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Background. Currently, predictive models were not developed based on the signaling pathway signatures of immune-related
lncRNAs in breast cancer (BRCA) patients. Methods. We selected unsupervised hierarchical clustering algorithm to classify
patients with BRCA based on the signifcant immune-derived lncRNAs from the TCGA dataset. And diferent methods including
ESTIMATE, ImmuneCellAI, and CIBERSORTwere performed to evaluate the immune infltration of tumor microenvironment.
Using Lasso regression algorithm, we fltered the signifcant signaling pathways enriched by GSEA, GSVA, or PPI analysis to
develop a prognostic model. And a nomogram integrated with clinical factors and signifcant pathways was constructed to predict
the precise probability of overall survival (OS) of BRCA patients in the TCGA dataset (n= 1,098) and another two testing sets
(n= 415). Results. BRCA patients were stratifed into the PC (n= 571) and GC (n= 527) subgroup with signifcantly diferent
prognosis with 550 immune-related lncRNAs in the TCGA dataset. Integrated analysis revealed diferent immune response,
oncogenic signaling, and metabolic reprograming pathways between these two subgroups. And a 5-pathway signature could
predict the prognosis of BRCA patients between these two subgroups independently in the TCGA dataset, which was confrmed in
another two cohorts from the GEO dataset. In the TCGA dataset, 5-year OS rate was 78% (95%CI: 73–84) vs. 82% (95%CI: 77–87)
for the PC and GC group (HR= 1.63 (95% CI: 1.17–2.28), p � 0.004). Te predictive power was similar in another two testing sets
(HR> 1.20, p < 0.01). Finally, a nomogram is developed for clinical application, which integrated this signature and age to
accurately predict the survival probability in BRCA patients. Conclusion. Tis 5-pathway signature correlated with immune-
derived lncRNAs was able to precisely predict the prognosis for patients with BRCA and provided a rich source characterizing
immune-related lncRNAs and further informed strategies to target BRCA vulnerabilities.

1. Introduction

Breast cancer (BRCA) is one of the most frequently di-
agnosed cancers, and leading cause of cancer death among
women aged 20 to 59 years [1, 2]. Globally, it is estimated
that nearly 2.3 million new BRCA cases representing 11.7%
of all cancer patients were diagnosed, with over 685,000
deaths in 2020 [3]. BRCA is a heterogeneous tumor, and its

etiology and pathological manifestations are signifcantly
diferent in various regions [4]. And clinical research has
shown that the molecular subtypes of BRCA are four distinct
subtypes: Luminal A, Luminal B, HER 2+, and basal-like [5].
Fortunately, due to the advances in clinical diagnosis and
targeted therapy, the breast cancer mortality has been
dramatically reduced [6]. In early invasive breast cancer,
mastectomy, modifed radical mastectomy, or breast
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conserving surgery was selected for patients with BRCA, or
neoadjuvant treatments might be recommended before
surgery, and then adjuvant treatments were recommended
after surgery, including chemotherapy, anti-HER2 therapy,
other targeted therapy, endocrine therapy, bisphosphonates,
and radiotherapy [7, 8], especially for triple negative breast
cancer (TNBC) patients, treatments options include mul-
timodal chemotherapy, immune checkpoint inhibitors, and
antibody-drug conjugate treatment [9]. Notably, over the
past few years, there have been exciting advances in targeted
immunotherapy research for the distinct subtypes of breast
cancers [10, 11]. Recently, immunotherapy ofers un-
precedented opportunities for efective treatment of ma-
lignant tumors because of the positive role of immune
system in tumorigenesis, development, and treatment
[12, 13].

Recently, long noncoding RNAs (lncRNAs) have re-
ceived increasing attention due to their important roles in
tumors [14]. LncRNAs are RNA transcripts with over 200
nucleotides that do not encode proteins [15]. However,
lncRNAs can physically interact with DNA,miRNA, mRNA,
or protein, and consequently regulate gene expression by
epigenetic, transcriptional, or translational regulation [16].
Terefore, lncRNAs play an essential role in the occurrence,
progression, and prognosis of cancer [17–19]. Recent studies
showed that immune-derived lncRNAs took efect in dif-
ferent stages of tumor immunity, such as antigen pre-
sentation, immune activation, and immune cell infltration
[20, 21]. Tus, immune-derived lncRNAs have attracted
wide attention [22]. Terefore, this diference in immune-
infltrating microenvironment is partly attributable to the
expression of some immune-derived lncRNAs during cell
growth, apoptosis, and invasion [11]. Recently, several
studies have shown that a rich tumor immune microenvi-
ronment is associated with prognostic value in a subset of
BRCA, which indicates the potential of immune-derived
lncRNAs in assessing tumor immune cell infltration [23].
However, there are no reliable model studies involving some
pathways to predict prognosis in BRCA patients.

