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Background. /ere is much evidence that confirms the inextricable link between inflammation and malignancy. Inflammation-
related regulators were involved in the progression of kidney renal clear cell carcinoma (KIRC). However, the predictive role of single
gene biomarkers is inadequate, andmore accurate prognosticmodels are necessary.We undertook the current research to construct a
robust inflammation-related gene signature that could stratify patients with KIRC. Methods. /e transcriptome sequencing data
along with clinicopathologic information of KIRC were obtained from TCGA. A list of inflammation-related genes was acquired
from the Molecular Signatures Database. Using the RNA-seq and survival time data from the TCGA training cohort, an in-
flammation-related gene signature was built using bioinformatic methods, and its performance in predicting patient prognosis was
assessed by Kaplan–Meier and ROC curve analyses. Furthermore, we explored the association of risk score with immune score,
stromal score, tumor immune-infiltrating cells (TIICs), immunosuppressive molecules, m6A regulators, and autophagy-related
biomarkers. Results. Herein, nine inflammation-related hub genes (ROS1, PLAUR, ACVR2A, KLF6, GABBR1, APLNR, SPHK1,
PDPN, and ADORA2B) were determined and used to build a predictive model. All sets, including training set, four testing sets, and
the entire TCGA group, were divided into two groups (low and high risk), and Kaplan–Meier curves all showed an adverse prognosis
for patients in the high-risk group. ESTIMATE algorithm revealed a higher immune score in the high-risk subgroup. CIBERSORT
algorithm illustrated that the high-risk group showed higher-level immune infiltrates. Furthermore, LAG3, TIGIT, and CTLA4 were
overexpressed in the high-risk subgroup and positively associated with risk scores. Moreover, except for METTL3 and ALKBH5, the
other m6A regulators decreased in the high-risk subgroup. Conclusions. In conclusion, a novel inflammation-related gene signature
comprehensively constructed in the current study may help stratify patients with KIRC.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) is the most lethal
urological tumor and its incidence and mortality are in-
creasing yearly [1]. Radical surgery is the preferred treatment
of limited renal clear cell carcinoma. /en, 20–40% of pa-
tients in the early stages eventually develop metastatic KIRC.
Moreover, approximately 30% of patients with renal clear
cell carcinoma have a metastasis initial diagnosis due to
insidious onset [2]. Unlike other advanced malignancies,
advanced renal clear cell carcinoma is resistant to

conventional radiotherapy, and although the advent of
targeted drugs such as tyrosine kinase and mTOR pathway
inhibitors has enhanced the long-term survivals for several
patients, the clinical outcome for most patients remains poor
due to the presence of toxic side effects and the emergence of
drug resistance [3, 4].

/e link between cancer and inflammation has been
explored extensively since it was discovered in the 19th
century. Several lines of evidence suggest that tumors usually
occur in the site of chronic inflammation and inflammatory
cells exist in the biopsy of tumor [5]. Researchers found that
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inflammation mediators and cellular effects are essential
components of the local tumor environment [6]. In several
types of cancer, inflammation exists prior to the develop-
ment of malignant changes. In contrast, carcinogenic
changes in other types of cancer can induce an inflammatory
microenvironment and promote tumor progress [7].
Whatever its origin, the inflammation in the tumor mi-
croenvironment has many tumorigenesis effects. It not only
accelerates tumor progression by promoting the prolifera-
tion, angiogenesis, and metastasis, but also disrupts adaptive
immune responses and makes tumor cells tolerant to hor-
mones and chemotherapy drugs. /is cancer-related in-
flammatory molecular pathway is now being uncovered [8].
Balkwill et al. [9] have revealed that the invasion ability of
neoplastic cells is increased in the presence of inflammatory
cytokines. Tan et al. [10] have shown that inflammation-
related genes might serve as important prognostic bio-
markers for assessing recurrence risk (GADD45G) and
death (CARD9, CIITA, and NCF2) in patients with KIRC.
At present, some therapeutic drugs for inflammatory cy-
tokines are being developed and tested in clinical practice
[11], suggesting that targeting inflammation-related genes is
a promising cancer therapy.

As mentioned above, targeting inflammation-related
biomarkers may be a promising novel choice for tumor
treatment. A large number of inflammation-related reg-
ulators are associated with the KIRC progression; how-
ever, cancer is a disease caused by the combined
involvement of multiple genes and pathways. Given the
limitations of a single biomarker, we screened multiple
inflammation-related genes for prognostic relevance and
constructed a gene signature for risk stratification and
prognostic assessment of patients. Herein, we aim to
develop an inflammation-related lncRNA model to pre-
dict the survival outcomes of patient with KIRC. We used
the TCGA database to develop and validated the indi-
vidualized prognostic signature for KIRC based on in-
flammation-related genes. Combined with the
inflammation-related genes with clinical variables, we
construct a comprehensive gene model that could assess
the prognosis of patients with KIRC.

