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Common chromophobe renal cell carcinoma (chRCC) has a good prognosis when cured by surgery. However, clinical practice
shows that a small number of patients with chRCC will produce metastasis, and the prognosis after metastasis is poor. In this
regard, we try to find potential biological targets to prevent CRCC metastasis. In this experiment, we analyzed the clinical traits
and gene expression data of chRCC samples which were provided by the TCGA database by the WGCNA method. On this
basis, we selected MEtan, a module with a significant positive correlation with the M phase of chRCC, for subsequent analysis.
The MEtan module genes in the biological process of chRCC were mainly related to steroid metabolic process, cholesterol
metabolic process and STEM cell differentiation. KEGG analysis showed that these genes were mainly enriched in cancer-related
signaling pathways, such as Neuroactive Ligand−receptor interaction, cAMP signaling pathway, and Wnt signaling pathway.
Subsequently, we mapped the PPI interaction network and screened the key gene beta-arrestin 2 (ARRB2). Expression analysis
showed that there was a significantly increased expression of ARRB2 in chRCC patients in comparison to the normal group.
Expression survival analysis indicated that ARRB2 was inversely associated with overall survival. We firmly believe that the key
genes identified in this study would be able to provide new clues and research basis for the treatment of chRCC.

1. Introduction

Over 400,000 cases of renal cell carcinoma (RCC) are diag-
nosed each year in the world, making it one of the most
common renal malignancies [1]. Pathologically, RCC is
divided into three types: clear cell renal cell carcinoma
(ccRCC), papillary carcinoma (pRCC), and chromophobe
carcinoma (chRCC). ChRCC is the third subtype of RCC
recognized by the World Health Organization (WHO) in
2016 [2]. An estimated 5-10% of all kidney cancers are
chRCC, which are equally common in men and women,
with a higher incidence in those aged 50-60 [3–5]. ChRCC
behaves differently than other types of renal cell carcinomas.
Recent statistics indicate an increase in chRCC incidence [6,
7]. Patients with chRCC may present with hematuria or
tumor compression symptoms, and a few show diffuse
growth and invasion of the perirenal region [8, 9].

A large number of clinical practices have shown that
chRCC is usually cured by surgery, and the prognosis of
patients is good, with 5-year survival rates of 78-100% and
10-year survival rates of 80-90%; however, there are still 5-
10% of patients with chRCC who will develop metastases [10,
11]. Approximately 14 percent of patients with metastatic
RCCwill survivefive years, similar to thosewithdefinitemetas-
tatic chRCC [12]. Therefore, an in-depth study of the genes
related to the pathogenesis of chRCC will comprehensively
explain the pathogenesis and disease progression of chRCC,
which is of great significance for its treatment and prevention.

There is currently no more comprehensive tumor gene
expression profile database than the Cancer Genome Atlas
(TCGA), which is distinguished by its large sample size
and rich clinical information [13]. An analysis of gene-
phenotype relationships called Weighted Gene Coexpression
Network Analysis (WGCNA) has gained popularity for its
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ability to investigate complex relationships between genes
and phenotypes. With the WGCNA method, researchers
are able to transform gene expression data into coexpression
modules and provide insights into signaling networks that
may be responsible for the phenotypic characteristics of
the object of interest [14].

Data from gene chips related to chRCC disease were
integrated and analyzed using bioinformatics technology:
GO and KEGG pathway enrichment analyses were per-
formed first to filter out the differential genes; then, we com-
menced WGCNA to analyze the clinical characteristics and
gene expression data of chRCC samples provided by TCGA
database, and made PPI interaction network to find the key
genes in the pathogenesis and development of renal chromo-
phobe cell carcinoma; the final step of our study was to
investigate the survival of the genes mined to reconstruct
the mechanism of renal chromophobe cell carcinoma.

2. Materials and Methods

2.1. Data Capturing. The TCGA Datasets (https://www
.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga) in the database were accessed with the key-
word of chromophobe takes cell carcinoma to search, and
the genome data of renal color cell cancer was downloaded.
The data included 65 chromophobe cell carcinoma tumor
samples and 25 normal tissue samples.