In this study, BRCA patients are classifed into two
subgroups: good cluster (GC) and poor cluster (PC) based
on the expression profling of the signifcant immune-
derived lncRNAs by unsupervised clustering method.
Ten the diferences of immune infltration are evaluated by
ESTIMATE and CIBERSORT algorithms, and enrichment
pathways are targeted by immune-related lncRNAs and
nonimmune-related lncRNAs with GSEA method. After
that, a 5-pathway signature is developed with Cox regression
method to independently assess prognosis, which could
precisely predict the probability of survival between the GC
and PC group in BRCA patients from Te Cancer Genome
Atlas Program (TCGA) dataset. Te generalization ability of
the model is verifed on another two independent Gene
Expression Omnibus (GEO) datasets. Finally, we established
a prognostic nomogram model based on the 5-pathway
signature and the clinicopathological risk factors in the
TCGA dataset. Te performance and clinical beneft of this
nomogram were evaluated in another two GEO datasets to
validate its accuracy and utility.

2. Methods

2.1. Data Source. We downloaded breast cancer clinical ma-
terials and gene expression data from TCGA (https://
cancergenome.nih.gov/), and GEO (https://www.ncbi.nlm.
nih.gov/geo/) datasets. Ultimately, 1,513 BRCA patients and
113 normal controls were collected, including 1,098 patients’
samples and 113 normal controls from TCGA, 327 patients’
samples fromGSE20685 [24], and 88 cases fromGSE20173 [25],
respectively. Te expression levels were normalized using the
variance stabilizingVST transformationmethod of “DESeq2.” A
list of immune-derived lncRNAs, immune cells, and immune
pathways of breast cancer patients were downloaded from the
Immunology Database and Analysis Portal (ImmLnc, https://
bio-bigdata.hrbmu.edu.cn/ImmLnc/jt-download.jsp) [26].

2.2. Identifcation of Diferent Expression Genes and Enriched
Signaling Pathways. Diferent expression genes (DEGs)
were identifed based on the standard of |log2(Fold
Change)|> 1 and q-values <0.05 [27] by using R package
“DESeq2.” And a total of 550 immune-related lncRNAs and
639 nonimmune-related lncRNAs with signifcant expres-
sion between the GC and PC group were obtained from
3,824 diferent expression lncRNAs between tumor and
normal controls in TCGA data. Hierarchical cluster analysis
was applied on the diferent expression genes and breast
cancer patients using R package “factoextra.” All the targeted
mRNAs of the signifcant lncRNAs were generated based on
Pearson Correlation Coefcient (PCC, |r|> 0.4 & p < 0.05),
and these targeted genes were then analyzed by Gene Set
Enrichment Analysis (GSEA) or Gene Set Variation Analysis
(GSVA) to identify enriched signaling pathways from
Molecular Signature Database (MSigDB) [28]. A cut-of of
FDR q-value ≤0.05 was applied to select the most signif-
cantly enriched signaling pathways.

2.3. Estimation of Immune Infltration. Te Tumor Immune
Estimation Resource (TIMER) (https://cistrome.shinyapps.
io/timer/) produced the immune infltrates in tumors, in-
cluding CD4+ T cells, CD8+ T cells, B cells, macrophages,
dendritic cells, and neutrophils for evaluating tumor-
infltrating immune cells [29]. Using the deconvolution al-
gorithm CIBERSORT (https://cibersort.stanford.edu/), we
inferred the infltration of 22 immune cells subsets between
the GC and PC group [30]. In addition, MCP-counter [31],
EPIC [32], and ImmuCellAl [33] methods were also selected
to evaluate infltrating macrophages. Te R package “ESTI-
MATE” was utilized to calculate the tumor microenviron-
ment score, including the stromal score, immune score,
ESTIMATE score, and tumor purity [34]. Te correlation
between immune infltration and risk scores was calculated by
using the Pearson correlation (Wilcoxon test) in all models.

2.4. Protein-Protein Interactions. Te STRING (https://
string-db.org/) is a database of known and predicted
protein-protein interactions, including direct (physical) and
indirect (functional) associations between proteins, on a global
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scale [35]. In this study, the target genes of immune-related
DEGs and nonimmune-related DEGs in the GC and PC group
were mapped to the STRING database to acquire a critical
assessment and integration of protein-protein interactions.

2.5. Statistical Analysis. Trough the R package “survival”
(version 3.2–13), we calculated signifcant potential prog-
nostic factors in the univariate Cox regression model, and
then entered these factors into the multivariable Cox pro-
portional hazard model. A nomogram was developed based
on the results of the multivariable analyses. Te calibration
curves and discrimination were computed to evaluate the
performance of the nomogram and its clinical utility using R
package “rms” [36]. Te area under the curve (AUC) of the
receiver operating characteristic (ROC) curve and concor-
dance index (C-index) were utilized to evaluate the pre-
dictive capacity of the predictive model. Te least absolute
shrinkage and selection operator (LASSO) regression
method was adopted to identify the signaling pathways most
associated with overall survival using the R package
“glmnet.” Te actuarial probability of overall survival (OS)
was evaluated by Kaplan–Meier estimates, and diference
was compared using the log-rank test. All statistical analyses
were performed by R version 4.0.2 with several packages,
with p < 0.05 as statistically signifcant.