2. Materials and Methods

2.1. Data Collection. RNA-Seq gene expression data for
KIRC was downloaded from the TCGA database (https://
portal.gdc.cancer.gov/), called TCGA-KIRC. /e reads per
map per million base pairs (FPKM) counts and fragment
counts per thousand transcripts were downloaded for fur-
ther analysis. We finally obtained RNA sequencing data
from 530 patients with complete clinical information and
their clinicopathological data.

2.2. Identification of Differentially Expressed Inflammation-
Related Genes (DE-IFRGs). A comprehensive list of in-
flammation-related genes (IFRGs) was retrieved from the
hallmark gene sets from the Molecular Signatures Database
v7.4 (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp),

which consists of 200 IFRGs./e “limma” R package and the
Wilcoxon test method were used to identify the DE-IFRGs
with an adjusted P< 0.05 between KIRC and adjacent
normal renal tissues. /e “pheatmap” R package was
employed to visualize the degree range of differences in the
TCGA-KIRC datasets.

2.3. GeneOntology (GO) andKyoto Encyclopedia ofGenes and
Genomes (KEGG). To reveal the potential biological func-
tions and underlying action mechanisms of DE-IFRGs, we
conducted the GO and KEGG analyses applying the
“clusterProfiler” R package [12]. Functional enrichment
items were considered as “functional” when the false dis-
covery rate (FDR) <0.05.

2.4. Building and Verifying a Prognostic Inflammation-
Related Gene Signature. According to the ratio of 6 :1 :1 : 1 :
1, all patients were randomly randomized into five cohorts,
including training set (n� 320), testing-1 set (n� 53),
testing-2 set (n� 52), testing-3 (n� 52), and testing-4 set
(n� 53). Firstly, using the data from the training set,
prognosis-related DE-IFRGs were selected by the univariate
Cox analysis (P< 0.001). /en, we further reduce the
amount of genes using the LASSO regression analysis to
prevent overfitting. Finally, multivariate assays were con-
ducted to identify the hub IFRGs and build a prognostic
signature. We then calculate the risk score for each KIRC
patient using the following formula: exp gene 1 ∗ β gene
1 + exp gene 2 ∗ β gene 2 + exp gene 3 ∗ β gene 3 + . . . exp
gene n ∗ β gene n. Furthermore, patients in all sets as well as
the entire TCGA set were classified into low- and high-risk
subgroups according to the median risk score of the training
set. /en, survival assays were conducted. ROC assays were
utilized to measure the predictive capability of the prog-
nostic model.

2.5. Evaluation of the Risk Signature. Uni- and multivariate
Cox regression analyses were conducted to select the in-
dependent prognostic factors. Besides, the associations be-
tween risk scores and clinical features of patients were
studied. /en, we construct a nomogram consisting of in-
dependent prognostic factors to predict the OS of KIRC
patients. Calibration curve was employed to compare the
differences between predicted OS and actual OS. In addition,
we compared the differences in the ability of risk model as
well as clinicopathological variables to assess patient
prognosis.

2.6. Functional Enrichment Analysis. Differentially
expressed genes (DEGs) between the high- and low-risk
subgroups were identified using the “limma” R package.
Genes with |log2FC|≥ 1, FDR<0.05 were considered dif-
ferentially expressed. /en, GO and KEGG assays based on
these DEGs were carried out applying the “clusterProfiler” R
package [12].
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2.7. Evaluation of the Tumor Microenvironment (TME) and
Tumor Infiltrated Immune Cells (TIICs). /e ESTIMATE
algorithm was used to evaluate scores representative of the
relative proportion of immune and stromal cells. Further-
more, we further compared the difference of immune and
stromal scores between high- and low-risk subgroups by the
Wilcoxon test. Additionally, to analyze the relationships
between risk score and TIICs, the content of TIICs was
calculated using the CIBERSORT algorithm (http://
cibersort.stanford.edu/).

2.8. Association of Risk Score with Immunosuppressive Mol-
ecule, m6A Regulators, and Autophagy-Related Biomarkers.
Considering immune checkpoint inhibitors (ICIs) were
clinically employed to treat KIRC, we evaluated the asso-
ciation between risk score with ICI-related regulators. m6A
regulators and autophagy-related biomarkers were closely
related to cancer progression; we thus evaluated the cor-
relation between risk score and m6A regulators as well as
autophagy-related biomarkers.

2.9. Statistical Analysis. All statistical analyses were carried
out using R (version 3.6.1). Univariate, LASSO, and mul-
tivariate assays were used to select the prognostic genes and
develop a gene signature. /e Kaplan–Meier analysis was
applied to show the survival difference. ROC assays were
applied to estimate the predictive performance of the risk
model./e independent prognostic factors were determined
applying multivariate assays. Wilcoxon’s test and Pearson’s
correlation methods were utilized to evaluate the association
of risk score with TME, TIICs, ICI-related regulators, m6A
regulators, and autophagy-related biomarkers. P-value
<0.05 was considered statistically significant.