2.2. DEG Capturing. Standardizing and analyzing renal chro-
mophobe cell carcinoma datasets were done by using the
DESeq2 algorithm in R software. A difference factor (log2)
absolute value higher than 1 was used to screen upregulated
genes.Ggplot2 software packagewas used for data visualization.

2.3. WGCNA Analysis. WGCNA provides R functions that
help analyze gene expression data using weighted correlation
networks.

The source code and other materials for this R package
are available for free at http://genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/Rpackages/WGCNA. Our
coexpression network was built using the WCCNA R pack-
age. In the first step, clustering the samples was performed
to identify any outliers. Next, the coexpression network
was constructed using the automatic network construction
function. Coexpression similarity is proposed to reckon the
adjacency with the R function pickSoftThreshold.

2.4. Module-Trait Relationship Analysis. The corresponding
gene modules were sorted according to the WGCNA
modules; then, the ME for each module was calculated and
correlated with clinical parameters, with statistical signifi-
cance defined as P < 0:05.

2.5. Differentially Expressed Genes Enriched in GO and
KEGG. DAVID database (DAVID; https://david.ncifcrf
.gov) was used to analyze GO enrichment and KEGG path-
way enrichment of significant different genes screened. The
R software and clusterProfiler package were used for annota-
tion and visualization, and a P value less than 0.05 was
considered statistically significant.

2.6. Screening for Hub Genes in the PPI Network and
Construction of a Protein-Protein Interaction Network.
Interactions between proteins were identified and predicted
using the STRING database (https://string-db.org/).
Protein-protein interaction (PPI) networks were con-
structed using STRING for analysis of differentially
expressed genes, and screening for hub genes in the
STRING PPI network was performed using the Cytohubba
plug-in in Cytoscape software.

2.7. Key Gene Survival Analysis. R software was used to
analyze the survival of the selected key genes, and an anal-
ysis to Kaplan-Meier survival curves was carried out to
determine the relationship between the key genes and
renal chromophobe cell carcinoma recurrence. An evalua-
tion of the survival difference between key genes was
conducted via a log-rank test and the overall survival rate
for renal chromophobe cell carcinoma patients was P <
0:05, deemed significant.

3. Results

3.1. Differentially Expressed Genes Analysis. An analysis of
the transcriptome data from TCGA database was conducted
on 65 chromophobe cell carcinoma tumor samples and 25
normal tissue samples. The DESeq2 tool identified 13472
DEGs, of which 6066 were upregulated and 7406 were down-
regulated (Figures 1(a) and 1(b)). We ran KEGG enrichment
analyses on the top 30 DEGs with a P < 0:05 standard, and
results showed that they mainly concentrated on pathways
of cAMP, Cytokine−cytokine receptor interaction, Calcium,
and Neuroactive Ligand−receptor interaction, etc.
(Figures 2(a) and 2(b)). A GO enrichment analysis identified
three biological processes associated with DEGs: ion trans-
membrane transport, membrane potential regulation, and
organic anion transport; cell composition included an apical
area, extracellular matrix containing collagen, and synaptic
membrane; there were several molecular functions that were
examined, such as passive transmembrane transporter activ-
ity, channel activity, receptor ligand activity, and signaling
receptor activator activity (Figures 2(c) and 2(d)).