3. Results

3.1. Immune-Related lncRNAProflingClassifedPatientswith
Breast Cancer into Two Subgroups Correlated with Prognosis.
Te whole analysis process of this study is shown in
Figure S1. A total of 17,956 lncRNAs and 19,408 mRNAs
were collected from RNA-seq data in 1,098 BRCA samples
and 113 normal samples. And the corresponding clinical
data of 1,098 samples were downloaded from the TCGA
dataset. We extracted 1,931 immune-related lncRNAs as-
sociated with immune cells and immune pathways in breast
cancer patients from the ImmLnc database (Figure 1(a)).
Ten 3,824 lncRNAs were identifed with signifcantly dif-
ferent expression between tumor (n= 2,725) and normal
(n= 1,099) tissues (Figure S2). Of these DEGs, 550 genes
were immune-related lncRNAs.

To explore the optimal clusters of 1,098 patients with
breast cancer, we performed Principal component analysis
(PCA) and hierarchical clustering analysis based on the
expression profle of immune-derived lncRNAs which
revealed two subgroups GC and PC (Figures 1(b) and S2B).
In addition, a detailed analysis was conducted from the
correlation between immune-related lncRNAs classifcation
and clinical factors. Compared with the GC subgroup, pa-
tients in the PC subgroup had signifcantly older age, more
positive status of ER/PR/HER2, more CNA (>0.251), and
more menopause status with >12 months since LMP
(Figure 1(b), Fisher test, p < 0.05). However, the molecular
subtypes were similarly distributed between the PC and GC
group (Figures S3A and S3B), which were not signifcant
prognosis across each subtype (p > 0.05, Figures S3C and
S3D). And we also observed a signifcant trend of shortened

survival in patients in the PC subgroup (Figure 1(c), log-
rank test p � 0.004). Tese results indicated the diferences
in clinical and histopathological phenotypes between two
subgroups based on immune-related lncRNAs.

3.2. Immune-Cell Infltration Analysis and Molecular Path-
ways between the Two Subgroups. To evaluate the immune-
cell infltration status, we performed six diferent algorithms
including CIBERSORT and ImmuCellAI to quantify im-
mune cell expression in breast cancer tissues. To clarify the
intrinsic biological diferences between the GC and PC
group, we compared the immune cell composition of the
TME (Figure 2(a)). Using ImmuCellAI to enumerate the
abundance of immune cells subsets, we discovered that T2,
T17, MAIT, B cell, monocyte, macrophage, and neutrophil
cells were signifcantly up-regulated in the PC subgroup
(p < 0.05), but the other 17 immune cells in GC subgroup.
Among 22 inferred immune cell types by CIBERSORT, the
M2 macrophages were signifcantly increased in the PC
subgroup but M1 in the GC subgroup. Generally, between
the two distinct subtypes, the GC group exhibited a higher
immune score because of a favorable prognosis (Figure 2(b),
Wilcoxon Rank Sum Test, p � 5.05e − 58). Furtherly, we
identifed 181 immune-related lncRNAs with signifcant
expression between two subgroups, of which 151 lncRNAs
were mainly located in 123 CD4+ T cells and 106 dendritic
cells from the GC subgroup but the other 30 lncRNAs most
distributed in 19 dendritic cells and 19 neutrophil cells from
the PC subgroup (Figure 2(c)).

Next, we performed pathway enrichment analysis to
investigate dysregulated molecular processes informed by
TCGA data. A total of 8 signaling pathways were identifed
within 16 immune-related lncRNAs in PC cluster
(Figure 2(d)), such as natural killer cell cytotoxicity, TNF
family members receptors, interleukins receptor, antigen
processing and presentation, cytokines, chemokines, and
antimicrobials. Using similar approaches, we analyzed the
immune-related lncRNAs in GC cluster. A total of 15 sig-
naling pathways were discovered, of which 8 common
pathways were same with the ones above (Figure 2(e)).
Taken together, the consistency between the immune profle
and prognostic profle implied that our classifcationmethod
was scientifcally sound.

3.3.DysregulatedMolecularPathwaysofNonimmune-Related
DEGs. To explore the function of nonimmune-related
DEGs between GC and PC subgroup, we performed
a stepwise fltering process to identify the signifcantly
enriched mRNAs (n= 19,408) correlated with nonimmune-
related lncRNAs (Figure 3(a); n= 639; Pearson |r|> 0.4,
p < 0.05). Ten pathway enrichment analysis was con-
ducted to investigate dysregulated molecular processes of
2,318 mRNAs targeted by these nonimmune-related
lncRNAs with signifcantly diferent expression between
the GC (n= 534) and PC (n= 105) group. Ten, a total of 34
signaling pathways were identifed which were tumor spe-
cifc, highly abundant, and signifcantly enriched in the GC
(n= 24) and PC (n= 10) group (Figure 3(b)). Te integrated
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analysis revealed enriched biological pathways including
immune response and oncogenic signaling in the GC group
but predominant composition of metabolic and oncogenic
signaling in the PC group, such as the IL2-STAT5 signaling,
hedgehog signaling pathway, MAPK signaling pathway, P53
pathway, xenobiotic, and sulfur metabolism (Figure 3(c)).
Tese results demonstrated diferences in signaling path-
ways based on nonimmune-related lncRNAs between two
groups with diferent prognosis.

