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Purpose. Hepatocellular carcinoma (HCC) has poor prognosis and high mortality among gastrointestinal tumors because of its
insidious onset and strong invasiveness. However, there was little understanding of their pathogenesis. The purpose of this
study was to use bioinformatics analysis to identify genes associated with the immune microenvironment in HBV-related HCC
and to develop new therapeutic targets to prevent and treat cancer. Methods. RNA-seq data of HBV-related HCC cases were
downloaded from TCGA-LIHC database. ESTIMATE and Deseq2 algorithms were used to screen out differentially expressed
genes (DEGs). WGCNA was used to construct gene coexpression networks. In key modules, functional enrichment analysis
was performed. Protein-protein interaction (PPI) was used to screen hub genes, and survival analysis was conducted to assess
their prognostic significance. Following, we search for key genes differentially expressed between cancerous and paracancerous
tissues in GSE136247 and GSE121248 datasets. Reveal the potential links between key genes in immune infiltration by using
TIMER. Finally, in TCGA-LIHC database, integration of key genes with clinical data were used to further validate their
correlation with prognosis. Results. In the cohort of HBV-related HCC patients, immune/stromal/ESTIMATE scores were not
significantly associated with patient prognosis. After bioinformatics analysis, screening out five key genes was significantly
related to the prognosis of HBV-related HCC. Downregulation of SLAMF1 and TRAF3IP3 suggested poor prognosis and was
related to a variety of immune cell infiltration. Furthermore, compared with adjacent nontumor tissues, TRAF3IP3 and
SLAMF1 were highly expressed in tumor tissues and were linked to tumor recurrences. Conclusion. In conclusion, SLAMF1
and TRAF3IP3 were identified with higher expression in tumor tissues and associated with tumor recurrence. It will be a new
research direction of tumor progress and treatment.

1. Introduction

About 90% of the pathological types of liver cancer were
hepatocellular carcinoma (HCC) in clinical. Both morbidity
and mortality are far higher than other types of tumors [1].
Gender differences (predominant in males) and geographic
differences (mainly East Asia) influence the incidence of
HCC [2]. The main causative factors associated with HCC

are virus (chronic hepatitis B and C), metabolism (diabetes
and nonalcoholic fatty liver disease), toxicity (alcohol and
aflatoxins), and immune system-related diseases [3].
Affected by these factors, the morbidity of HCC is rising
continuously year by year. According to statistics data, more
than half of HCC patients in the world are infected with
hepatitis B virus (HBV). It is the main risk factor for human
[4]. Mortality associated with HCC is also increasing. Recent
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studies have shown that there were 85% of patients with cir-
rhosis infected with HBV, and less than 20% of people sur-
vived more than five years [5]. Reassuringly, the incidence
of HCC was significantly reduced in the middle-aged popu-
lation aged 30-59, largely due to the global hepatitis B virus
vaccination program [6]. Liver transplantation and surgical
resection are treatment options for HCC in early-stage
HCC and when the tumor size is <5 cm [7]. However,
because the disease is mostly asymptomatic in its early
stages, most symptomatic patients are diagnosed at an
advanced stage. Currently, patients with advanced HCC
are mostly treated with radiofrequency ablation (RFA),
transhepatic arterial chemotherapy and embolization
(TACE), tyrosine kinase inhibitor (TKI), and immunother-
apy, but with the emergence of drug resistance and disease
recurrence, these modalities do not significantly prolong life-
span [8]. As research progresses in depth, new and diverse
avenues for the treatment of HCC are being discovered.

The current study suggests that HCC is caused by
HBV-induced DNA damage that triggers hepatocyte
regeneration and chronic inflammation in the liver [9,
10]. The nucleocapsid of HBV-infected hepatocytes allows
the virus to replicate stealthily without being recognized
by type I IFN [11]. It is now widely believed that the

immune pathogenic mechanism of HCC is mainly that
HBV, as a noncytopathic virus, promotes the disorder of
the liver immune system and causes liver damage through
abnormal immune attack. It is increasingly believed that
immune pathogenesis significantly influenced the develop-
ment of HBV-related HCC [12]. Although HBV was
thought to contribute to HCC, there was still no clear
understanding of the mechanism.

