and exerts the function of
apurinic sites excision [102]. It is reported that the poor
prognosis of NSCLC links with high level of APE1
[103–105].Te NO.0449-0145 (a small molecule compound)
improves the condition of NSCLC by inhibiting the ex-
pression of APE1 and inducing pyroptosis [106]. Further-
more, Zhu et al. suggested that inhibiting the activation of
APE1 leads to elevation of the p53 protein level and increase
of the NSCLC apoptosis [107, 108].

Maternal embryonic leucine zipper kinase (MELK) is
a carcinogenic kinase and is essential in NSCLC mitotic
progression, metastasis by regulating the process of cell
death [109]. It is reported that MEIK has overexpression in
cancer cells [110]. Tang et al. demonstrated that OTSSP167,
as a potent inhibitor for MELK, blocks the G2/M phase cycle
of lung adenocarcinoma (LUAD) cells by inhibiting MELK
to trigger the pyroptosis [111]. Te inhibition of MELK also
decreases its downstream forkhead box protein M1
(FOXM1) activation and Akt expression in lung cancer cells,
leading to apoptosis of NSCLC cells [112].

Other member of the gasdermins such as GSDME serves
as special targets to induce pyroptosis in NSCLC therapy
[113]. It is reported that paclitaxel and cisplatin inhibit A549
lung cancer cells by inducing pyroptosis through the cas-
pase-3/GSDME pathway [114]. DAS induces the pyroptosis
of A549 cells by upregulating the level of GSDME [83].

Intracellular LPS induces the pyroptosis through the
noncanonical pathway [115, 116]. In addition, LPS may
directly lead to regression of some tumor; however, the
underlying mechanism remains unclear [117]. Currently, it
is suggested that the secretoglobin (SCGB) 3A2, as a mul-
tifunctional secreted protein, eliminates human lung ade-
nocarcinoma cells through noncanonical infammasome
pathway mediated by LPS [118]. Human NSCLC cells with
SCGB3A2-sensitivity express caspase-4 which is a crucial
molecule of the noncanonical infammasome pathway [118].

It is proposed that the pyroptosis is induced by inhibiting
the lncRNA-XIST through the Mir-335/SOD2/ROS signal-
ing pathway, and then the NSCLC is inhibited [119]. In
addition, the knockout of lncRNA-XIST gene induces the
pyroptosis of tumor cells, which suppresses the growth of
NSCLC cells and promotes the chemotherapy sensitivity of
cisplatin [120]. Moreover, the upregulation of the p53 in-
hibits tumor growth by promoting pyroptosis in NSCLC
[121]. In addition, 4-hydroxybenzoic acid (4-HBA) leads to
the activation of pyroptosis by accelerating the transcription
of caspase-1, IL-1β, and IL-18 genes in A549 cells [122]
(Table 1).

However, the high expression of some key molecules of
pyroptosis may not lead to amelioration but results in poor
prognosis and deterioration of NSCLC in some specifc cases.
It is suggested that GSDMC is overexpressed in LUAD pa-
tients who have poor prognosis [123]. In addition, the high
level of GSDMD do not induce pyroptosis but is associated
with aggressive characteristics, such asmore advanced tumor-
lymph node metastasis (TNM) phase, larger tumor size, and
poorer prognosis in NSCLC [124]. Zou et al. suggested that
NLRP3 promotes the cell proliferation and the migration of
NSCLC [125]. Accordingly, more researches are needed to
confrm the role of pyroptosis in NSCLC.

