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Background. Gastric cancer (GC) is one of the deadliest cancers in the world, with a 5-year overall survival rate of lower than 20%
for patients with advanced GC. Genomic information is now frequently employed for precision cancer treatment due to the rapid
advancements of high-throughput sequencing technologies. As a result, integrating multiomics data to construct predictive
models for the GC patient prognosis is critical for tailored medical care. Results. In this study, we integrated multiomics data to
design a biological pathway-based gastric cancer sparse deep neural network (GCS-Net) by modifying the P-NETmodel for long-
term survival prediction of GC. ­e GCS-Net showed higher accuracy (accuracy� 0.844), area under the curve (AUC� 0.807),
and F1 score (F1� 0.913) than traditional machine learning models. Furthermore, the GCS-Net not only enables accurate patient
survival prognosis but also provides model interpretability capabilities lacking in most traditional deep neural networks to
describe the complex biological process of prognosis. ­e GCS-Net suggested the importance of genes (UBE2C, JAK2, RAD21,
CEP250, NUP210, PTPN1, CDC27, NINL, NUP188, and PLK4) and biological pathways (Mitotic Anaphase, Resolution of Sister
Chromatid Cohesion, and SUMOE3 ligases) to GC, which is consistent with the results revealed in biological- andmedical-related
studies of GC.Conclusion.­eGCS-Net is an interpretable deep neural network built using biological pathway information whose
structure represents a nonlinear hierarchical representation of genes and biological pathways. It can not only accurately predict
the prognosis of GC patients but also suggest the importance of genes and biological pathways. ­e GCS-Net opens up new
avenues for biological research and could be adapted for other cancer prediction and discovery activities as well.

1. Introduction

Gastric cancer (GC) is one of the deadliest tumors in the
world and gastric adenocarcinoma (GAC) is the most
common type of gastric cancer [1], with 95% of gastric
malignancies being GAC [2]. Although early gastric cancer
can be cured by surgical resection, the 5-year overall survival
(OS) rate of advanced gastric cancer is less than 20% due to

its easy recurrence and metastasis [4]. ­erefore, it is im-
perative to improve the prognosis of gastric cancer patients,
in order to guide personalized medical services and carry out
tailored treatment plans.

Many types of genomic data have been acquired as a result
of the advancements of next-generationhigh-throughput se-
quencing technology, including DNA methylation [5], mRNA
[6], miRNA [6], and copy number variation (CNV) [7].
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Because these datasets provide distinct viewpoints on cancer
samples, combining multiomics datasets for cancer type pre-
diction is advantageous. -e Cancer Genome Atlas (TCGA)
organization has released multiomics sequencing data for 33
cancer types [8], which is useful for comprehensive cancer
analysis using multiomics data.

Deep learning (DL) algorithms have recently demon-
strated remarkable performance in handling multiomics
nonlinear data and numerous DL-based cancer multiomics
analysis methods have been developed. Based on the
combination of clinical andmultiomics data, Tong suggested
an integrative predictive model for colon cancer [9]. Using
an autoencoder architecture, Chaudhary integrates mul-
tiomics data to predict hepatocellular carcinoma (HCC)
survival. Hu developed a random forest deep feature se-
lection (RDFS) and approach to increase gastric cancer
prediction accuracy by combining the gene expression and
copy number variation data [11]. Based on multiomics
ensemble data, Xu employed a bidirectional deep neural
network (BiDNN) model to predict the prognosis of gastric
cancer [12]. Tufail summarizes DL models for cancer di-
agnosis and prognosis prediction tasks [13].

Although these models have revolutionized the diagnosis
and predictions of cancers, they tend to be black boxes with
poorly interpretable models. Conversely, machine learning
models based on interpretable biomedical information may
contribute to cancer genomic discovery and clinical prediction
[14–16]. Hao et al. designed a pathway-associated sparse deep
neural network (PASNet) to predict long-term survival in
glioblastoma multiforme (GBM) accurately by incorporating
biological pathways [17], but the hidden layers of the PASNet
model are not entirely based on biological pathway information.
Elmarakeby developed P-NET, a biologically informative deep
learning model, to classify primary and castration-resistant
prostate cancer (CRPC) [18], but the authors did not state
why only 5 layers were chosen in the biological information
pathway. -ese studies bring interpretability research to deep
learning for cancer clinical prediction.