In this study, RNA-seq data and clinical feature informa-
tion of HBV-related HCC patients were accessed by TCGA-
LIHC. The prognosis-related DEGs and modules were
screened by Sangerbox and WGCNA. In addition, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were enriched for these DEGs
and module genes and construct the PPI network to search
the prognosis-related hub genes. Through the gene expres-
sion information of GSE136247 and GSE121248 in the
GEO database, the possible key genes (SLAMF1 and TRA-
F3IP3) were finally locked. Through the TIMER database,
the association between SLAMF1 and TRAF3IP3 and
immune cell infiltration was analyzed. Finally, by analyzing
the clinical characteristics of HBV-related HCC patients, it
was confirmed that SLAMF1 and TRAF3IP3 were negatively
correlated with the recurrence of patients.

TCGA-LIHC

104 HBV-related HCC patients

Immune score Stromal score Estimate score

DEGs (up-regulated and down-regulated

GO and KEGG pathway analysis WGCNA

PPI network

GO and KEGG pathway analysis Hub genes

Survival analysis

Validation in GSE136247 and GSE121248

TIMER analysis TIMER analysisKey genes

Figure 1: Flow chart of the study.
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2. Methods and Materials

2.1. Data Acquisition. We gathered gene expression RNA-
seq and accompanying medical data of HBV-related HCC
patients from TCGA-LIHC database (https://portal.gdc

.cancer.gov/) [13]. HBV-infected and noninfected patients
were differentiated based on the patient’s past infection his-
tory. Download gene expression data from GSE136247 and
GSE121248 datasets from GEO database (https://www.ncbi
.nlm.nih.gov/geo/) [14]. The GSE136247 dataset contained
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Figure 2: Identification of differentially expressed genes (DEGs) based on immune/stromal/ESTIMATE scores in HBV-related HCC. (a)
Three respective volcano maps of the three groups. (b) Gene expression heat maps for three significantly differentially expressed groups.
(c, d) Intersection of three groups of differentially expressed genes.
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Figure 3: Continued.
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39 HCC tissues (25 with HBV infection) and 30 noncancer-
ous normal tissues (19 with HBV infection) [15]. The
GSE121248 dataset contained cancer and normal tissues
from 37 HCC cases, and these patients had a history of
HBV infection [16].

2.2. ESTIMATE Scores. The amount of tumor cells, immune
cells, and stromal cells was determined using ESTIMATE
(Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data) based on the tran-
scriptional profile of cancer samples. According to the stro-
mal signature (stromal signature gene) and immune
signature (immune cell signature gene), the stromal score
and immune score were calculated by ssGSEA, respectively.
Finally, the two scores were combined to generate an ESTI-
MATE score, which was used to analyze tumor purity. From
the official website (https://bioinformatics.mdanderson.org/
estimate/), matrix, immune, and ESTIMATE scores were
downloaded for each sample in TCGA-LIHC cohort, and
non-HBV-infected samples were excluded. In addition, this
score was compared with tumor patient survival in a corre-
lation analysis.

2.3. Acquisition of DEGs Based on Immune and Matrix
Scores. All HBV-related HCC patients were divided into
two groups (high vs. low) with positive and negative values.

Data analysis was performed on Sangerbox [17] using the
“Deseq2” package. The filter range for DEGs were deter-
mined to be log jFCj > 1, P < 0:05.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Function Analysis. Analyze the bio-
logical functions of DEGs by using the GO enrichment anal-
ysis (including BP, CC, and MF) and KEGG pathway
enrichment analysis from DAVID online website tools
(database annotation, visualization, and comprehensive dis-
covery, https://david.ncifcrf.gov/tools.jsp) [18].

2.5. Weighted Correlation Network Analysis (WGCNA).
WGCNA is an analytical method for analyzing gene expres-
sion patterns of multiple samples, which can cluster the sim-
ilar expression gene and investigate the association between
specific traits and phenotypes in modules. It will help us find
relevant biomarker genes and therapeutic targets. The
“WGCNA” package was used to build the DEGs coexpres-
sion network on Sangerbox to identify the modules related
to prognosis.