4.2. Pyroptosis and Gastric Cancer. Gastric cancer (GC) is
one of the most common cancers which is seriously harmful
to human health [2, 126]. Accordingly, it is very crucial to
search new efective methods to treat GC. Here, we discuss
some strategies for the treatment of GC by inducing
pyroptosis and apoptosis. Te pyroptosis-related risk signals
and the pyroptosis-related genes (PRGs) in GC may po-
tentially predict the treatment beneft, the prognosis, the
survival of individuals, and their response to immuno-
therapy [127–131]. Moreover, the pyroptosis-related protein
GSDMD may inhibit the cell proliferation of GC, and when
GSDME is knocked down, the growth of GC cells is afected
[132, 133]. It is demonstrated that the release of ROS by
sonodynamic therapy (SDT) treatment induces the pyrop-
tosis of GC cells and plays the antitumor function [134]. It is
reported that treating GC cells with famotidine triggers the
activation of NLPR3 infammasomes and leads to the mature
and secretion of GSDME and IL-18, resulting in the
pyroptosis of GC cells [135]. It is presented that SIM acti-
vates caspase-3/GSDME expression and thereby induces
pyroptosis of GC [136]. In addition, SIM treatment sup-
presses the expression of β-catenin, inhibits the activation of
YAP and NF-κB, and thus promotes the apoptosis in GC
cells [137, 138]. Icariin (ICA), an active component from
TCM epimedium grandiforum, inhibits the progression of
GC cells by activating the NLRP3 infammasomes and in-
ducing pyroptosis [139]. Meanwhile, ICA could efectively
induce apoptosis via hsa_circ_0003159/eIF4A3/bcl-2 axis to
reduce the GC cell activity [140]. It is confrmed that
diosbulbin-B (DB) is efective to activate NLRP3-mediated
pyroptosis in GC by downregulating programmed death
ligand-1(PD-L1) [141]. Furthermore, DB inhibits the pro-
liferation of GC cells by knocking-down cerebellar
degeneration-related protein 1 (CDR1) (a type of circular
RNA) to promote apoptosis [142] (Table 1).

However, the cytotoxin-related gene A (CagA) protein, an
important pathogenic factor of Helicobacter pylori (H. pylori)
[143], promotes the invasion and migration of GC cells by
activating NLRP3 infammasome, while the suppression of
H. pylori-triggered infammatory response and the depression
of pyroptosis via the ROS/NLRP3/caspase-1/IL-1β pathway
may suppress the progression of GC [144]. Tese results in-
dicate that there is a close and complex relationship between
GC and pyroptosis, while more researches are necessary in
future.

Journal of Oncology 5



Ta
bl

e
1:

T
e
m
ec
ha
ni
sm

of
di
fe
re
nt

m
ed
ic
in
es

to
in
du

ce
py
ro
pt
os
is
or

ap
op

to
sis

in
di
fe
re
nt

ca
nc
er
s.

Py
ro
pt
os
is

A
po

pt
os
is

Lu
ng

ca
nc
er

Si
m
va
st
at
in

A
ct
iv
at
es

ca
sp
as
e-
1-
de
pe
nd

en
t
py
ro
pt
os
is
[6
7]

D
ow

nr
eg
ul
at
es
th
eC

D
K
sa

nd
M
M
P-
9
le
ve
ls;

in
hi
bi
ts
th
ea

ct
iv
ity

of
pr
ot
ea
so
m
e;

an
d
up

re
gu
la
te
s
p2
1,

p5
3,

an
d
RO

S
[6
8–

72
]

Po
ly
ph

yl
lin

V
I

A
ct
iv
at
es

th
e
RO

S/
N
F-
κB

/N
LR

P3
/c
as
pa
se
-1
/G

SD
M
D

sig
na
la

xi
s
[5
4]

U
pr
eg
ul
at
es

RO
S,

ca
sp
as
e-
3,

Ba
x,

an
d
p5

3;
do

w
nr
eg
ul
at
es

th
e
Bc

l-2
;a

nd
re
gu
la
te
s
th
e
PI
3K

/A
kt
/m

TO
R
pa
th
w
ay

[7
3–

75
]

C
uc
ur
bi
ta
ci
n
B

U
pr
eg
ul
at
es

th
e
N
LR

P3
in
fa
m
m
as
om

e,
G
SD

M
D
,a
nd

RO
S
le
ve
ls
[7
6]

In
hi
bi
ts
th
e
ln
cR

N
A
-X

IS
T/
m
iR
-le

t-
7c
/I
L-
6/
ST

A
T3

ax
is;

su
pp

re
ss
es

th
e
M
A
PK

an
d
PI
3K

pa
th
w
ay
s;
an
d
in
te
rf
er
es

w
ith

EG
FR

ac
tiv

at
io
n
[7
7–

82
]