3.2. A Weighted Coexpression Network Analysis. Our first
step in constructing the WGCNA network was to calculate
the soft threshold power β. It was determined that the soft
threshold power was 3-; the scale independence was 0.9,
and the average connectivity was relatively high
(Figure 3(a)). Our gene network construction and module
identification was done via the WGCNA R package’s one-
step network construction function. Figure 3(b) displayed
the color-coded coexpressed gene modules identified via
WGCNA method, where the grey by default was those genes
that could not be classified into any module. It was found
that these modules could be classified into two categories
and 23 subclasses, and that there was correlation amid these
modules (Figures 3(c) and 3(d)). A second purpose of
WGCNA is to analyze the correlation between modules
and clinical parameters (R value). Analysis to the correlation
amid the module genes and chRCC showed that the modules
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Figure 1: DEG analysis. (a) heat maps; (b) volcanic map.
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Figure 2: Continued.
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MEblack, MEgreen, and MEtan were significantly positively
correlated with the M phase of chRCC, and the correlation
coefficients r were 0.28, 0.26, and 0.32, respectively
(P < 0:05, Figure 3(e)). According to Figure 3(e), MEdarkred
was positively correlated with T phase, and the correlation
coefficient r was 0.21 (P < 0:05). Figure 3(e) illustrated a pos-
itive correlation between MEdarkred and T phase (r = 0:21;
P < 0:05).

3.3. Module MEtan Gene Functional Enrichment Analysis.
The above analysis led us to select MEtan for further analy-
sis, because it has a significant positive correlation with the
M phase of chRCC. GO analysis revealed that steroid metab-
olism, cholesterol metabolism, and stem cell differentiation
were the top chRCC biological processes of MEtan module
genes (Figures 4(a) and 4(b)). Genes enriched in cancer-
related pathways, such as Neuroactive–Ligand receptor inter-
action, cAMP signaling pathway, and Wnt signaling pathway,
were identified in KEGG analysis. (Figures 4(c) and 4(d)).

3.4. Screening to Hub Genes. With the help of the STRING
online database and Cytoscape software, DEGs from MEtan
modules were analyzed, and PPI networks were constructed
in order to identify key genes. Cytoscape’s CytoHubba plu-
gin was used to screen the PPI network for key genes.
MAG, CHRM1, and ARRB2 were in the center of the 36
nodes in the PPI network for module MEtan (Figure 5(a)).

Finally, ARRB2 and MAG were the main genes we screened
out (Figure 5(b)).

3.5. Survival Analysis. In contrast to the normal group,
chRCC patients expressed significantly more ARRB2 than
do normal individuals (Figure 6(a), P < 0:05). Kaplan-
Meier survival curves were constructed to analyze chRCC
‘s overall survival rate. All chRCC samples were divided into
high expression group and low expression group of key
genes, and compared with the median value of key genes;
according to expression survival analysis, ARRB2 was nega-
tively correlated with overall survival (Figure 6(b), P > 0:05).

4. Discussion

ChRCC develops from dark cells in the collecting duct epi-
thelium of the kidney [15]. There was 89.3% recurrence-
free survival (RFS) and 93% cancer-specific survival (CSS)
rates for chRCC after 5 years [16]. Metastatic disease
accounts for only 6% of chRCC patients [17]. However,
patients with metastatic chRCC illness have a poor progno-
sis, who more frequently show nodular characteristics and
have a low incidence of treatment response [18, 19]. On
postoperative follow up, Geramizadeh et al. found that only
20 (16%) of 123 CRCC patients progressed (local recurrence,
metastasis, or death) [20]. Therefore, an in-depth study to
related genes coexpressed in various stages and links of
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Figure 3: DEG analysis was carried out by weighted gene coexpression network analysis (WGCNA) method and gene cluster tree analysis of
modular feature genes. (a) Scale-free exponential analysis to various soft threshold powers (β). (b) The color of the module represented by
each dendrogram of the cluster module of the DEG (top) and the color band (bottom). (c) Clustering dendrograms of different genes based
on topological overlap, and the colors assigned to the corresponding modules. (d) Correlation analysis onto different modules. (e)
Correlation analysis onto modules and traits. ME: module characteristic gene.
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chRCC and discovery of genes that play a crucial regulatory
role in its occurrence; furthermore, the development of the
disease is indispensable for understanding its mechanism
and improving treatment measures.

