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Background.�e TGF-β signaling pathway is clinically predictive of pan-cancer. Nevertheless, its clinical prognosis and regulation
of immune microenvironment (TME) characteristics as well as the prediction of immunotherapy e�cacy need to be further
elucidated in head and neck squamous cell carcinoma. Method. At �rst, we summarized TGF-β related genes from previous
published articles, used ssGSEA to establish the TGF-β risk score. Considering the complexity of its clinical application, we
improved it with the LASSO-COX algorithm to construct the model. In addition, we explored the predictive e�cacy of TGF-β risk
score in the observation of TME phenotype and immunotherapy e�ect. Finally, the potency of TGF-β risk score in adjusting
precise treatment of HNSC was evaluated. Results. We systematically established TGF-β risk score with multi-level predictive
ability. TGF-β risk score was employed to predict the tumor microenvironment status, which was negatively associated with NK
cells but positively related to macrophages and �broblasts. It reveals that patients with high TGF-β risk score predict “cold” TME
status. In addition, higher risk scores indicate higher sensitivity to immunotherapy. Conclusion. We �rst construct and validate
TGF-β characteristics that can predict immune microenvironment phenotypes and immunotherapeutic e�ect in multiple
datasets. Noteworthy, TGF-β risk score is helpful for individualized precise treatment of patients with the head and neck
squamous cell carcinoma.

1. Introduction

�e global morbidity and mortality of head and neck
squamous cell carcinoma (HNSC) is increasing, which is the
sixth most common type of cancer in human beings and
causes a great economic burden [1]. Although current
treatment strategies are constantly updated, including sur-
gical procedures, immunotherapy, neoadjuvant chemo-
therapy, radiotherapy, and targeted therapy, surgeons have
more options and responses in the treatment of NHSC [2].
Nevertheless, most patients do not respond well to current
treatment regimens and cannot e�ectively obtain the opti-
mal personalized treatment regimens, which leads to high
overall mortality [3, 4]. �erefore, it is urgent to investigate

new prognostic predictive markers and therapeutic response
predictors to promote individualized precise treatment of
patients with NHSC. Recent articles have demonstrated that
the expression of TGF-β pathway regulators is remarkable
disordered in head and neck cancer [5, 6]. However, as far as
we know, the carcinogenic e�ect of TGF-β pathway on head
and neck cancer has not been systematically analyzed, which
is worthy of further study.

TGF-β pathway modulates tumor pathobiological pro-
cess, especially in antitumor immune response [7]. TGF-β
signaling pathway induces apoptosis, inhibits tumor pro-
gression, and enhances TME homeostasis [8]. On the other
hand, overexpression of autocrine TGF-β by transcription
factors SNAIL and SLUG stimulates epithelial-mesenchymal
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transition in tumor tissues, leading to tumor recurrence or
drug resistance [9]. TGF-β aggrandizes cancer cell immune
escape by inhibiting the proliferation, differentiation, and
immune ability of various immunocytes (such as dendritic
cells, neutrophile cells, and NK cells) [10]. Generally, the
activation of TGF-β pathway implies low survival rate and
leads to resistance to immunotherapy. Although TGF-β
plays a crucial role in modulating a variety of cancer pro-
cesses, TGF-β related therapy has not been well-explored.
With the development of second-generation sequencing and
other sequencing methods, more and more genomic char-
acteristics have been explored to portent the clinical out-
comes and treatment opportunities of cancer [11, 12]. Zhang
et al.elaborated activation of TGF-β and WNT signaling
pathways may contribute to poor prognosis of HNSC [13].
However, few studies have associated TGF-β characteristics
with the tumor immune microenvironment phenotype
of HNSC.

Nowadays, immuno oncology has attracted much at-
tention due to its special clinical benefits for a variety of
cancers. Immunotherapy is a new treatment method that has
achieved good results for some cancers, such as colon ad-
enocarcinoma, head and neck squamous cell carcinoma,
bladder urothelial carcinoma and breast invasive carcinoma
[14–16]. +e innovation of immune checkpoint blockers,
including PD-1 or PD-L1 monoclonal antibodies has
brought hope to patients with advanced HNSC [17]. +e
patients’ clinical response to immunotherapy mainly relies
on the tumor microenvironment [18]. Tumor cells, immune
cells, and extracellular matrix constitute a whole, called the
tumor microenvironment. Types of immune cells and in-
filtration levels of different cells, such as lymphocytes,
neutrophils, and macrophages, are associated with the or-
ganism’s immune response to tumors [19]. +e cell com-
position (especially immune cells) and matrix components
of the tumor microenvironment are regulated by various
mechanisms. +e most important mechanism is the TGF-β
signaling pathway. TGF-β pathway-related regulators and
immune cell infiltration play an indispensable role in tumor
development and progression [20]. +erefore, a compre-
hensive analysis of the relationship between TGFβ pathway-
related regulators and overall survival rate may provide
a new reference for the treatment and prognosis of NHSC.