D
as
at
in
ib

Pr
om

ot
es

th
e
cl
ea
va
ge

an
d
se
cr
et
io
n
of

th
e
G
SD

M
D

an
d
G
SD

M
E
[8
3]

U
pr
eg
ul
at
es

RO
S
le
ve
la
nd

do
w
nr
eg
ul
at
es

Bc
l-2

fa
m
ily

m
em

be
rB

cl
-x
L
[8
4,
85
]

C
ha
lc
on

e
U
pr
eg
ul
at
es

th
e
le
ve
lo

fR
O
S
[8
9]

U
pr
eg
ul
at
es

th
e
ca
ps
pa
se
-3
,c
as
pa
se
-8
,B

ax
,a
nd

RO
S
an
d
in
hi
bi
ts
ce
ll
cy
cl
e
at

th
e
G
2/
M

ph
as
e
[9
0,

91
]

M
et
fo
rm

in
A
ct
iv
at
es

A
M
PK

/S
IR
T1

/N
F-
κB

/c
as
pa
se
3/
G
SD

M
E
pa
th
w
ay

[9
2]

Re
gu
la
te
s
SI
RT

1
an
d
ac
tiv

at
es

th
e
JN

K
/p
38

M
A
PK

pa
th
w
ay

[9
3,

94
]

Pi
pe
rlo

ng
um

in
e

U
pr
eg
ul
at
es

th
e
le
ve
lo

fR
O
S
an
d
ac
tiv

at
es

th
e
ex
pr
es
sio

n
of

N
F-
κB

[9
5]

A
ct
iv
at
es

th
e
PI
3K

/A
kt
/m

TO
R
pa
th
w
ay
;u

pr
eg
ul
at
es

th
e
m
ic
ro
RN

A
-3
4b
-3
p;

an
d
do

w
nr
eg
ul
at
es

th
e
TG

FB
R1

[9
6,

97
]

EF
24

M
ed
ia
te
st
he

ap
op

to
sis

-p
yr
op

to
sis

sw
itc
h
th
ro
ug
h
th
e
N
F-
κB

sig
na
lin

g
pa
th
w
ay

[9
8]

Pr
om

ot
es

RO
S
ge
ne
ra
tio

n
an
d
ac
cu
m
ul
at
io
n
[1
00
,1

01
]

L6
1H

10
M
ed
ia
te
st
he

ap
op

to
sis

-p
yr
op

to
sis

sw
itc
h
th
ro
ug
h
th
e
N
F-
κB

sig
na
lin

g
pa
th
w
ay

[9
9]

N
O
.0
44
9-
01
45

In
hi
bi
ts

th
e
ex
pr
es
sio

n
of

A
PE

1
[1
06
]

O
TS

SP
16
7

Bl
oc
ks

th
e
G
2/
M

ph
as
e
cy
cl
e
by

in
hi
bi
tin

g
M
EL

K
[1
11
]

se
cr
et
og
lo
bi
n3

A
2

A
ct
iv
at
es

th
e
no

nc
an
on

ic
al

in
fa
m
m
as
om

e
pa
th
w
ay

m
ed
ia
te
d
by

LP
S
[1
18
]

4-
H
yd
ro
xy
be
nz
oi
c
ac
id

A
cc
el
er
at
es

th
e
tr
an
sc
ri
pt
io
n
of

ca
sp
as
e-
1,

IL
-1
β,

an
d
IL
-1
8
ge
ne
s
[1
22
]

G
as
tr
ic
ca
nc
er

Si
m
va
st
at
in

A
ct
iv
at
es

ca
sp
as
e-
3/
G
SD

M
E
ex
pr
es
sio

n
[1
36
]

Su
pp

re
ss
es

th
e
ex
pr
es
sio

n
of

β-
ca
te
ni
n
an
d
in
hi
bi
ts
th
e
ac
tiv

at
io
n
of

YA
P
an
d

N
F-
κB

[1
37
,1

38
]

Ic
ar
iin

A
ct
iv
at
es

th
e
N
LR

P3
in
fa
m
m
as
om

es
[1
39
]

Re
gu
la
te
s
th
e
hs
a_
ci
rc
_0
00
31
59
/e
IF
4A

3/
bc
l-2

ax
is
[1
40
]