Using multiomics data to analyze the complex biological
mechanisms of cancer patient survival is crucial; however,
high-dimensional, nonlinear data pose computational chal-
lenges for survival analysis. In this study, we integrated mul-
tiomics data and designed a gastric cancer sparse deep neural
network (GCS-Net) by modifying the P-NETmodel for gastric
cancer prognosis, which can not only perform patient survival
prognosis but also describe the complex biological process of
prognosis. -e GCS-Net is biologically interpretable with
nodes in the neural network corresponding to biological genes
and pathways, which can capture the nonlinear and hierar-
chical effects of biological genes and pathways on gastric cancer
patient survival. Applying the GCS-Net to long-term survival
prediction of GC, GCS-Net’s accuracy, area under the curve
(AUC), and F1 score are all higher than those of traditional
machine learning models. Furthermore, genes and biological
pathways discovered to be significant in the GCS-Net were
validated as important genes and pathways for GC in previous
biological and medical studies.

-e remainder of the paper is organized as follows: Section
2 explains the datasets and data preprocessing procedure used

in our study, the structure and operating principle of the GCS-
Net, and the traditional machine learning models we compare
the GCS-Net against in GC prognosis. Section 3 compares the
results of the GCS-Net with those of traditional machine
learning models in GC prognosis and inspects the GCS-Net to
uncover significant genes and biological pathways. Section 4
presents a discussion of the results in Section 3. Finally, Section
5 provides the concluding remarks.

2. Materials and Methods

2.1. Datasets. We used the R tool “TCGA-assembler 2” [19]
to download the GC dataset from TCGA (https://tcga-data.
nci.nih.gov/tcga/). -e dataset contains two types of mul-
tiomics data: copy number variation (CNV), somatic mu-
tation, and clinical data. Integrating copy number alteration
and somatic mutation data helps to reveal and predict
survival time due to genomic variation in gastric cancer. -e
dataset has 295 samples, including 295 mutation data and
293 CNV data.

-e GCS-Net network architecture is constructed based
on the biological pathway database Reactome [20]. We
download the Reactome pathway database from https://
reactome.org/download-data, which contains three files:
the gene matrix file ReactomePathways.gmt, the pathway
name file ReactomePathways.txt, and the pathway parent-
child relationship file ReactomePathwaysRelation.txt. From
the parent-child relationship file, we create a hierarchical
network with four levels of pathways, one layer of genes, and
one layer of characteristics.

2.2. Data Preprocessing. Long-term survival (LTS) samples
were those who lived for more than 60 months (independent
of survival status), while short-term survival samples were
those who died in less than 60 months (non-LTS). We
obtained 183 non-LTS samples and 42 LTS samples, of
which approximately 20% were LTS patients.

-e CNV data were standardized to −2, −1, 0, 1, 2. CNV
deletion was defined as −2 and CNV amplification as 2.
Somatic mutation data were normalized to 1 and 0, with 1
denoting a gene with at least one site mutation and
0 denoting a gene with no mutation.

2.3. Construction of the Pathway Layers in the GCS-Net.
We read the Reactome pathway file ReactomePath-
waysRelation.txt, which contains the parent-child relation-
ships in the pathway, and chose the human relationships by
the keyword “HSA.” -en, we used the Python package
NetworkX [21] to build a directed acyclic graph based on the
chosen human relationships (Figure 1(b)). -e distribution
of the number of nodes in each layer is shown in Figure 1(a),
in which the fourth layer has the largest number of nodes
and the fifth layer ranks second.

To capture the relationship between gastric cancer in-
formation pathways and reduce network operations, we
selected the first four layers to construct the pathway layers
in the GCS-Net. In the directed acyclic graph, the directed
edges point from parent pathways to child pathways they
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depend on, while in the GCS-Net, this is reversed, with the
outputs of child pathway nodes serving as inputs of parent
pathway nodes. -us, the fourth layer of the directed acyclic
graph is the first pathway layer in the GCS-Net, while the
first layer of the directed acyclic graph is the last pathway
layer in the GCS-Net.

2.4. !e Architecture of the GCS-Net. As shown in Figure 2,
one layer of feature data serving as an input layer, one layer
of genes, and four layers of pathways make up the GCS-Net
model. In this study, we use mutations and copy number
variations as feature data, and we used the GCS-Net model
with such multiomics data as the input to predict patient
survival.