3. Results

3.1. Data Preparation. /e detailed workflow flowchart of
this study is listed in Figure 1./e transcriptome profiles and
clinical information of 530 patients with KIRC were publicly
downloaded from the TCGA database. We then randomly
divided all patients into the training set (n� 320), testing-1
set (n� 53), testing-2 set (n� 52), testing-3 (n� 52), and
testing-4 set (n� 53). Data from the training set was used to
choose prognosis-related hub IFRGs and construct a risk
signature. Simultaneously, data from testing-1, testing-2,
testing-3, and testing-4 sets as well as the entire group was
utilized to demonstrate the capability of the risk score.

3.2. Identification of DE-IFRGs. /e “limma” R package was
employed to screen the differentially expressed DE-IFRGs
between KIRC samples and normal renal specimens. Herein,
177 dysregulated genes were identified, of which 46 were
downregulated, and 131 were upregulated (Figure 2(a)).
Figure 2(b) shows the top ten up- and downregulated IFRGs
in KIRC. Additionally, we calculate the Pearson coefficients
DE-IFRGs, and Figure 2(c) showed a strongly correlated
DE-IFRGs associationmap (cor > 0.8 and P< 0.05), of which

the strongest correlations were found between CXCL11 and
CXCL10, LTA and LCK, and MSR1 and C3AR1
(Figures 2(d)–2(f)).

3.3. Functional Enrichment Analysis of DE-IFRGs.
Functional enrichment analysis of these DE-IFRGs was
conducted using the “clusterProfiler” R package. As revealed
in Figure 3(a), the significantly enriched BP terms were
response to molecule of bacterial origin, response to lipo-
polysaccharide, and positive regulation of cytokine pro-
duction; in terms of CC, DE-IFRGs were mainly involved in
positive regulation of cytokine production, secretory granule
membrane, and membrane raft; as for MF, DE-IFRGs were
mainly involved in receptor-ligand activity, cytokine re-
ceptor binding, and cytokine activity. Figure 3(b) showed the
three significantly enriched GO terms and relevant DE-
IFRGs involved in them. Additionally, the top 10 KEGG
pathways were TNF signaling, lipid and atherosclerosis,
JAK-STAT signaling, chemokine signaling pathway, Influ-
enza A, Toll-like receptor signaling pathway, and inflam-
matory bowel disease (Figure 3(c)). Figure 3(d) displays the
three significantly enriched signaling pathways and related
DE-IFRGs involved in these pathways.

3.4. Construction and Validation of a Risk Signature Based on
Prognosis-Related IFRGs. Using univariate Cox regression
analysis, 20 prognosis-related IFRGs were identified
(P< 0.001) (Table 1). Subsequently, the least absolute Lasso
regression analysis was employed to prevent the overfitting
and determine the most important prognosis-related IFRGs
in KIRC (Figures 4(a) and 4(b)). /en, stepwise multivariate
assays were applied to build a gene signature. Eventually,
nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6, GABBR1,
APLNR, SPHK1, PDPN, and ADORA2B) were used to
construct the gene signature (Figure 4(c)). Based on re-
gression coefficients (Table 2), we calculated the risk score
for each patient using the following formula: risk score� (1.069
∗ ROS1)+ (0.339 ∗ PLAUR)+ (−0.720 ∗ ACVR2A)+ (−0.198 ∗
KLF6)+ (0.600 ∗ GABBR1)+ (−0.164 ∗ APLNR)+ (−0.386 ∗
SPHK1)+ (0.183 ∗ PDPN)+ (0.472 ∗ ADORA2B). As exhibited
in Figures 5(a) and 5(b), ROS1, PLAUR,GABBR1, SPHK1, and
PDPN were overexpressed in the high-risk subgroup, whereas
ACVR2A, KLF6, and APLNR were distinctly decreased in the
high-risk subgroup. However, no difference was found in
ADORA2B. Moreover, our group observed that over-
expression of ROS1 and PLAUR indicated worse overall
survival (Figures 5(c) and 5(d)). /e downregulation of
ACVR2A and KLF6 predicted a poor prognosis of patients
(Figures 5(e) and 5(f )). Increased expression of GABBR1
was associated with a shorter OS (Figure 5(g)). Low APLNR
expression predicted a shorter OS (Figure 5(h)). Increased
expression of SPHK1 and PDPN suggested worse prognosis
(Figures 5(i) and 5(j)). Also, no difference was found in
ADORA2B (Figure 5(k)). Furthermore, using the cBio-
Portal database, we explored the genetic mutations of 9 hub
IFRGs, and results were shown in Figure 5(l). Subsequently,
320 patients in the training set were stratified into the low-
and high-risk subgroups based on the median risk score
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value. Kaplan–Meier curves showed that high-risk patients
showed poorer OS by comparison with low-risk patients
(P< 0.001) (Figure 6(a)). ROC assays were utilized to
evaluate the prognostic performance of the gene signature,
and results showed that the area under the ROC curve for
1-year, 3-year, and 5-year OS was 0.766, 0.721, and 0.751
(Figure 6(b)). /e survival status and the expressions of
9-IFRGs in the training cohort were presented in −. To
verify the predictive performance of the gene model, pa-
tients in the testing-1 cohort, testing-2 cohort, testing-3
cohort, testing-4 cohort, and the entire group were clas-
sified as high- and low-risk subgroups. /e Kaplan–Meier
survival curve showed a significantly good OS in the low-
risk group (Figures 7(a)–7(e)). /e AUC of the gene sig-
nature in the testing-1 cohort for 1-year, 3-year, and 5-year
OS is also shown in Figures 7(f )–7(j).