D
io
sb
ul
bi
n-
B

A
ct
iv
at
es

N
LR

P3
-m

ed
ia
te
d
py
ro
pt
os
is
by

do
w
nr
eg
ul
at
in
g
PD

-L
1
[1
41
]

D
ow

nr
eg
ul
at
es

th
e
le
ve
lo

fC
D
R1

[1
42
]

H
ep
at
ic
ca
rc
in
om

a
C
ri
zo
tin

ib
A
cc
um

ul
at
es

th
e
RO

S
in

ca
nc
er

ce
lls

[1
59
]

In
hi
bi
ts

th
e
ac
tiv

at
io
n
of

A
LK

,A
kt
,a

nd
ER

K
[1
60
]

C
an
na
bi
di
ol

Re
gu
la
te
s
th
e
ca
sp
as
e-
3/
G
SD

M
E
pa
th
w
ay

[1
61
]

A
rr
es
ts
th
e
G
0/
G
1
ph

as
e
in

th
e
ce
ll
cy
cl
e
an
d
in
du

ce
sm

ito
ch
on

dr
ia
l-d

ep
en
de
nt

ap
op

to
sis

[1
62
]

M
et
fo
rm

in
Pr
om

ot
s
FO

X
O
3
ex
pr
es
sio

n
an
d
ac
tiv

at
es

N
LR

P3
tr
an
sc
ri
pt
io
n
[1
63
]

Re
gu
la
te
s
A
M
PK

/p
53
/p
38
/m

iR
-2
3a
/F
O
X
A
1
pa
th
w
ay
,r
eg
ul
at
es

PI
3K

/A
kt
/

m
TO

R
pa
th
w
ay
,a
nd

do
w
nr
eg
ul
at
es

Bc
l-2

[1
64
–1
67
]

C
ur
cu
m
in

In
cr
ea
se
s
th
e
ge
ne
ra
tio

n
an
d
ac
cu
m
ul
at
io
n
of

RO
S
[1
68
]

Pr
om

ot
es

th
e
P5

3-
de
pe
nd

en
ta

po
pt
os
is
an
d
in
hi
bi
ts

th
e
PI
3K

/A
kt
/G

SK
-3
β

sig
na
lin

g
pa
th
w
ay

[1
69
–1
71
]

17
β-
es
tr
ad
io
l

In
du

ce
s
th
e
ac
tiv

at
io
n
of

N
LR

P3
in
fa
m
m
as
om

e
[1
73
]

In
cr
ea
se
sF

O
X
O
3
ph

os
ph

or
yl
at
io
n,
in
du

ce
so

xi
da
tiv

e
st
re
ss
,a
nd

do
w
nr
eg
ul
at
es

IL
-6
/S
TA

T3
sig

na
lin

g
[1
74
,1

75
]

Be
rb
er
in
e

In
du

ce
s
ca
sp
as
e-
1-
de
pe
nd

en
t
py
ro
pt
os
is
[1
76
]

Re
gu
la
te
s
N
F-
κB

/p
65

pa
th
w
ay

an
d
in
du

ce
s
ad
en
os
in
e

A
M
PK

-m
ed
ia
te
dc
as
pa
se
-d
ep
en
de
nt

ap
op

to
sis

[1
77
,1

78
]

Eu
xa
nt
ho

ne
Pr
om

ot
es

py
ro
pt
os
is
in

a
ca
sp
as
e-
de
pe
nd

en
tm

an
ne
r
[1
56
]

A
lp
in
um

iso
fa
vo
ne

In
du

ce
s
N
LR

P3
in
fa
m
m
as
om

e-
m
ed
ia
te
d
py
ro
pt
os
is
[1
57
]

Br
ea
st
ca
nc
er

Po
ly
da
tin

D
ow

nr
eg
ul
at
es

th
e
JA

K
2
an
d
ST

A
T3

le
ve
ls
[1
84
]

Su
pp

re
ss
es

th
e
RO

S/
PI
3K

/A
kt

pa
th
w
ay

[1
85
]

C
isp

la
tin

A
ct
iv
at
es

th
e
N
LR

P3
/c
as
pa
se
-1
/G

SD
M
D

pa
th
w
ay

[1
86
]

D
ow

nr
eg
ul
at
es

th
e
PI
3K

/A
kt
/m

TO
R
sig

na
lin

g
pa
th
w
ay

[1
87
]

6 Journal of Oncology



Ta
bl

e
1:

C
on

tin
ue
d.