2.6. Construction of PPI Network and Filtration of Hub Gene.
The protein information and PPI network information of
key modules were analyzed using String database (https://
cn.string-db.org/) [19]. MCODE was a plugin for
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Figure 3: Weighted correlation network analysis (WGCNA). (a) Analysis of the scale-free fit index (left) and the mean connectivity (right)
for various soft-thresholding powers. (b) Gene clustering dendrograms. (c) Topological overlap heat maps. (d) Heat map of correlations
between modules and clinical features.
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constructing functional modules of gene (protein) network
clustering in Cytoscape 3.8.0. According to the analysis
results, the hub gene can be determined [20].

2.7. Survival Analysis. Plot the Kaplan-Meier survival curves
of these hub genes, and screen out the hub genes significantly
correlated with overall survival (P < 0:05) by log-rank test.

2.8. Verification of the Expression of Hub Genes. Compare
the previous hub genes with the expression data in

GSE136247 and GSE121248 datasets to obtain the final key
genes. We used “TIMER” in Sangerbox to analyze the corre-
lation of key genes with 6 tumor-infiltrating immune cells in
HBV-related HCC tissues.

2.9. Clinical Features in Patients with HBC-Related HCC. For
comparison, the basic information and medical data of
HBV-related HCC patients were separated into high and
low groups based on the expression of key genes.
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Figure 4: Chord diagram demonstrates GO and KEGG analysis of module genes. (a) Biological processes (BP), (b) cellular components
(CC), (c) molecular functions (MF), and (d) KEGG pathways.
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2.10. Statistical Analysis. Analysis in the present study were
conducted using the R package on Sangerbox and GraphPad
prism 8.0.2. We used log-rank tests and chi-square tests for
data analysis. A statistically significant difference was con-
sidered to be less than 0.05. The whole process of bioinfor-
matics analysis was shown in Figure 1.

3. Results

3.1. Scores of the Immune System and Stroma Correlated with
Overall Survival. Based on TCGA database, the statistical
data of 104 HBV-related HCC patients were gained. Patients
ranged from 23 to 83 years of age. 85 (81.7%) were male, and
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19 (19.3%) were female. For each sample, ESTIMATE scores
were calculated based on matrix, immune, and ESTIMATE
scores. Stromal scores ranged from -1731.43 to 261.96,
immune scores ranged from -964.97 to 2311.6, and ESTI-
MATE scores ranged from -2488.91 to 2306.2. In order to
probe the possibility of the connection between immune/
stromal/ESTIMATE scores and patient survival, we catego-
rize HBV-related HCC patients into low and high groups
on the basis of 0 scores. There were no positive results
between the two groups (Figures S1A, S1B, and S1C).

3.2. Identification of DEGs in HBV-Related HCC. For
expounding the connection between gene expression profiles
and immune status, we used “DESeq2” package to identify.
Genes were significantly differential expression among the
three groups of scores. jlog ðFCÞj > 1 and P < 0:05 were as
screening criteria. As shown in Figure 2(a), 571 downregu-
lated genes and 1,845 upregulated genes were detected in

the immune score group; in the stromal score group, 1,457
downregulated genes and 1,014 upregulated genes were
detected; in the ESTIMATE score group, 1,052 were detected
downregulated genes and 1,584 upregulated genes. Accord-
ing to the heat map, there were significant differences
between the three groups in the differential genes
(Figure 2(b)). Through further data screening, the differen-
tial express gene in all three groups were obtained, including
111 upregulated genes and 322 downregulated genes as
shown in Figures 2(c) and 2(d).

3.3. Functional Enrichment Analysis. DAVID website was
used for GO and KEGG analyses. As a result of the enrich-
ment analysis, cellular components (CC), molecular func-
tions (MF), and biological processes (BP) were enriched by
GO enrichment analysis (Figure S2). For BP, DEGs were
mainly enriched in external encapsulating structure
organization, biological adhesion, and collagen fibril
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organization. For CC, DEGs were mainly enriched in
collagen containing extracellular matrix, external
encapsulating structure, and T cell receptor complex. For
MF, DEGs were mainly enriched in extracellular matrix
structural constituents, glycosaminoglycan binding, and
heparin binding. For KEGG, DEGs were mainly enriched
in the regulation of hematopoietic cell lineage, cytokine-
cytokine receptor interaction, and viral protein interaction
with cytokine-cytokine receptor (Figure S2).