3.5. IndependentPrognosticAnalysis, Correlation of Risk Score
with Clinical Features, and Construction of a Nomogram.
By coupling with the risk model and clinicopathological
features, we identified the risk score (HR� 1.023, P< 0.001)
as a factor of overall survival for KIRC using uni- and
multivariate Cox regression analyses (Figures 8(a) and 8(b)).
Besides, we showed that elevated risk score was notably
correlated with higher histological grade (P< 0.05,
Figure 8(c)), advanced clinical stage (P< 0.05, Figure 8(d)),
and T stage (P< 0.05, Figure 8(e)), suggesting that risk score
was positively correlated with tumor progression. Moreover,
we used the independent prognostic factors to establish a
prognostic nomogram (Figure 8(f )), and calibration curves
showed that the nomogram performed well at predicting 1-,
3-, and 5-year OS in KIRC patients (Figures 8(g)–8(i)),
indicating the robust predictive ability of the prognostic

TCGA-KIRC datasets
(72 normal renal samples and 530 ccRCC samples)

200 inflammation-related genes (IFRGs)

Differentially expressed analysis
(“Limma” R package)

177 differentially expressed IFRGs
(DE-IFRGs)

Univariate Cox regression analysis
(20 DE-IFRGs; P < 0.001)

TCGA training set (n = 320)

Multivariate Cox regression analysis

9-IFRG prognostic model

Evaluation and validation
of model

TCGA testing-1 set
(n = 53)

TCGA testing-2 set
(n = 52)

TCGA testing-3 set
(n = 52)

TCGA testing-4 set
(n=53)

Kaplan Meier
curve

Uni- and multivariate Cox
regression analyses

Comparison with other
clinical features

Predictive nomogram

Association with clinical
features

Functional enrichment analysis
Tumor immune

microenvironment analysis

Association with immunosuppressive
molecules, m6A regulators, and
autophagy-related biomarkers

GO and KEGG analyses

LASSO regression analysis 
(14 DE-IFRGs)

Entire TCGA group
(n=530)

ROC curve

Figure 1: /e flowchart describes the gene signature of KIRC established in this study and its comprehensive analysis.
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Figure 2: Identification of differentially expressed inflammation-related genes (DE-IFRGs) between normal tissues and KIRC tissues. (a)
/e heat map of DE-IFRGs. (b) /e top ten upregulated and downregulated PRGs. (c) Correlation network between DE-IFRGs (Pearson’s
coefficient >0.8). (d–f) /e strongest correlations were found between CXCL11 and CXCL10, LTA and LCK, and MSR1 and C3AR1.
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Figure 3: Functional enrichment analysis of DE-IFRGs. (a) GO enrichment analysis of DE-IFRGs. (b) Enriched GO enrichment terms and
corresponding DE-IFRGs. (c) KEGG signaling pathway analysis of DE-IFRGs. (d) Enriched cancer-related pathways and corresponding
DE-IFRGs.

Table 1: Univariate Cox regression analysis for identification of prognosis-related IFRGs in the training dataset.

IFRGs, inflammation-related genes
ID HR HR.95L HR.95H P-value
CD82 1.411 1.154 1.725 7.904E−04
SLC4A4 0.770 0.663 0.895 6.653E−04
F3 1.298 1.117 1.509 6.529E−04
SGMS2 0.627 0.482 0.817 5.291E−04
NOD2 1.844 1.316 2.585 3.817E−04
TIMP1 1.384 1.161 1.651 2.931E−04
RIPK2 1.883 1.340 2.645 2.632E−04
BEST1 2.144 1.430 3.216 2.252E−04
KLF6 0.683 0.558 0.836 2.213E−04
APLNR 0.741 0.634 0.867 1.817E−04
ACVR2A 0.405 0.253 0.649 1.742E−04
ADRM1 2.553 1.567 4.160 1.677E−04
SPHK1 1.639 1.296 2.072 3.751E−05
CX3CL1 0.671 0.556 0.811 3.541E−05
PDPN 1.545 1.259 1.897 3.089E−05
GABBR1 1.690 1.326 2.154 2.226E−05
ADORA2B 2.236 1.550 3.227 1.695E−05
CALCRL 0.681 0.572 0.810 1.506E−05
ROS1 3.007 1.877 4.817 4.677E−06
PLAUR 1.812 1.456 2.256 1.032E−07
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nomogram. Additionally, we found that risk score had the
largest AUC compared with other clinical variables in
predicting 5-year OS of KIRC (Figure 8(j)), suggesting that
risk score has advantages over other clinical traits in esti-
mating 5-year OS of KIRC.