Py
ro
pt
os
is

A
po

pt
os
is

D
ih
yd
ro
ar
te
m
isi
ni
n

A
ct
iv
at
es

th
e
A
IM

2/
ca
sp
as
e-
3/
G
SD

M
E
ax
is
[1
88
]

U
pr
eg
ul
at
es

th
e
ex
pr
es
sio

n
of

ca
sp
as
e-
8/
9
an
d
do

w
nr
eg
ul
at
es

th
e
le
ve
lo

fB
cl
-2

[1
89
]

N
ob

ile
tin

Re
gu
la
te
s
th
e
m
ic
ro
RN

A
-2
00
b/
JA

ZF
1/
N
F-
κB

[1
90
]

D
ec
re
as
es

th
e
Bc

l-2
an
d
Bc

l-x
L;

in
hi
bi
ts
A
kt
/m

TO
R
pa
th
w
ay
;a
nd

in
cr
ea
se
st
he

Ba
x,

p5
3,

an
d
ca
sp
as
e-
3
[1
91
,1

92
]

Te
tr
aa
rs
en
ic

he
xo
xi
de

A
ct
iv
at
es

th
e
RO

S/
ca
sp
as
e-
3/
G
SD

M
E
ai
xs

[1
93
]

Tr
ic
la
be
nd

az
ol
e

In
du

ce
s
G
SD

M
E-
de
pe
nd

en
tp

yr
op

to
sis

by
ac
tiv

at
in
g
ca
sp
as
e-
3
[1
94
]

Co
lo
re
ct
al

ca
rc
in
om

a

A
rs
en
ic

tr
io
xi
de

U
pr
eg
ul
at
es

th
e
ex
pr
es
sio

n
of

ca
sp
as
e-
1
an
d
pr
om

ot
es

th
e
fo
rm

at
io
n
of

in
fa
m
m
as
om

es
[1
95
]

In
hi
bi
ts
th
ea

ct
iv
at
io
n
of
te
lo
m
er
as
ea

nd
in
du

ce
sc
as
pa
se
-3
-d
ep
en
de
nt

ap
op

to
sis

[1
96
]

D
ec
ita

bi
ne

U
pr
eg
ul
at
es

th
e
ex
pr
es
sio

n
of

in
fa
m
m
as
om

es
[1
97
]

In
cr
ea
se
s
th
e
ex
pr
es
sio

n
of

m
iR
-1
33
b
[1
98
]