3.4. Correlation Analysis between Immune and Nonimmune-
Related Composition in TME. To understand the relation-
ship between the proportion of immune and stromal
components in tumor microenvironment (TME), the ES-
TIMATE algorithm was to calculate the immune and
stromal scores of BRCA tumor samples (Figure 4(a)). Te
results indicated that the immune score was positively
correlated with the stromal score (R� 0.36, p < 2.2e − 16)
but negatively correlated with the tumor purity (R� −0.90,
p < 2.2e − 16), while the tumor purity was signifcantly
negative in association with the stromal score (Figures 4(a)
and 4(b); R� −0.72, p < 2.2e − 16).

To better understand the interactions of target genes of the
signifcant immune and nonimmune-related lncRNAs in
TME, protein-protein interaction (PPI) networks were con-
structed using the STRING online tool. In PPI networks,
proteins with similar functions tend to connect or interact
with each other [35]. As a result, the network consisted of 10
modules, 223 nodes, and 3,083 edges in the GC group
(Figure 4(c)). Similarly, there were 10 modules, 107 nodes,
and 1,127 edges in the PC group (Figure 4(d)), and the p

-values <0.001 showed that the PPI enrichment was of great
signifcance (Figures 4(c) and 4(d)). Meanwhile, we observed
that the targeted genes of immune and nonimmune-related
lncRNAs in the GC group were mostly enriched in immune-

related pathways such as the chemokine signaling pathway
and the cytokine-cytokine receptor interaction pathway from
the KEGG database (p < 0.001), followed by oncogenic
pathways such as the PI3K-AKT and the TGF-beta signaling
pathways (p < 0.001). But in the PC group, all the targeted
genes were predominantly enriched in oncogenic pathways
such as ERBB, mTOR, MAPK, TGF-beta, Hippo, and
PI3K-AKT signaling pathways (p < 0.001), while immune
response pathways were secondary such as natural killer cell
mediated cytotoxicity, antigen processing and presentation,
and T cell receptor signaling pathway (p < 0.001). Generally,
these genes and signaling pathways were probably involved in
the tumorigenesis and progression of breast cancer.

3.5. Te 5-Pathway Signature Could Classify BRCA Patients
into Two Groups with Signifcant Prognosis. To establish
a comprehensive and efective risk model for classifcation and
prognosis prediction, we performed LASSO Cox regression
analysis for the 15 signaling pathways from the immune and
nonimmune-related enrichment. After 10-fold cross-validation,
a total of 5 pathways were highlighted by the minimum partial
likelihood deviance (Figure 5(a)), such as KEGG cell adhesion
molecules (CAMs), KEGG natural killer cell-mediated cyto-
toxicity, Hallmark peroxisome, Reactome chemokine receptors
bind chemokines, and Hallmark allograft rejection. And this 5-
pathway signature could divide the breast cancer patients into
two subgroups (GC and PC) with the signifcant prognosis
based on the median score of these signatures (Figures 5(b) and
S4). To confrm our discoveries, we selected another two GEO
datasets to validate the prognostic power of 5-pathway signa-
ture. Similarly, we stratifed the breast cancer patients of each
independent cohort into two groups (GC and PC) by using
PCA. In accordancewith the results above fromTCGA, patients
with breast cancer from GSE20685 in the PC group (n=197)
had a higher risk (HR=1.849, 95% CI: 1.10–3.09) than those in
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the GC group (n=130), while 84% of the 5-year OS rates (95%
CI: 79–89) in the PC group were signifcantly poorer than those
of 92% (95% CI: 87–97) in the GC group (p � 0.018,
Figure 5(c)). Te 5-pathwaysignature-based classifcation of
another cohort fromGSE20713 (n=88) also showed the similar
results (Figure 5(d)). Te HR (PC vs. GC group) in this cohort
was 3.182 (95% CI: 1.09–9.27). In addition, the 5-year OS rates
in the PC groupwere 75% (95%CI: 65–87%) signifcantly worse
compared with 93% (95% CI: 84–99%) of the GC group in
GSE20713 (p � 0.025, Figure 5(d)). Otherwise, compared with
the PC group, the enrichment score was signifcantly lower for
the Hallmark peroxisome pathway (p � 3.19e − 09), but up-
regulated for the other four pathways in the GC group
(p < 0.001, Figure 5(e)), which was consistent with the results
from the TCGA analysis above. All these results suggested that
this 5-pathway signature could classify breast cancer patients
with signifcant clinical outcomes, and function as an un-
favorable biomarker.