3.4. Weighted Correlation Network Analysis. The role net-
work of DEGs was constructed by WGCNA analysis. With
the network’s soft threshold set at 16, coexpression networks
resembled scale-free networks most closely (Figures 3(a)–
3(c)). According to different functions, DEGs can be divided
into 7 modules. Turquoise was the module with the highest
significant difference over survival (OS time) (Figure 3(d)).
The module contained a total of 50 genes.

3.5. Functional Enrichment Analysis of Genes in Turquoise.
These genes were mostly associated with T cell activation,
lymphocyte activation, and leukocyte differentiation in BP,
based on GO enrichment analysis (Figure 4(a)). For CC,
these genes were mainly enriched in immunological synapse,
external side of plasma membrane, and side of membrane
(Figure 4(b)). For MF, these genes were mainly enriched in
cytokine receptor activity, immune receptor activity, and
C-C chemokine binding (Figure 4(c)). For KEGG, these

genes were mainly involved in the regulation of T cell recep-
tor signaling pathway, cytokine-cytokine receptor interac-
tion, and primary immunodeficiency (Figure 4(d)).

3.6. Filtration of PPI Network and Identification of
Prognostic-Related Genes. Through the String database, a
PPI network was constructed using 50 genes (Figure 5(a)).
Then, use Cytoscape 3.8.0 to further optimize the obtained
PPI network, and use the MCODE plugin to draw important
subnetworks (Figures 5(b) and 5(c)). There were 16 central
genes (CD53, TAGAP, IKZF1, CARD11, WDFY4, PTPRC,
PTPN22, CYTIP, TRAF3IP3, CCR7, ITK, IL7R, CD40LG,
SLAMF1, CD5, and SPN) in the protein interaction network.

3.7. Survival Analysis in Blue Module. Identifying genes asso-
ciated with overall survival in patients with HBV-related
HCC was the purpose of this research. We constructed
Kaplan-Meier survival curves of these genes using the prog-
nostic information in TCGA-LIHC. Among them, the
expression levels of CCR7, CD5, SLAMF1, SPN, and TRA-
F3IP3 were significantly associated with the prognosis of
patients (Figure 6 and Figure S3).

3.8. Validation of the Analysis in the GEO Database. In addi-
tion, we determined the use of GSE136247 and GSE121248
to explore the expression of these genes in cancerous and
paracancerous tissues. As shown in Figure 7(a), in
GSE136247, CCR7 was expressed significantly upregulated
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Figure 7: Hub genes were validated in the GEO database. (a) The expression levels of CCR7, CD5, SLAMF1, and SPN in GSE136247. (b)
The expression levels of CCR7, CD5, SLAMF1, and SPN in GSE121248. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001; ns: not significantly.
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in cancer tissues (whether or not infected with HBV) relative
to adjacent tissues, whereas TRAF3IP3 was completely the
opposite. In HBV-related HCC patients, SLAMF1 and SPN
in cancer tissues were significantly decreased, but this phe-
nomenon was not observed in patients without HBV infec-
tion. In addition, the expression of CD5 was significantly
decreased in cancer tissues relative to adjacent tissues of
HBV-uninfected patients, while in HBV-related HCC
patients, the two groups did not differ significantly. As
shown in Figure 7(b), in GSE121248, the expressions of
SLAMF1 and TRAF3IP3 were significantly decreased in
HBV-related HCC tissues relative to paracancerous tissues,
while the expressions of CCR7, CD5, and SPN were not sig-
nificantly different. Based on the above results, we defined
SLAMF1 and TRAF3IP3 as key genes for follow-up studies.