Journal of Oncology 7



4.3. Pyroptosis and Hepatic Carcinoma. Hepatic carcinoma
(HCC) is a common kind of cancers which seriously hazards
human health [2]. However, increasing researches demon-
strate that HCC cells present multiple strategies to achieve
drug resistance [145, 146]. Accordingly, it is necessary to
search efective strategy to treat HCC. It is confrmed that
PRGs such as pyroptosis-related lncRNA may serve as
a promising biomarker for HCC patients to predict the
prognosis and guide precision drug treatment and immu-
notherapy [147–151]. Meanwhile, pyroptosis-related proteins
especially the GSDMD and the GSDME have the potential to
become crucial biomarkers for the diagnosis and prognosis of
HCC, which provide a new insight for the development of
therapeutic targets [152, 153]. NIMA-related kinase 7 (NEK7)
is a serine/threonine kinase which progresses the eukaryotic
cell cycle [154]. Knocking-down of NEK7 in HCC cells sig-
nifcantly upregulates the expression of NLRP3, caspase-1,
and GSDMD to induce pyroptosis and inhibit the migration
of HCC cells [155]. It is revealed that euxanthone promotes
pyroptosis in a caspase-dependent manner in HCC cells, and
alpinumisofavone inhibits the growth of HCC cells by in-
ducing NLRP3 infammasome-mediated pyroptosis
[156, 157]. Miltirone, a derivative of phenanthrene-quinone
isolated from the root of Salvia miltiorrhiza Bunge, promotes
the accumulation of intracellular ROS and induces the
GSDME-dependent pyroptosis of HCC [158]. Likewise, cri-
zotinib (CRIZO) increases ROS in HL-7702 cells to promote
pyroptosis and inhibit HCC [159]. Furthermore, CRIZO
induces apoptosis and suppresses the proliferation of HCC
cells by inhibiting the phosphorylation of the anaplastic
lymphoma kinase (ALK), Akt, and ERK [160]. In addition,
Cannabidiol (CBD), a cannabis sativa constituent, may in-
duce pyroptosis via caspase-3/GSDME pathway to inhibit the
growth of HCC cells in vivo and in vitro [161]. Moreover,
CBD arrests the G0/G1 phase in the cell cycle and induces
mitochondrial-dependent apoptosis in HCC cell lines [162]. It
is confrmed that MET induces the pyroptosis by promoting
forkhead box protein O3 (FOXO3) expression and activating
NLRP3 transcription to suppress the progression of HCC cells
[163]. Meanwhile, MET induces apoptosis in HCC through
the AMPK/p53/p38/miR-23a/FOXA1 pathway or PI3K/Akt/
mTOR pathway [164–166]. Furthermore, MET induces the
downregulation of Bcl-2 in HCC cells to enhance apoptosis
[167]. It is demonstrated that curcumin (CUR) induces
pyroptosis in HspG2 cells by increasing ROS [168]. In ad-
dition, CUR may inhibit the growth of HepG2 cells by
promoting the P53-dependent apoptosis [169]. Moreover,
CUR triggers mitochondrial apoptosis in HCC cells by
inhibiting the PI3K/Akt/glycogen synthase kinase-3β (GSK-
3β) signaling pathway [170, 171]. 17β-estradiol (E2) is a kind
of hormonally active compounds [172]. It is suggested that
E2-induced activation of the NLRP3 infammasome may
serve as a suppressor in HCC progression [173]. In addition,
E2 may promote apoptosis in HepG2 cells by increasing
FOXO3 phosphorylation and inducing oxidative stress [174].
Furthermore, E2 inhibits the proliferation of HCC cells
through downregulation of IL-6/STAT3 signaling and ar-
resting cell cycle at the G2/M phase [175]. It is confrmed that
berberine, a kind of isoquinoline alkaloids, inhibits the

progression of HepG2 cells by inducing caspase-1-dependent
pyroptosis both in vitro and in vivo or promoting apoptosis
through the NF-κB/p65 pathway [176, 177]. Additionally,
berberine efectively inhibits the growth of HHC cells by
inducing adenosine AMPK-mediatedcaspase-dependent ap-
optosis [178]. Tese researches highlight the possibilities of
inducing pyroptosis or apoptosis for treating HCC and in-
dicate that more studies are needed to clarify the mechanism
of pyroptosis in HCC (Table 1).

4.4. Pyroptosis and Breast Cancer. Breast cancer (BC) does
great harm to women health which ranks second among
cancer-related death in women [2]. It is critical to seek
a valid treatment strategy for BC. It is confrmed that PRGs
may serve as an important prognostic predictor and a che-
motherapy target for the treatment of BC [179–183]. In
addition, polydatin (PD) downregulates the janus kinase
(JAK) 2 and STAT3 levels thus induces pyroptosis, which
play an anticancer role in triple-negative BC (TNBC) [184].
Moreover, PD induces apoptosis by suppressing the ROS/
PI3K/Akt pathway to inhibit cell proliferation, migration,
and invasion of BC cells [185]. It is discovered that cisplatin
(DDP) activates the NLRP3/caspase-1/GSDMD pathway to
induce pyroptosis of BC cells to exert antitumor efects [186].
Furthermore, DDP induces apoptosis which is connected
with downregulating the PI3K/Akt/mTOR signaling path-
way in BC cells [187]. It is reported that pyroptosis of BC
cells is induced with the AIM2/caspase-3/GSDME axis being
activated when BC cells are administrated by dihy-
droartemisinin (DHA) [188]. Meanwhile, administration of
DHA dramatically upregulates the expression of caspase-8/9
and downregulates the level of Bcl-2 and thus results in
apoptosis and G0/G1 cell cycle arrest of BC cells [189]. It is
discovered that Nobiletin induces the pyroptosis of BC cells
by regulating the MicroRNA-200b/zinc fnger gene 1
(JAZF1)/NF-κB pathway [190]. In addition, Nobiletin de-
creases the expression of Bcl-2, Bcl-xL, increases the ex-
pression of Bax, p53, and caspase-3, and inhibits the Akt/
mTOR pathway to induce apoptosis of BC cells and suppress
the progression of BC [191, 192]. Tetraarsenic hexoxide
induces the pyroptotic cell death through the ROS/caspase-
3/GSDME axis to suppress the progression of TNBC cells
[193]. Likewise, Triclabendazole induces GSDME-
dependent pyroptosis by activating caspase-3 in BC cells
[194]. Accordingly, pyroptosis provides a new therapeutic
approach for patients with BC (Table 1).