An in-depth analysis of the key genes involved in renal
chromophobe cell carcinoma development and progression
was undertaken in this study. A total of 13466 differentially
expressed genes of renal chromophobe cell carcinoma were
screened and mined by searching TCGA database, among
which 6066 genes were upregulated and 7406 genes were
downregulated. Several of these DEGs converged on the
signaling pathways involving cAMP, cytokine-cytokine
receptor interaction, calcium signaling pathway, and Neuro-
active Ligand–receptor interaction.

An advantage of the WGCNA method is that it explores
the association between clinical traits and coexpression
modules, with higher reliability and biological significance
[21]. TCGA database samples were analyzed through the
WGCNA method to analyze clinical traits and gene expres-
sion data. According to the results, the modules MEblack,
MEgreen, and MEtan were positively correlated with the M
phase of chRCC; the module MEdarkred was positively cor-
related with the T phase of chRCC; moreover, MEsalmon is
also positively correlated with the stage of chRCC. MEtan,
which has a significant positive correlation with the M phase
of chRCC, was selected for further analysis. Main chRCC

biological processes of MEtan module genes include steroid
metabolic process, cholesterol metabolic process, and STEM
cell differentiation; besides, KEGG analysis revealed that
these genes were primarily enriched in cancer-related signal-
ing pathways such as Neuroactive Ligand−receptor interac-
tion, cAMP signaling pathway, and Wnt signaling pathway.

Studies have shown that cyclic adenosine monopho-
sphate (cAMP) plays an important role in controlling cell
proliferation [22]. A total of 19 secreted glycoproteins make
up the Wnt family, which regulates cell proliferation, differ-
entiation, survival, migration, and stem cell self-renewal [23,
24]. There is an association between high Wnt1 expression
in ccRCCs, increased tumor diameter, and more advanced
stages [25]. A significant increase in WNT10A expression
was also observed in RCC cells and tissues, and it plays an
oncogenic role [26].

With the help of the STRING online database and
Cytoscape software, DEGs from MEtan modules were
analyzed, and PPI networks were constructed in order to
identify key genes, and the key gene was ARRB2. In compar-
ison with the normal group, ARRB2 expression was signifi-
cantly higher in chRCC patients. ARRB2 expression was
negatively correlated with overall survival, according to an
expression survival analysis. There is a widespread expres-
sion of Arrb2, a multifunctional protein that regulates the
desensitization and intracellular transport of G protein-
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Figure 6: Overall survival analysis. (a) expression analysis to ARRB2 the key gene in MEtan module; (b) correlation analysis to ARRB2
expression and chRCC patients’ overall survival; KICH: kidney chromophobe.
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coupled receptors (GPCRs) [27, 28]. Furthermore, Arrb2 is
involved in a variety of signaling pathways, including those
that involve extracellular signal-regulated kinases (ERK)
and protein kinase B (Akt) [29, 30].ARRB2 has been shown
to be involved in the metastasis of a variety of cancer cells.
Defective SUMOylation of ARRB2 inhibits the migration
of breast cancer cells and has been shown to be involved in
ARRB2-dependent metabolic regulation of breast cancer
cells [31]. ARRB2 plays a negative regulatory role in glioma
growth, invasion, and metastasis by reducing HIF-1α
expression and inhibiting angiogenesis [32]. It was found
that inhibition of ARRB2 expression reduced local and
metastatic RCC tumor growth [33]. In summary, ARRB2
may consider as a target for therapeutic intervention against
tumour development and metastasis in the studies of future.
This study provides a reference for the clinical application of
ARRB2 as a prognostic biomarker and potential therapeutic
target, and we will enrich its mechanism of action in chRCC
through more experiments in the future.

5. Conclusion

This study screened TCGA databases for genes associated
with chRCC occurrence and development and discussed
key genes related to chRCC. A possible therapeutic target
and prognostic marker for renal chromophobe cell carci-
noma may be ARRB2. However, since there have been no
studies on the gene level related to chRCC, there is an urgent
need for more research into the biological role of chRCC in
renal chromophobe cell carcinoma pathogenesis, so that new
clues and directions will be offered for the treatment of renal
chromophobe cell carcinoma.
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