2.5. Operating Principle of the Gastric Cancer Sparse Deep
Neural Network (GCS-Net). Based on the Reactome-based
network relationship built by NetworkX, we use Tensor-
Flow’s high-level API Keras to build multiple linear layers,
with each layer followed by dropout and then an activation
function.

-e input layer represents feature data that need to be fed
into the network for training, which is mutations and copy
number variation data (encompassing copy number am-
plifications and copy number deletions) in this study. Each
input node represents a feature and they are combined to
form an m-column vector, denoted by x � x1, x2, . . . , xm􏼈 􏼉.

-e gene layer consists of genes involved in the pathways
of the first pathway layer. -e connection between the input
layer and the gene layer is established based on the fourth
layer of the pathway database. Each node in the fourth layer
of the pathway database is made up of a set of genes; thus, the
connection between the input layer and the gene layer is
a sparse connection, but not a full connection. We construct
a binary adjacency matrix, A ∈ Pn×m, where n is the number
of pathways in the first pathway layer and m is the number of
genes in the gene layer, to encode the connections between
the gene layer and the first pathway layer. We set the value of

the element aij of A to one if gene j belongs to some pathway
i, and zero otherwise. -is is a sparse coding model
established based on the relationship between genes and
pathways.

In the subsequent pathway layers, the connections be-
tween two adjacent pathway layers are determined by the
pathway parent-child relationship in the Reactome pathway
dataset and are stored in a binay mask matrix M, whereM is
a binary matrix created from parent-child relationships
between the Reactome pathways. During the forward
propagation calculation of the network, the output vector y

of each layer is jointly determined by the input vector x, the
weight matrix W, and the mask matrix M, forming a sparse
network model. -e calculation formula is as follows:

y � f((W∗M)∗x + b), (1)

where f is the activation function. For each node, we use the
following tanh activation function:

f � tanh �
e
2x

− 1􏼐 􏼑

e
2x

+ 1􏼐 􏼑
, (2)

and as a result, the value of each node remains in the range
[−1, 1].-e activation function of the final output layer is the
sigmoid function:

f �
1

1 + e
− x

( 􏼁
, (3)

which outputs a number in the range of (0, 1), with 0 rep-
resenting good prognosis and 1 representing poor prognosis.

To measure the importance of each node in the network
model, we use the DeepLIFT [22] gradient-based attribution
method to rank the features in all layers. DeepLIFT utilizes
a back-propagation method to propagate important signals
from output neurons back through layers to the input [22].
-e DeepLIFT scheme implemented in this study uses the
GitHub library (https://github.com/kundajelab/deeplift).

In this work, to calculate the importance of nodes in
each layer, each node needs to be assigned a score. Let t
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Figure 1: (a) -e number of nodes in each layer of the network is constructed based on the Reactome pathway. -e first layer has 26 nodes
and the last layer has 2 nodes. (b). -e parent-child relationship network layer constructed based on the Reactome pathway has a total of 9
layers, each node represents a pathway, and the node corresponds to the corresponding pathway gene.
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represents the target output and let x1, x2, . . . , xn repre-
sent some intermediate layer neurons that are necessary to
compute the target output. Let t0 denotes the reference
activation of t.We define Δt as the difference-from-
reference:

Δt � t − t
0
. (4)

DeepLIFT assigns contribution scores CΔxiΔt to Δxi s.t.:

􏽘

n

i�1
CΔxiΔt � Δt, (5)

where CΔxiΔt can be thought of as the amount of difference-
from-reference in t that is attributable to the difference-
from-reference of xi.

2.6. Parameters Optimization and Model Training. We split
TCGA gastric cancer data set (containing somatic mutation
and copy number data) into 80% training set, 10% validation
set, and 10% test set for predicting survival. To make the
model training converge smoothly, we initialize the learning
rate to 0.001 and reduce it actively after every 100 epochs.
-e model is trained using the Adam optimizer [23]. We
performed 1000 epochs of training and optimized param-
eters according to the cross entropy loss function:

L �
1
N

􏽘
i

− yi · log pi( 􏼁 + 1 − yi( 􏼁 · log 1 − pi( 􏼁􏼂 􏼃, (6)

where N represents the total number of samples, yi is the
label corresponding to sample i, and pi is the LTS probability
of sample i calculated according to the sigmoid function.

2.7. Methods for Comparison. In this work, we investigated
the effectiveness of four traditional machine learning ap-
proaches in predicting the prognosis of stomach cancer
(decision trees, support vector machines, logistic regression,
and random forests). We utilized the scikit-learn package to
implement these algorithms and used the default
settings [24].