3.6. Functional Enrichment Analyses. To illustrate the un-
derlying action mechanisms related with the 9-IFRG sig-
nature-derived risk model, a total of 1,771 DEGs were
identified between high- and low-risk subgroups.
Figures 9(a) and 9(b) shows the heat map and volcano map
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Figure 4: Identification of a 9-gene risk signature for overall survival by multivariate Cox regression analysis. (a) /e minimum number
corresponds to the covariates. (b) /e changing trajectory of each independent variable. (c) Nine prognosis-associated hub IFRGs were
identified by further multivariate Cox regression analysis.
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Table 2: 9 prognosis-associated hub PRGs identified by multivariate Cox regression analysis.

IFRGs, inflammation-related genes
ID coef HR HR.95L HR.95H P-value
ROS1 1.069 2.913 1.533 5.535 1.092E − 03
PLAUR 0.339 1.403 1.023 1.924 3.553E − 02
ACVR2A −0.720 0.487 0.272 0.872 1.546E − 02
KLF6 −0.198 0.820 0.641 1.050 1.156E − 01
GABBR1 0.600 1.822 1.395 2.380 1.073E − 05
APLNR −0.164 0.849 0.713 1.011 6.565E − 02
SPHK1 −0.386 0.679 0.467 0.989 4.367E − 02
PDPN 0.183 1.200 0.945 1.524 1.337E − 01
ADORA2B 0.472 1.603 1.072 2.399 2.165E − 02
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Figure 5: Continued.
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Figure 5: Comprehensive analysis of nine prognosis-associated hub IFRGs. (a) Heat map of expression of nine hub IFRGs between high and
low risk subgroups (∗∗∗P< 0.001). (b) Differential expression of nine hub IFRGs between high- and low-risk subgroups. (c–k) /e
Kaplan–Meier curves of ROS1, PLAUR, ACVR2A, KLF6, GABBR1, APLNR, SPHK1, PDPN, and ADORA2B, respectively. (l) Genetic
alteration of nine hub IFRGs in KIRC patients.
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Figure 6: Development of the prognostic signature based on nine hub IFRGs. (a) Survival curve for low- and high-risk subgroups in the
TCGA training cohort. (b) Time-dependent ROC curve of the 9-IFRG prognostic risk signature. (c) Relationships among the risk score
(upper), survival status of patients (middle), and the expressing pattern of the genes (bottom).
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of DEGs, respectively. As illustrated in Figure 9(c), con-
cerning biological processes, DEGs were significantly
enriched in the modulation of negative regulation of hy-
drolase activity; with regard to cellular components, DEGs

were significantly involved in the collagen-containing ex-
tracellular matrix, presynapse, and synaptic membrane; in
point of molecular functions, DEGs were noticeably in-
volved in receptor-ligand activity, passive transmembrane
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Figure 7: Validation of the prognostic signature based on nine inflammation-related genes in different cohorts. (a–e) Survival assays of the
9-IFRG prognostic signature in the testing-1 cohort, testing-2 cohort, testing-3 cohort, testing-4 cohort, and the entire group, respectively.
(f–j) Time-dependent ROC curves of the 9-IFRG prognostic risk signature in the four cohorts.
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transporter activity, and channel activity. DEGs were mainly
enriched in phototransduction, linoleic acid metabolism,
cholesterol metabolism, arachidonic acid metabolism, IL-17
signaling pathway, and protein digestion and absorption
(Figure 9(d)).

3.7. Association of Risk Score with TME. Immune and
stromal cells are crucial constituents of the immune mi-
croenvironment. In this current study, the contributions of
stromal and immune cells to KIRC were estimated by the
ESTIMATE algorithm. /e results signified that immune
score was crucially higher in the high-risk group
(Figure 10(a)); however, no difference was found for the
stromal score (Figure 10(b)). Additionally, we applied the
CIBERSORT algorithm to compare the differences in each
type of immune infiltrating cells. Figure 10(c) showed the
proportion of 21 immune cells in each sample. Figure 10(d)
illustrates the correlations between infiltrated immune cells
in the tumor. Figure 10(e) shows the heat map of the 21
immune cell proportions. Moreover, Figure 10(f ) shows the
relationship between risk score with different immune cells,
and we found that the high-risk group showed higher-level
immune infiltrates of M0 macrophages, regulatory T cells
(Tregs), follicular helper T cells, plasma cells, and memory
B cells.