3.9. Connection between Key Genes and Immune Infiltration.
In the present study, we explored possible associations
between key gene expression and the infiltration of immune
cells using TIMER. A positive correlation was found
between SLAMF1 and TRAF3IP3, but not between neutro-
phils and macrophages, with the infiltration of B cells,
CD4+ T cells, CD8+ T cells, and dendritic cells (Figure 8).
In light of this, key genes may play an important role in reg-
ulating immune cells.

3.10. Relationship between Key Genes and Clinical Features.
Based on TCGA-LIHC database, we examined the relation-
ship between SLAMF1 and TRAF3IP3 and HBV-related
HCC clinical characteristics. The results showed that
SLAMF1 and TRAF3IP3 were inversely associated with
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Figure 8: The correlation between key genes and 6 immune cell types. (a) SLAMF1; (b) TRAF3IP3.

11Journal of Oncology



tumor recurrence, regardless of gender, age, tumor stage (T),
lymph node stage (N), and metastasis stage (M) (Table 1).

4. Discussion

HCC has a poor prognosis, killing more than 800,000 people
worldwide each year [21]. In European and American coun-
tries, the prevalence of nonalcoholic fatty liver disease is ris-
ing rapidly every year, leading to the subsequent
development of HCC and HCC-related death; while in
developing countries in Asia, hepatitis and cirrhosis caused
by viral infection are the main causes of HCC [22]. As most
HCC cases are secondary to hepatitis (hepatitis B, hepatitis
C, or alcoholic and nonalcoholic liver disease) or cirrhosis,
HCC is now gradually considered to be the inflammatory
cancer induced by chronic liver injury [23–26]. Patients with
advanced HCC lack access to surgery and rely mainly on
immunization or chemotherapy, example for sorafenib, a
kind of the tyrosine kinase inhibitor. In recent years, several
treatment options (lenvatinib, regorafenib, cabozantinib,
and ramucirumab) have emerged for the various aspects’
treatment of advanced HCC [27].

Cellular components of the HCC immune microenvi-
ronment (tumor cells, immune cells, stromal cells, endothe-
lial cells, and cancer-associated fibroblasts) are critical for
the response to immunotherapy [28]. Through the portal
vein, antigen-rich blood from the gut is constantly exposed
to the liver, which acts as a central immune organ. In order

to reduce inflammatory stimulation and tissue damage from
the blood and the liver, establish an immune-tolerant micro-
environment which has a strong resistance to hit and self-
cleaning ability. The homeostasis of this immune microenvi-
ronment is also disrupted when hepatitis or cirrhosis or even
HCC develops [29]. The TME in HCC is the hallmark of
tumor, which has an important influence on tumor growth,
invasion, and drug resistance [30, 31].

First, we screened out HCC patients with HBV infection
from TCGA-LIHC. In the immune microenvironment of
HBV-related HCC, DEGs were identified based on immu-
nity, stroma, and ESTIMATE scores. Activation of CD4+ T
cells, CD8+ T cells, NK cells, NKT cells, monocytes/macro-
phages, and HSCs occurs in chronic hepatitis caused by
HBV. Hepatitis is further aggravated, and HCC is further
encouraged by the simultaneous production of TNF-α,
IFN-γ, IL-12, IL-4, and IL-13 [32, 33]. Additionally, several
immunosuppressive cells, including Treg, Breg, MDSC,
and Kupffer cells, inhibit immune cell activity by producing
cytokines such as TGF-β and IL-10 and inducing key factors
in CD8+ T and NK cell depletion, leading to immune escape
of HBV and HCC tumor cell [34–37].

Additionally, we analyzed DEG enrichment. These
DEGs have various biological properties and participate in
various signaling pathways, such as external encapsulating
structure organization, biological adhesion, T cell receptor
complex, cytokine-cytokine receptor interaction, and viral
protein interaction with cytokine-cytokine receptor. All of
these confirmed that their involvement was in the regulation
of the immune microenvironment in HBV-related HCC [38,
39]. Coexpression networks were constructed, with tur-
quoise modules identified as key modules by WGCNA.
Their main functions are to activate T cells, activate lympho-
cytes, and differentiate leukocytes; they are mainly located at
the immune synapse, the outer and membrane sides of the
plasma membrane; they mainly regulate cytokine receptor
activity, immune receptor activity, and C-C chemokine
binding. They are also involved in the regulation of T cell
receptor signaling pathway cytokine-cytokine receptor inter-
actions and primary immunodeficiency. A close correlation
can be found between the immune regulation of HBV-
related HCC and the genes of this module.