3.6. Te 5-Pathway Signature Predicted the Survival Proba-
bility Independently and Precisely by Integrating Other
Clinical Factors. We performed univariate and multivariate
Cox regression analyses to evaluate the independence of this
5-pathway signature in predicting prognosis, and discovered
that this signature with 9 clinical factors including CNA, age,
and metastasis status were signifcantly associated with
survival (HR= 1.50, 95% CI: 1.02–2.19, p � 0.04;
Figure 6(a)). Next, data stratifcation analysis was conducted
among CNA, age, or metastasis status subgroups. As shown

in Figure S5A, all patients were classifed into the CNA
≤0.251 (n= 455) and >0.251 (n= 470) group, and the cutof
value of this signature could subclassify CNA >0.251 patients
into the PC and GC group with signifcant prognosis
(HR= 1.85, 95% CI: 1.13–3.04, p � 0.013), but in the CNA
≤0.251 group (p � 0.280). Te 5-year OS rates of PC patients
in CNA >0.251 group were 74% (95% CI: 66–83%), which
was signifcantly lower than 80% (95% CI: 72–89%) of GC
patients. Subsequently, the signature was further assessed in
patients from diferent age or metastasis status (Figures S5B
and S5C). The patients from each subgroup were signif-
cantly diferent prognosis (p < 0.05) except for young
subgroup (age ≤60 years). Also, we found that this 5-
pathway signature was signifcantly associated with OS in
another two external validation sets (GSE20685, HR= 1.237,
95% CI: 1.02–1.51, p � 0.034; and GSE20713, HR= 3.605,
95% CI: 1.23–10.55, p � 0.019; Figure 6(a)). Tese results
indicated that the prognostic power of this signature was
independent of other clinical factors in breast cancer
patients.

We developed a nomogram combining the signature and
one common clinical factor-age to explore a quantitative
method for calculating the precise probability of clinical
outcomes (Figure 6(b)). Te 3-year and 5-year calibration
plots showed that C-index from TCGA data (0.607, 95% CI:
0.577–0.637) was similar with that of another two validated
datasets GSE20685 (0.576, 95% CI: 0.547–0.605) and
GSE20713 (0.671, 95% CI: 0.637–0.704), which indicated
that the nomogram worked well compared with an ideal

Number
40
80
120
160

1.75
2.00
2.25
2.50

−log10 (p.adj)

LncRNAs

Pathways in GC group

Antigen Processing and Presentation

Antimicrobials

BCR Signaling Pathway

Chemokine Receptors

Chemokines

Cytokine Receptors

Cytokines

Interferons

Interleukins

Interleukins Receptor

Natural Killer Cell Cytotoxicity

TCR signaling Pathway

TGFb Family Member

TGFb Family Member Receptor

TNF Family Members Receptors

AC
00

24
80

.3
AC

00
24

80
.4

AC
00

30
90

.1
AC

00
55

50
.3

AC
00

56
82

.5
AC

00
58

63
.1

AC
00

73
86

.4
AC

01
32

64
.2

AC
01

69
95

.3
AC

02
11

88
.4

AC
02

35
90

.1
AC

02
69

04
.1

AC
07

30
72

.5
AC

07
31

30
.3

AC
07

42
89

.1
AC

08
39

49
.1

AC
09

24
84

.1
AC

09
36

09
.1

AC
TA

2−
A

S1
A

D
A

M
TS

9−
A

S1
A

D
A

M
TS

9−
A

S2
A

FA
P1

−A
S1

A
LD

H
1L

1−
A

S2
A

P0
00

66
2.

4
BV

ES
−A

S1
CA

D
M

3−
A

S1
CA

RM
N

CO
L4

A
2−

A
S2

CT
B−

11
4C

7.
4

CT
D

−2
31

3F
11

.1
CT

D
−2

35
3F

22
.2

CT
D

−2
52

7I
21

.1
5

FA
M

30
A

FL
J2

73
54

IF
N

G
−A

S1
IL

21
−A

S1
KC

N
J2

−A
S1

LI
N

C0
00

92
LI

N
C0

01
58

LI
N

C0
04

02
LI

N
C0

05
18

LI
N

C0
05

40
LI

N
C0

05
44

LI
N

C0
09

44
LI

N
C0

09
68

LI
N

C0
11

40
LI

N
C0

12
15

LI
N

C0
12

30
LI

N
C0

12
67

LI
N

C0
12

81
LI

N
C0

13
54

LI
N

C0
13

58
LI

N
C0

13
66

LI
N

C0
14

36
LI

N
C0

14
60

LI
N

C0
16

97
LI

N
C0

17
27

LI
N

C0
17

81
LI

N
C0

18
00

LI
N

C0
18

57
LI

N
C0

18
91

LI
N

C0
19

85
LI

N
C0

20
06

LI
N

C0
20

97
LI

N
C0

21
54

LI
N

C0
21

95
M

EF
2C

−A
S1

M
EO

X2
−A

S1
M

G
AT

3−
A

S1
M

IR
15

5H
G

P3
H

2−
A

S1
PG

M
5P

3−
A

S1
PG

M
5P

4−
A

S1
PI

K3
CD

−A
S1

RB
M

S3
−A

S3
RH

O
XF

1−
A

S1
RP

1−
11

1C
20

.3
RP

1−
19

3H
18

.3
RP

1−
28

O
10

.1
RP

1−
50

J2
2.