3. Results

3.1. Comparison of Weights between the GCS-Net Model and
the Dense Network Model. -ere are much fewer weights in
the GCS-NET sparse model than in a fully connected dense
network with the same number of nodes. -e number of
weights of the sparse model is slightly higher than 83,347
(Table 1), while the fully connected dense network has more
than 300 million weights. -e formula for calculating the
number of weights in a layer in the fully connected dense
network is as follows:

wl � nl ∗ nl−1 + 1( 􏼁, (7)

where wl is the number of weights in a layer l, nl is the
number of nodes in the same layer, and nl−1 is the number of
weights in the previous layer.-e formula for calculating the
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Figure 2:-e architecture of the GCS-Net proposed to integrate multiomics data for the GC prognosis prediction.-e structure of the GCS-
Net consists of a feature layer (multiomics data), a layer of genes, and four layers of biological pathways based on Reactome, and the layers
are directly sparsely connected.
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number of weights in a layer in the sparse network is
as follows:

weights � M∗W, (8)

where M is the mask matrix of each layer, with each element
in M being 1 or 0 depending on whether or not the cor-
responding connection path with the parent-child re-
lationship exists. W is the weight matrix of the layer.

3.2. Comparison with Other Methods. Traditional machine
learning models such as decision trees, support vector
machines, logistic regression, and random forests perform
worse than the GCS-Net method. We trained the GCS-Net
and these traditional machine learning models for long-
term survival prediction of gastric cancer (GC), and the
GCS-Net showed higher accuracy, area under the curve
(AUC), and F1 score than previous traditional prediction
classifiers (area under the receiver operating characteristic
(ROC) curve (AUC)� 0.807, area under the precision-recall
curve (AUPR)� 0.949, and accuracy� 0.844) (Table 2)
(Figure 3(a)).

Evaluated on the test set, the GCS-Net model achieved
a true negative rate of 75% (TN) and a true positive rate of
100% (TP), indicating that the model has a certain gener-
alization and can classify samples that are not in the training
set (Figure 3(b)).

3.3. Inspection and Interpretation of the GCS-Net. To un-
derstand the connections and interactions between different
mutations, copy number variations, genes, and biological
pathways from input to output after training, we visualized
the entire structure of the GCS-Net using a Sankey diagram
(Figure 4).

From the figure, we can see that compared with copy
number variation, mutation has a greater impact on the
prognosis, which is consistent with the related studies of
gastric cancer. To obtain the importance of each node, we
use the DeepLIFTattribution method to calculate the node’s

contribution score to rank the nodes. UBE2C, JAK2, RAD21,
NUP210, PTPN1, CDC27, NUP188, and PLK4 were the top-
ranked genes, and they have been reported in related gastric
cancer studies (Table 3).

At the same time, in the hidden layer of pathways, we
found that mitotic anaphase, antigen processing, re-
cruitment of NuMA to mitotic centrosomes, neddylation,
centrosome maturation, SUMO E3 ligases, G2/M transition,
M phase, SUMOylation, and cell cycle have an important
impact on the prognosis of gastric cancer. -ese pathways
involve cell cycle checkpoints, posttranslational modifica-
tion, and transcriptional regulation. -ese pathways have
been studied in the relevant gastric cancer prognostic lit-
erature (Table 4).

-e expression level of the mitotic checkpoint BUB gene
family is closely connected with tumor cell proliferation,
according to the literature [33], and the BUB overexpression
in gastric cancer is a proliferation-dependent phenomenon.
Authored study on antigen processing and immune regu-
lation in the response to tumors by Reeves and James [34].
Pan et al. discovered the SUMO E3 ligase CBX4 as a poor
prognostic predictor in gastric cancer using a multipronged
OMIC analysis [38].

4. Discussion of Results

Compared with traditional machine learning methods, the
GCS-Net has better performance and significantly reduces
the number of learning parameters. More importantly, it has
an excellent model interpretability. Using the DeepLIFT
method to measure the importance of different genes and
pathways in predicting results, the GCS-Net found known
genes related to gastric cancer, such as UBE2C, JAK2,
RAD21, CEP250, NUP210, PTPN1, CDC27, NINL,
NUP188, and PLK4. In addition, the GCS-Net also dis-
covered important biological pathways, such as mitotic
anaphase, resolution of sister chromatid cohesion, and
SUMO E3 ligases. -ese important genes and pathways are
documented in relevant gastric cancer biology literature.