3.8. Association of Risk Score with Immunosuppressive Mol-
ecules, m6A Regulators, and Autophagy-Related Biomarkers.
/en, we estimated the association between immunosup-
pressive molecules and risk score. Figure 11(a) shows the
heat map of common immunosuppressive molecules in
high- and low-risk subgroups. Furthermore, as illustrated in
Figure 11(b), patients with high-risk score expressed higher
levels of LAG-3, ICOS, CTLA4, PDCD1, CD27, and TIGIT,

whereas HAVCR2 was overexpressed in patients with the
low-risk score. Correlation analysis confirmed that LAG-3
(cor� 0.15, Figure 11(c)), TIGIT (cor� 0.11, Figure 11(d)),
and CTLA4 (cor� 0.21, Figure 11(e)) were positively associated
with the risk score, whereas no difference was found for ICOS,
PDCD1, CD27, and HAVCR2 (Figures 11(f )–11(i)). To-
gether, these results indicate that LAG-3, TIGIT, and
CTLA4 were positively associated with the risk score.
Recent evidence indicated the vital role of m6A mRNA
methylation in reducing the antitumor response of
CD8 + T cells and promoting anti-PD-1 drug resistance.
We thus assess the relationship between risk score and
m6A regulators. Figure 12(a) shows the heat map of
commonm6A regulators in high- and low-risk subgroups.
Additionally, we discovered that most of the m6A regu-
lators were significantly decreased in the high-risk sub-
group except for METTL3 (Figure 12(b)). /e results
indicate that high-risk subgroup patients may be more
suitable for immunotherapy with emerging checkpoint
inhibitors. Growing researches have revealed a key role for
autophagic pathways and proteins in immunity and in-
flammation. We thus explore the association of auto-
phagy-related genes with risk score, and we found that
several autophagy-related genes have a significant link
with risk score (Figure 13(a)), and the top three relevant
autophagy-related genes are DKK1 (Figure 13(b)), SNAI2
(Figure 13(c)), and AREG (Figure 13(d)).

4. Discussion

In this work, we constructed an inflammation-related gene
feature and evaluated its predictive capability in predicting
OS of KIRC patients. /en, we studied the potential func-
tions and signaling pathways closely related to risk score and
further explored the association between risk score with
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Figure 8: Independent prognostic analysis and construction of nomogram. (a) Univariate Cox regression assays were used to explore the
prognostic value of risk score and other clinical features in KIRC. (b) Multivariate Cox regression assays were applied to demonstrate
whether risk score and other clinical features could be an independent marker for KIRC patients. (c–e) An elevated risk score was
significantly correlated with higher histological grade, advanced clinical stage, and T stage. (f ) A nomogram consisting of independent
clinical features for predicting 1-, 3-, and 5-year OS of KIRC. (g–i) Calibration curves of 1-year, 3-year, and 5-year OS of KIRC. (j) ROC
curves for the superiority of the gene signature.
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immune microenvironment, immunosuppressive mole-
cules, m6A regulators, and autophagy-related biomarkers.
Here, nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B) were
selected by bioinformatics and used to construct 9-IFRG risk
signature successfully. Afterwards, we found that gene
signature performed well in the training set, testing-1 set,
testing-2 set, testing-3 set, testing-4, and the entire TCGA
group. Specifically, the higher the risk score of patients is, the
worse the overall survival rate is. ROC curve also confirms
the robust predictive performance of the risk model. Ad-
ditionally, by combining the risk model with the clinico-
pathological features of patients, we found that the 9-IFRG
gene model can independently predict the OS of patients
with KIRC. Further investigation indicated that the

nomogram performed well at predicting 1-, 3-, and 5-year
OS in KIRC patients. Furthermore, we found that the risk
score was significantly associated with cancer progression in
KIRC patients. Moreover, compared to other clinical vari-
ables, the risk score had the highest predictive performance
of prognosis. To sum up, we constructed a powerful 9-IFRG
risk signature and an effective nomogram for KIRC risk
stratification and overall survival prediction.

Of the nine hub IFRGs (ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B) we
identified, some are associated with cancer progression. /e
protooncogene ROS1 encodes a tyrosine kinase receptor that
has an essential physiological role in humans. Studies have
shown that somatic chromosomal fusions involving ROS1
generate chimerical tumor proteins that can cause various
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Figure 9: Functional assays of DEGs between high- and low-risk subgroups. (a) Heat map of DEGs between high- and low-risk subgroups.
(b) Volcano map of DEGs between high- and low-risk subgroups. (c) Significantly enriched GO enrichment terms. (d) KEGG signaling
pathway analysis.

Journal of Oncology 17



0.14

−2000

−1000

0

1000

2000

St
ro
m
al
Sc
or
e

high low

risk

high

low

risk

(a)

Im
m
un

eS
co
re

high low

risk

high

low

risk

0.00054

−1000

0

1000

2000

3000

4000

(b)

Re
la

tiv
e P

er
ce

nt
 (%

)

0

20

40

60

80

100

B cells naive
B cells memory
Plasma cells
T cells CD8
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta
NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

(c)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r
T 

ce
lls

 re
gu

la
to

ry
 (T

re
gs

)
T 

ce
lls

 g
am

m
a d

el
ta

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tr

op
hi

ls

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 memory resting
T cells CD4 memory activated

T cells follicular helper
T cells regulatory (Tregs)

T cells gamma delta
NK cells resting

NK cells activated
Monocytes

Macrophages M0
Macrophages M1

Macrophages M2
Dendritic cells resting

Dendritic cells activated
Mast cells resting

Mast cells activated
Eosinophils

Neutrophils

(d)

Figure 10: Continued.