4
RP

11
−1

02
4P

17
.1

RP
11

−1
07

0N
10

.3
RP

11
−1

0J
5.

1
RP

11
−1

20
J1

.1
RP

11
−1

31
H

24
.4

RP
11

−1
34

N
1.

2
RP

11
−1

38
I1

7.
1

RP
11

−1
3P

5.
2

RP
11

−1
59

H
10

.3
RP

11
−1

67
B3

.2
RP

11
−1

6E
12

.2
RP

11
−1

6K
12

.1
RP

11
−1

8H
21

.1
RP

11
−2

03
B7

.2
RP

11
−2

0J
15

.3
RP

11
−2

23
C2

4.
1

RP
11

−2
54

F1
9.

4
RP

11
−2

91
B2

1.
2

RP
11

−2
92

E2
.1

RP
11

−3
30

A
16

.1
RP

11
−3

42
D

11
.3

RP
11

−3
48

F1
.2

RP
11

−3
48

F1
.3

RP
11

−3
51

J2
3.

1
RP

11
−3

57
H

14
.1

7
RP

11
−3

92
O

17
.1

RP
11

−4
13

E1
.4

RP
11

−4
28

G
5.

5
RP

11
−4

4K
6.

4
RP

11
−4

64
C1

9.
3

RP
11

−4
93

L1
2.

5
RP

11
−5

11
B2

3.
1

RP
11

−5
24

N
5.

1
RP

11
−5

35
A

5.
1

RP
11

−5
36

O
18

.1
RP

11
−5

54
A

11
.4

RP
11

−5
61

I1
1.

3
RP

11
−6

0A
14

.1
RP

11
−6

24
C2

3.
1

RP
11

−6
45

C2
4.

5
RP

11
−6

62
I1

3.
2

RP
11

−6
6B

24
.9

RP
11

−6
89

B2
2.

2
RP

11
−6

93
J1

5.
5

RP
11

−7
35

G
4.

1
RP

11
−8

0H
8.

4
RP

11
−8

1K
2.

2
RP

11
−9

36
I5

.1
RP

13
−4

52
N

2.
1

RP
4−

57
5N

6.
4

RP
4−

64
7J

21
.1

RP
4−

66
3N

10
.1

RP
5−

10
28

K7
.2

RP
5−

83
9B

4.
8

RP
5−

88
4M

6.
1

RP
5−

96
5F

6.
2

SA
TB

1−
A

S1
SI

RP
G

−A
S1

TR
BV

11
−2

TR
H

D
E−

A
S1

U
SP

30
−A

S1
W

D
R8

6−
A

S1
X

Xb
ac

−B
46

1K
10

.4
X

Xb
ac

−B
PG

15
4L

12
.4

ZB
TB

20
−A

S1
ZE

B2
−A

S1

(e)

Figure 2:Te immune composition between the two subgroups. (a)Te diference of immune cells between the GC group (red) and PC group
(blue) by ImmuCellAI and CIBERSORTalgorithm. (b)Te diference of the total immune score between the GC and PC group (Kruskal–Wallis
test, p � 5.05e − 58). (c) Te volcano plot displayed the signifcant genes the between GC (n� 151) and PC (n� 30) group of breast cancer
patients. Each red dot showed an up-regulated gene in the PC group but the green dot for the GC group.Te distributed immune cells of these
DEGs were represented with pie chart between these two subgroups. (d) and (e) Pathway enrichment analysis identifed immune-related
pathways enriched between the PC (d) and GC (e) group. DEGs, diferent expression genes, ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and
∗∗∗∗p< 0.0001.
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Figure 3: Continued.
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model (Figure 6(c)). Further validation was performed when
we applied ROC analysis into patients from the TCGA set
and those two validated cohorts. Te AUC values of 3 and 5-
year nomogram were 0.605 (95% CI: 0.575–0.634) and 0.611
(95% CI: 0.581–0.641) in TCGA data, respectively, which
were similar in another two validated datasets (Figure 6(d)).
Generally, this nomogram could be utilized as a practical
clinical tool to accurately predict the survival probability of
breast cancer patients.