Table 1: GCS-NET network model parameters.

Layer (type) Output shape Param Connected to
Inputs (InputLayer) (none, 34380) 0
h0 (Diagonal) (none, 11460) 45840 Inputs[0][0]
dropout_0 (Dropout) (none, 11460) 0 h0[0][0]
h1 (SparseTF) (none, 1061) 22081 dropout_0[0][0]
dropout_1 (Dropout) (none, 1061) 0 h1[0][0]
h2 (SparseTF) (none, 447) 1512 dropout_1[0][0]
dropout_2 (Dropout) (none, 447) 0 h2[0][0]
h3 (SparseTF) (none, 147) 594 dropout_2[0][0]
dropout_3 (Dropout) (none, 147) 0 h3[0][0]
h4 (SparseTF) (none, 26) 174 dropout_3[0][0]
o_linear1 (Dense) (none, 1) 11461 h0[0][0]
o_linear2 (Dense) (none, 1) 1062 h1[0][0]
o_linear3 (Dense) (none, 1) 448 h2[0][0]
o_linear4 (Dense) (none, 1) 148 h3[0][0]
o_linear5 (Dense) (none, 1) 27 h4[0][0]
Total 83347
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Table 2: -e GCS-Net and other classic machine learning method model’s scores.

Model Accuracy auc aupr f1 Precision Recall
GCS-Net 0.844 0.807 0.949 0.913 0.840 1
L2 LogisticRegression 0.800 0.751 0.907 0.886 0.833 0.945
RBF support vector machine 0.733 0.628 0.916 0.846 0.804 0.891
Linear support vector machine 0.777 0.743 0.943 0.871 0.829 0.918
Random forest 0.800 0.785 0.946 0.886 0.833 0.945
Decision tree 0.755 0.692 0.893 0.857 0.825 0.891
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Figure 3: Prediction performance of the GCS-Net. (a) -e AUPRC value of the GCS-Net outperforms other classical machine learning
models on the test set. (b) -e GCS-Net has a true negative rate (TN) of 75% and a true positive rate (TP) of 100% in the test set.

Figure 4: GCS-Net model pathway Sankey diagram.-e Sankey diagram visualization shows the node importance andmutual drive of each
layer of the GCS-Net model, and the nodes with darker colors are more important.-e left most node represents the input feature data type;
the nodes of the second layer represent the last layer of genes constructed according to the Reactome pathway; each subsequent layer
represents a higher-level biological pathway; the last layer represents the prediction result.

6 Journal of Oncology



Although our method has proved to be robust and re-
liable in predicting the prognosis of gastric cancer, there are
still some concerns that need to be addressed. First, we found
that the false-positive rate was high. One possible reason was
the imbalance of samples in the dataset. Among them, there
were only 42 samples with a good prognosis of gastric cancer
with long-term survival greater than 5 years. Second, this
experiment uses mutation data and copy number variation
data in the multiomics data. If more omics data such as RNA
andmethylation data had been added, there might have been
a higher prediction accuracy. -ird, studies [42] have shown
that clinical data also help to improve cancer prognosis
prediction performance, which is a potential approach to
improve model prediction performance.

5. Conclusions

Multiomics data analysis can be used to forecast cancer
survival information. In this study, we developed the GCS-
Net for predicting gastric cancer prognosis. -e GCS-Net
utilizes a biological pathway-based architecture and in-
tegrates multiomics data for prognosis prediction of gastric
cancer.

In the future, we will addmore omics data for prediction,
use cross-validation to reduce the performance impact of
low sample size, and collect more sample data for modeling.
In addition, we will optimize the interpretability of deep
neural networks through optimization algorithms, such as
loss functions, to further improve the accuracy of the model.
We will also consider applying this model to the prediction
of gastric cancer types, such as diffuse and intestinal
types [44].

Finally, the GCS-Net is a deep neural network with
interpretable biological pathways for accurate gastric cancer
prognosis. Neural networks based on biological information
pathways offer a novel approach to biological discovery that
might be used for a variety of additional cancer prediction
and research applications. To more precisely assess the
prognosis of gastric cancer patients, we will combine clinical
data and multiomics data and analyze the effect of het-
erogeneity generated by diverse clinical characteristic data
(including age, gender, and pathology) on the prognostic
risk of gastric cancer patients.
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