18 Journal of Oncology



Macrophages M1
T cells CD4 memory activated
T cells gamma delta
T cells CD8
T cells follicular helper
Dendritic cells activated
Eosinophils
B cells naive
T cells CD4 memory resting
Mast cells activated
Macrophages M0
Macrophages M2
Neutrophils
Mast cells resting
NK cells resting
Monocytes
B cells memory
Plasma cells
Dendritic cells resting
T cells regulatory (Tregs)
NK cells activated

risk risk
high
low

−10
−5
0
5
10

(e)

* * ** ns ns ns *** *** ns ns ns ** *** *** ns * * *** ns ns ns

0.0

0.2

0.4

0.6

va
lu

e

risk
high

low

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r
T 

ce
lls

 re
gu

la
to

ry
 (T

re
gs

)
T 

ce
lls

 g
am

m
a d

el
ta

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tr

op
hi

ls

(f )

Figure 10: Association of risk score with tumor immune microenvironment in KIRC. (a) Differences in stromal score between high- and
low-risk subgroups. (b) Differences in immune score between high- and low-risk subgroups. (c) Relative proportion of immune infiltration
in KIRC. (d) Correlation between tumor-infiltrating immune cells. (e) /e heatmap exhibited the infiltrating difference of immune cells in
two groups. (f ) Barplot showed the ratio differentiation of 21 kinds of immune cells.
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high-risk subgroups relative to the median of risk score. (c–i) Association of LAG-3, TIGIT, CTLA4, ICOS, PDCD1, CD27, and HAVCR2
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cancers [13]. In inflammatory myofibroblastic tumors, ROS1
expression predicts ROS1 gene rearrangement [14]. PLAUR,
also known as u-PAR, is an essential molecule in modulating
cell surface fibrinogen activation and plays a vital role in
many healthy and pathological processes [15]. Abnormal
PLAUR disorders played a key role in the progression and
metastasis of human colon cancer [16]. Moreover, PLAUR
impacted colorectal liver metastases by influencing the
protein hydrolytic activity and inflammation of the tumor
microenvironment in colorectal cancer. Consequently, the
colorectal liver metastases [17] ACVR2A is a ligand for
activin A protein and is closely associated with polyarthrosis

syndrome, protointestinal embryogenesis, and spermato-
genesis [18]. Emerging evidence indicated that ACVR2A is
involved in many cancer-related signaling pathways, such as
the PEDF-induced signaling, the TFG-β signaling, or sig-
naling pathways regulating stem cell pluripotency [19]. KLF6
is a transcription factor of the zinc finger family and
modulates lipid homeostasis in KIRC [20]. Additionally,
KLF6 had been found to promote the expression and
function of proinflammatory genes by inhibiting miR-223
expression in macrophages [21]. GABBR1, also known as
GABABR1, is a 7-transmembrane receptor. In colorectal
cancer, decreased GABBR1 fosters the proliferation and
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Figure 13: Association of risk score with autophagy-related genes in KIRC. (a) Autophagy-related genes significantly associated with risk
score. (b–d) /e top three autophagy-related genes associated with risk score are DKK1, SNAI2, and AREG.
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invasion; overexpression of GABBR1 has the opposite [22].
APLNR is also a seven-transmembrane G protein-coupled
receptor that is universally present in diverse tissues. In
osteosarcoma, elevated APLNR expression promotes pro-
liferation and invasion [23]. SPHK1 is a biologically active
metabolite of sphingosine that is involved in various tumor
progression by enhancing cell proliferation and motility.
Currently, drugs targeting SPHK1 are now being progres-
sively validated in clinical trials [24]. Type I integral
membrane glycoprotein encoded by PDPN is widely dis-
tributed in human tissues. In breast tumor-infiltrating im-
mune cells, PDPN was found highly expressed in tumor-
associated macrophages (TAMs), and the latter spurs local
stromal remodeling and promotes vascular growth and
lymphatic infiltration [25]. ADORA2B is a member of the G
protein-coupled receptor superfamily and encodes an
adenosine receptor. A recent report indicates that hypoxia-
inducible factor 1-dependent expression of ADORA2B fa-
cilitates breast cancer stem cell enrichment [26]. /e above
reports confirmed the role of 9 hub IFRGs in carcinogenesis.
However, whether ROS1, PLAUR, ACVR2A, KLF6,
GABBR1, APLNR, SPHK1, PDPN, and ADORA2B affect the
clinical outcome of KIRC patients via modulating the
process of inflammation requires to be further elaborated,
and there are few relevant studies.