4. Discussion

BRCA is the most common type of malignant tumor, with
high morbidity and mortality worldwide [2]. Breast cancer
as a heterogeneous disease could be divided into diferent
molecular subtypes including Luminal A, Luminal B, Basal,
HER2+, and HER2− based on the expression of estrogen
receptor (ER), progesterone receptor (PR), and HER2
(Figure S3) [37–39]. In breast cancer systemic therapies, the
prevalence and prognosis are utilized to manage these dif-
ferent breast cancer subtypes [39]. In addition, despite
advanced diagnostic tools and treatment strategies, the re-
currence rate of BRCA patients has not been signifcantly

improved due to the lack of accurate and reliable bio-
markers, which makes it difcult to identify early breast
cancer and its subtypes [40]. In the occurrence, diagnosis
and treatment of tumors, ncRNAs such as lncRNAs and
miRNAs have become important markers [41, 42]. Tere-
fore, more functional studies should be conducted on these
immune-related lncRNAs, pathways, or tumor immune
microenvironment, further to validate the predictive accu-
racy of breast cancer characteristics and discover potential
immune-related mechanisms.

In this study, we frst divided breast cancer patients into
two subgroups (GC and PC groups) with signifcant
prognosis by applying an unsupervised clustering algorithm.
Ten, we observed a statistically signifcant prognosis of
patients between the two subgroups. Te DEGs mainly
involved in the immune response and oncogenic pathways
might explain the potential diference of clinical outcomes
between the GC and PC group. We then selected diferent
algorithms to calculate the abundance of immune cells in the
tumor microenvironment, and we discovered that patients
who survived better were classifed as a cluster with high
immune infltrates, which refected the low degree of ma-
lignancy of patients and the favorable efects of various
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Figure 3: Pathway enrichment analysis of nonimmune-related lncRNA target genes. (a) Schematic fow chart showed the fltering process to
identify the specifcmRNAs correlated with nonimmune-related lncRNAs for the GSEA. (b)Te heatmap displayed the signifcant pathways
of the GSVA analysis between the GC and PC group. (c) Pathway enrichment analysis identifed biological pathways enriched in the GC and
PC subgroup. Te curated gene sets were downloaded from the molecular signature database (MSigDB). Both the cancer Hallmark and
KEGG gene sets were shown. Te pathways were colored by their biological functions. FDR q-value, the p-value adjusted for the false
discovery rate (FDR). A q-value threshold of 0.05 (5% FDR) was applied.
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treatments. Among of them, in the CIBERSORT algorithm,
we discovered that M2 macrophages were associated with
poor survival of patients in the PC group, but M1 macro-
phages for favorable survival of patients in the GC group.
Previous study demonstrated that M1 (activated; antitu-
moral) and M2 (alternatively activated; protumoral) phe-
notypes were signifcantly associated with distinct
immunoregulatory functions [43, 44]. Ten ImmuCellAI
algorithm calculated the abundance of diferent immune
infltrating cells, and we inferred those 7 immune cells
played a positive role in the PC group, such as T2, T17,
MAIT, B cell, monocyte, macrophage, and neutrophil. In-
versely, the other cells were enriched in the GC group with
favorable prognosis, such as NK cells, CD4+ T cells, CD8+
T cells, and cytotoxic cells. Several previous studies have
shown that NK cells cytotoxicity was mediated by both
inhibitory and stimulatory receptors expressed on NK cells
surfaces [45]. In addition, NK cells played a crucial role in
the innate and adaptive immune systems [46, 47]. Likewise,
we obtained similar results based on the ESTIMATE algo-
rithm: immune infltration was more abundant in the GC
group. In the current study, research using endocrine
therapy and targeted biological therapy has created new
opportunities due to the improved understanding of im-
mune escape of cancer cells and the discovery of selective

immune checkpoint inhibitors [48]. Terefore, tumor im-
munology has become the fastest developing feld in tumor
research, and immunotherapy is the most promising
treatment method in recent years.

Moreover, PPI network based on the targeted genes of
DEGs displayed the interaction between immune and
nonimmune signaling pathways in the GC and PC subgroup,
respectively.Tese immune-derived DEGs were signifcantly
associated with cytokine-cytokine receptor interaction and
cell adhesion molecules pathway. On the contrary,
nonimmune-related DEGs were correlated with the natural
killer cell-mediated cytotoxicity pathway and antigen pro-
cessing and presentation pathway [49]. In addition, LASSO
regression revealed that fve signaling pathways (Hallmark
peroxisome, KEGG natural killer cell-mediated cytotoxicity,
chemokines, Hallmark allograft rejection, and KEGG cell
adhesion molecules (CAMs)) could be the main signaling
pathways correlated with signifcant prognosis between the
GC and PC group. Previous studies reported that these fve
signaling pathways were associated with cancer progression
[50]. As a result, the GC group was with higher enrichment
scores from the aspect of this pathway in this study.