4.5. Pyroptosis and Colorectal Carcinoma. Colorectal carci-
noma (CRC) is the third most common form of cancer in
adults which has a poor prognosis and signifcantly damages
the patient’s daily life and mental health [2]. Efective
therapeutic strategies are urgently needed to achieve better
prognosis and therapeutic outcomes of CRC. It is demon-
strated that arsenic trioxide (ATO) and ascorbic acid (AA)
corporately upregulates the expression of caspase-1 and
promotes the formation of infammasomes to induce
pyroptosis in CRC [195]. Meanwhile, ATO inhibits CRC
cells growth by inhibiting the activation of telomerase and
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inducing caspase-3-dependent apoptosis [196]. It is pre-
sented that the expression of infammasomes is increased
both in vitro and in vivo after treating CRC cells with
decitabine (DAC), which suggests that DAC suppresses the
growth of colon cancer by inducing pyroptosis [197]. In
addition, DAC increases the expression of miR-133b and
triggers the apoptosis in CRC cells [198]. Tus, pyroptosis
may be a target of ATO and DAC on CRC (Table 1).

5. Conclusion

As a type of RCD mode, pyroptosis plays an important role
in several kinds of cancers, whose pathways are divided into
the canonical and noncanonical pathway depending on
whether formation of the infammasomes. Te canonical
pathway is triggered by the assembly of infammasomes and
mainly regulated by the activation of caspase-1. Activated
caspase-1 not only promotes the cleavage of efector protein
GSDMD but also promotes the proteolytic maturation of
proinfammatory cytokines IL-1β and IL-18, resulting in the
morphological characteristics of pyroptosis. While in the
noncanonical pathway, the caspase-4/5/11 directly cleave
GSDMD, resulting in the pyroptosis. In addition, pyroptosis
is afected by the ROS and NF-κB which infuence the
upstream pathway of pyroptosis.

Pyroptosis in gastric cancer, hepatic carcinoma, breast
cancer, and colorectal carcinoma is related to the canonical
pathway, while both the canonical and noncanonical pathway
participate in lung cancer. Moreover, simvastatin, metformin,
and curcumin have efect on these cancers and simultaneously
promote the pyroptosis of cancer cells. Accordingly, pyrop-
tosis may be an important therapeutic target to cancer though
the relationship between pyroptosis and a few cancers such as
CRC and SCLC remain unclear, and more researches on
pyroptosis in these cancers are needed in future.
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[41] K. Rajamäki, J. Lappalainen, K. Oörni et al., “Cholesterol
crystals activate the NLRP3 infammasome in human macro-
phages: a novel link between cholesterol metabolism and in-
fammation,” PLoS One, vol. 5, no. 7, Article ID e11765, 2010.

[42] P. Duewell, H. Kono, K. J. Rayner et al., “NLRP3 infam-
masomes are required for atherogenesis and activated by
cholesterol crystals,” Nature, vol. 464, no. 7293, pp. 1357–
1361, 2010.

[43] Z. Liu, C.Wang, J. Yang et al., “Caspase-1 engages full-length
gasdermin D through two distinct interfaces that mediate
caspase recruitment and substrate cleavage,” Immunity,
vol. 53, no. 1, pp. 106–114.e5, 2020.
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