To elucidate the functional roles associated with the risk
score, the DEGs between the high-risk and low-risk sub-
groups were identified and used to perform functional
enrichment analysis. Intriguingly, we noticed that DEGs are
involved in several tumor-related signaling pathways. /ese
signaling pathways are all in connection with the regulation
of tumor immunity. /rough the interaction between
chemokines or cytokines and their receptors, different
subsets of immune cells are recruited into the tumor mi-
croenvironment, causing these populations having a dif-
ferential impact on tumor progression and treatment
outcome [27]. In gastric cancer, elevated intratumoral mast
cells resulted in immune suppression via modulating TNF-
α-PD-L1 pathway [28]. /e JAK-STAT signaling pathway is
involved in tumor cell recognition and tumor-driven im-
mune escape and plays a role in almost all immune regu-
latory processes [29]. Toll-like receptor signaling pathway is
a classical immune signaling pathway that plays an irre-
placeable role in modulating tumor immunity and cancer
progression [30]. In addition, we found that the high-risk
group had a higher immune score. With regard to immune
infiltrating cells, we found that high-risk group showed
higher level immune infiltrates. Among them, regulatory
Tcells (Tregs) play crucial roles in keeping self-tolerance and
immune homeostasis. However, in some cases, they promote
tumor progression by inhibiting the effective antitumor
response [31]. /e low-risk group showed higher level
immune infiltrates. Among them, M1 macrophage types are
thought to be key factors in antitumorigenesis, production of
proinflammatory cytokines, and promotion of T-cell im-
munity. Furthermore, the study suggested that LAG-3,
CTLA4, and TIGIT were highly expressed in the high-risk
subgroup and also positively associated with risk score,
indicating that the high-risk group is in a more

immunosuppressed state by comparison with the low-risk
group, but also means that patients of high-risk subgroup
may benefit more from immune checkpoint inhibitors. N6-
methyladenosine (m6A) RNA methylation plays a crucial
role in the tumor immune microenvironment cancer de-
velopment. A recent study indicates that downregulated
m6A-related genes predict unfavorable outcomes in gastric
cancer [32]. We assess the association of m6A regulators
with risk score, and we found that most of the m6A reg-
ulators were significantly decreased in the high-risk sub-
group. Autophagy is an essential homeostatic process by
which cells decompose their components. Recent studies
have uncovered a key role for autophagic pathways and
proteins in immunity and inflammation. We thus evaluate
the association of autophagy-related genes and the risk
score, and results indicate that many autophagy-related
genes were significantly correlated with risk scores, partic-
ularly the DKK1, SNAI2, and AREG.

5. Conclusion

Collectively, our study constructs and validates a robust 9-
IFRG risk signature, which may be to the advantage of risk
classification and prognosis prediction in KIRC patients.
However, there are still some restrictions that should not be
overlooked. Our results are mainly derived from bio-
informatic analysis; clinical samples and cellular experi-
ments are required to prove our findings; in addition, our
analysis discovered that inflammation-related genes might
influence renal clear cell carcinoma progression through
several mechanisms; nevertheless, further in vivo and in
vitro experiments are needed to explore the exact biological
roles.
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“Podoplanin-expressing macrophages promote lymphangio-
genesis and lymphoinvasion in breast cancer,” Cell Meta-
bolism, vol. 30, no. 5, pp. 917–936, 2019.

[26] J. Lan, H. Lu, D. Samanta, S. Salman, Y. Lu, and
G. L. Semenza, “Hypoxia-inducible factor 1-dependent ex-
pression of adenosine receptor 2B promotes breast cancer
stem cell enrichment,” Proceedings of the National Academy of
Sciences, vol. 115, no. 41, pp. E9640–e9648, 2018.

[27] N. Nagarsheth, M. S. Wicha, andW. Zou, “Chemokines in the
cancer microenvironment and their relevance in cancer im-
munotherapy,” Nature Reviews Immunology, vol. 17, no. 9,
pp. 559–572, 2017.

[28] Y. Lv, Y. Zhao, X. Wang et al., “Increased intratumoral mast
cells foster immune suppression and gastric cancer pro-
gression through TNF-α-PD-L1 pathway,” Journal for Im-
muno�erapy of Cancer, vol. 7, no. 1, p. 54, 2019.

[29] K. L. Owen, N. K. Brockwell, and B. S. Parker, “JAK-STAT
signaling: a double-edged sword of immune regulation and
cancer progression,” Cancers, vol. 11, 2019.

[30] Y. Xu, C. Jagannath, X.-D. Liu, A. Sharafkhaneh,
K. E. Kolodziejska, and N. T. Eissa, “Toll-like receptor 4 is a
sensor for autophagy associated with innate immunity,”
Immunity, vol. 27, no. 1, pp. 135–144, 2007.

[31] Y. Takeuchi and H. Nishikawa, “Roles of regulatory T cells in
cancer immunity,” International Immunology, vol. 28, no. 8,
pp. 401–409, 2016.

[32] C. Zhang, M. Zhang, S. Ge et al., “Reduced m6A modification
predicts malignant phenotypes and augmented Wnt/PI3K-
Akt signaling in gastric cancer,” Cancer Medicine, vol. 8,
no. 10, pp. 4766–4781, 2019.

Journal of Oncology 23