Finally, we attempted to develop a predictive model for
predicting the precise probability of clinical events by the
signifcant clinical characteristics and this 5-pathway
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Figure 4: Landscape of intergroup crosstalk between immune and nonimmune signaling pathways. (a) Heatmap showed the immune and
nonimmune composition between the GC and PC group. (b) Correlation analysis among the immune score, stromal score, and tumor
purity. (c) and (d) Te PPI network displayed the interaction between immune and nonimmune signaling pathways in the GC and PC
subgroup, respectively. Network nodes represented the diferent proteins. Edges represented protein-protein associations.Te line thickness
indicated the strength of data support. DEGs, diferent expression genes.
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signature. Nomograms have become a standard prognostic
tool in oncology research in predicting an individual’s
probability of a clinical event by using individual variables
[51]. Moreover, a novel study reported that a pathway-based

deregulation scoring matrix combined with the Cox re-
gression and L1-LASSO regularization was to predict sur-
vival [52]. Consistent with previous studies, we identifed
two independent predictors (age and 5-pathway signature)
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Figure 5: Identifcation of 5-pathway signature correlated with prognosis between the GC and PC group. (a) Te coefcient profles of the
15 candidate pathways from Lasso regression analysis in the TCGA dataset. (b) Heatmap plot of 5 candidate pathways selected by Lasso
regression analysis associated with overall survival of breast cancer patients. (c) and (d) Kaplan–Meier survival analysis between two
subgroups determined by the unsupervised hierarchical clustering in the datasets GSE20685 (c) log-rank test p � 0.018 and GSE20713 (d)
log-rank test p � 0.025. (e) Box-plot showed a signifcant association of the signature pathways between the GC and PC group.
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Figure 6: Continued.
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Figure 6: Te 5-pathway signature could predict prognosis independently between the GC and PC group in TCGA and another two testing
sets. (a) Univariable andmultivariable cox analysis for the clinical characteristics and the 5-pathway signature in the TCGA and another two
validation sets. (b) Te nomogram for predicting overall survival of breast cancer patients. (c) Plots displayed the calibration of this 5-
pathway signature according to the agreement of predicted 3 (left) or 5 (right)-year survivals.Te plot showed the performance of the model
relative to the 45-degree line, embodying perfect prediction. (d) Evaluation of the predictive power of the 3 or 5-year OS nomogram model
between TCGA and the testing sets. HR, hazard ratio.
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embedded into the nomogram. In this study, the model had
satisfactory predictive ability as the AUC of both training
and validation sets was greater than 0.55. Ten, the cali-
bration analysis performed in training and validation sets
revealed that 3 or 5-year survival predicted probability was
similar to the actual probability. It is also inferred that this
nomogram might stratify breast cancer patients into two
clinical groups with diferent prognosis. All the results in-
dicated that the 5-pathway signature could distinguish the
survival prognosis of patients and refect the level of immune
response infltration. Tis implied that the new nomogram
would be clinically helpful for clinicians in tailoring a sur-
vival-associated treatment decision.

Furtherly, we also analyzed the composition and the
survival status of fve distinct breast cancer molecular
subtypes in the subgroups, including Basal, Luminal A,
Luminal B, HER2 positive (HR-positive), and HER2 positive
(HR-negative) (Figure S3). Our results indicated that pa-
tients with Basal and HER2 positive (HR negative) showed
poor survival. Terefore, after analyzing the survival status
of these diferent BRCA subtypes, we believed that bio-
molecules might play diferent roles in the occurrence and
development of these BRCA subtypes, especially related to
immune processes and immune-related genes, which need
to be further studied in the future.

Te strength of the current study is that the immune-
related signature was based on an online database, and each
step of the screening had been tested for signifcance. Further,
we analyzed the internal diferences between the GC and PC
group from the perspectives of tumor immune microenvi-
ronment, signaling pathways, protein-protein interaction, etc.
Te current study presented a novel immune-related prog-
nostic approach for BRCA, thereby providing a new insight
into the association between immune-related lncRNAs and
survival in breast cancer patients. We realized that it would be
great to reveal the potential lncRNA transcriptional mecha-
nisms by examining the corresponding cancer cells and tumor
tissues. However, we agreed that it is some weak in the bi-
ological validation in this study. In this study, we primarily
focused on analyzing immune diferences in subgroups and
exploring a predictive signature to reveal the major functions
of some lncRNAs in BRCA patients. Moreover, further eforts
will be paid to validate these discoveries about the expression
and function of these immune-related lncRNAs with modern
empirical method in the next study.

5. Conclusion

Tis study revealed a novel fnding by reporting a pathway-
based classifer to predict prognosis of breast cancer in 1,098
patients, which was constructed by Cox proportional hazards
regression algorithm with a 5-pathway signature fltered by
LASSO survival regression. Clinical profles analysis sug-
gested that this classifer could add predictive power of
clinicopathological features independently and had high
sensitivity and specifcity in predicting clinical outcomes.Tis
study also extended immunology analysis to quantify the
expression of immune cells in breast tumor tissue by applying
diferent algorithms including CIBERSORTand ImmuCellAI.

Moreover, a nomogram was developed for clinical practice
that integrated this 5-pathway signature and age to predict
precise survival rates for patients with breast cancer.
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