Through the PPI construction and prognostic-related
genes analysis of this module, we identified five HBV-
related hub genes for the prognosis of HCC patients,
namely, CCR7, CD5, SLAMF1, SPN, and TRAF3IP3. On
the basis of GSE136247 and GSE121248, the expression of
each gene in cancer tissue and normal tissue was verified,
and two key genes were finally obtained, namely, SLAMF1
and TRAF3IP3.

The SLAMF1/CD150 receptor is a member of the cell
surface receptor signaling lymphocyte activation molecule
(SLAM) family and is considered a marker of activated
T cells, B cells, monocytes, and DCs [40, 41]. SLAMF1 is
actively involved in the regulation of different types of
immune responses as well as keeping the tissue microenvi-
ronment [42]. Recent studies have demonstrated that the
expression level of SLAMF1 is significantly increased in
liver tissue of NASH compared with non-NASH controls

Table 1: SLAMF1 and TRAF3IP3 expression and
clinicopathological features in HBV-related HCC.

Variables n
SLAMF1
expression P value

TRAF3IP3
expression P value

Low High Low High

Gender

Male 85 42 43 0.636 42 43 0.636

Female 19 10 9 10 9

Age

>60 33 20 13 0.140 20 13 0.140

≤60 71 32 39 32 39

T

T1-T2 91 44 47 0.374 44 47 0.374

T3-T4 13 8 5 8 5

N

N0 94 49 45 0.318 50 44 0.096

Nx 10 3 7 2 8

M

M0 89 45 44 0.780 46 43 0.402

Mx 15 7 8 6 9

Recurrence

Yes 44 27 17 0.047∗ 28 16 0.017∗

No 60 25 35 24 36
∗ represents P < 0:05; T: tumor stage; N: lymph node stage; M: metastasis
stage.
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and that the level of SLAMF1 was dramatically related to
the seriousness of the NASH phenotype. This study was
the first to identify the role of SLAMF1 in the mediating
of hepatocyte death in NASH and as a measure of NASH
in humans [43]. In another study, the concentration of
SLAMF1 has a profound effect on the formation of cirrho-
sis in the plasma. But no significant difference was found
between HCC and cirrhosis [44]. TRAF3IP3 (TRAF3-
interacting protein 3) was identified as a TRAF3-
interacting protein in original [45]. Recent studies have
shown that TRAF3IP3 is involved in B and T cell develop-
ment and for maintaining the functional stability of regu-
latory T cells [46, 47]. TRAF3IP3 has been shown to
function as an oncogene in melanoma and glioma [48,
49].

Our study showed that SLAMF1 and TRAF3IP3 were
lowly expressed in HBV-related HCC and positively related
with the infiltration of B cells, CD4+ T cells, CD8+ T cells,
and dendritic cells, but not neutrophils and macrophages.
Taken together, SLAMF1 and TRAF3IP3 may contribute
to the pathogenesis of HBV-related HCC. Through their
effect on the immune-suppressive microenvironment, fur-
thermore, we found that SLAMF1 and TRAF3IP3 were also
associated with the recurrence of HBV-related HCC.

5. Conclusion

We used bioinformatics to comprehensively analyze the
expression of immune microenvironment-related genes in
HBV-associated HCC patients in TCGA. Further study of
the screened DEGs yielded two genes related with prognosis.
We explained that SLAMF1 and TRAF3IP3 were low-
expressed in HBV-associated HCC tissues and were corre-
lated with tumor recurrence. Our findings had clear implica-
tions for SLAMF1 and TRAF3IP3 as biomarkers for
predicting the prognosis of HBV-related HCC patients and
provide new research directions and diagnosis and treat-
ment options for HBV-related HCC. However, follow-up
clinical studies are required to confirm these opinions.
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