In this study, we employed the single sample gene set
enrichment analysis (ssGSEA) algorithm to divide NHSC
patients into high and low TGF-beta signaling scores.
ssGSEA, which is an extension of the GSEA method, to
calculate the enrichment scores of each sample and gene set
pair. Unlike the GSEA analysis in group units (such as
cancer vs normal), ssGSEA scores are available for each
sample. In this way, ssGSEA converts gene expression
profiles of a single sample into gene set enrichment profiles.
+is transformation enables researchers to describe the cell
state according to the activity level of biological processes
and pathways rather than the expression level of a gene
profile. +erefore, if ssGESA uses the gene set related to
TGFbetapathway-related regulators, the TGF-beta pathway
score can be calculated.+en the abundance of immune cells
in different samples was estimated by TIMER, CIBERSORT,

QUANTISEQ, MCP-counter, and EPIC. In addition, the
ESTIMATE algorithm was used to calculate the immune
score and interstitial score to reflect the microenvironmental
state. +e K-M analysis was employed to verify the pre-
diction efficiency of the clinical prognosis and immuno-
therapy. Considering the complex clinical application of the
ssGSEA algorithm, we used univariate Cox, LASSO, and
multivariate COX regression analysis to determine the ge-
netic characteristics of five prognostic-relatedTGF-beta
signaling pathways. Finally, we assessed the accuracy of
prognostic features of TGF-beta signaling pathway related
genes. +e potential mechanism of TGF-beta signaling
pathway related gene features can not only enhance the
ability to predict the prognosis of NHSC patients but also
explain the potential mechanism.

2. Method

2.1. Data Preprocessing. +is study included eight in-
dependent HNSC queues, of which only the TCGA-HNSC
queue was listed as an RNA-seq dataset and downloaded
from the USCS Xena website. In addition, the seven HNSC
queues are microarray datasets and downloaded from
E_MTAB or GEO databases, including GSE41613,
GSE42743, GSE65858, GSE75538, GSE8471, GSE117973,
and E_MTAB_8588. At the same time, matching clinical
data were included. After eliminating the samples with
repeated sequencing or with clinical data loss, 1356 HNSC
samples were eventually included for ssGSEA.+en, in order
to obtain each patient’s absolute TGF-beta signalling
pathway enrichment, a total of 233 TGF-signaling pathway
regulators were obtained from the previous literature and
packaged as TGF. Gmt.

2.2. Identification of TGF-Beta Signaling Pathway-derived
Score. In this research, the LASSO-Cox regression analysis
was employed to construct the predicted model. +e
GSE65858 dataset was used as the training set, and the
GSE41613 dataset was used as the external validation set.
Before modeling, the combat function in the sva package was
used to remove the batch effect of the GSE65858 and
GSE41613 datasets. Firstly, univariate cox regression analysis
was performed on 233 TGF-β signaling pathway regulatory
factors in GSE65858 cohort to identify prognostic-related
genes. Subsequently, the Least Absolute Shrinkage and Se-
lection Operator (LASSO) model was used to remove re-
dundant genes, and the risk-score formula was established
by multivariate Cox regression analysis of the integration
coefficient and gene expression value. According to the
median value of the risk score formula, patients were divided
into high-risk and low-risk subtypes. In addition, based on
the encapsulated TGF. Gmt file, the TGF-beta signaling
pathway absolute enrichment of each patient in GSE41613,
GSE42743, GSE65858, GSE75538, GSE8471, GSE117973,
and E_MTAB_8588 was calculated using ssGSEA algorism,
and patients were divided into high and low risk subgroups
using the median of TGF-beta signaling pathway-derived
score in each cohort as cut-off value. +e time-dependent
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receiver operating characteristic curve was employed to
calculate the prediction performance of TGF-β risk score.

2.3. Enrichment Analysis. +e Gene ontology (GO) algo-
rithm was performed to commentate on the physiopatho-
logical processes, including biological processes, molecular
functions, and cellular components. +e Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) commentates on
physiopathological pathways. Limma packs were used for
differential analysis of high-score and low-score samples
from eight different cohorts, and the differential genes were
overlapped, followed by enrichment analysis of overlapped
genes. P value <0.05 and q value <0.05 were considered to be
a significant enrichment pathway.

2.4. Immunological Analysis and Immunotherapy Cohort.
Considering that a variety of immune cells are required to
participate in the antitumor immunity process of HNSC,
different algorithms, such as TIMER, CIBERSORT,
QUANTISEQ, McP-counter, and EPIC, were used to esti-
mate the componence of immunocytes in different samples
for immune cell analysis. In addition, the ESTIMATE al-
gorithm was used to calculate the immune score and in-
terstitial score to reflect microenvironmental status. It is
worth noting that the E_MTAB_8588 dataset cannot be
calculated by some algorithms due to its different expression
spectrum format (Z-score) from the other seven datasets and
lack of original data for conversion.+erefore, we ignore this
dataset in the immune cell score. In addition, Spearman
correlation analysis was performed for TGF-beta signaling
pathway-derived score and mRNA expression of immune
modulators. Considering the strong indication of TGF-beta
for immunotherapy, GSE111636, GSE91061, GSE126044,
GSE78220, GSE136961, GSE35640, GSE173839, and
GSE100797 TGF-beta scores were performed in the
GSE115821 immunotherapy cohort, and survival and im-
munotherapy response were assessed.

2.5. Statistical Analysis. R software (version 4.0.5) was used
for data visualization and statistical analysis. +e Pearson or
Spearman correlation analysis was used to study the re-
lationship and strength between variables. +e ROC curve
was plotted to evaluate the predictive performance of the
TGF-β risk score in predicting prognosis. Analyses with
P< 0.05 on both sides were considered statistically
significant.

3. Results

3.1. TGF-Beta Signaling Score Based on ssGSEA in the Mul-
ticenter Study. Figure 1(a) shows the TGF- beta signaling
pathway absolute enrichment score in each dataset. We
analyzed the correlation between TGF- β signaling pathway
absolute enrichment score and tumor STATUS. In the
TCGA-HNSC dataset, the TGF-β risk score of tumor
samples was higher than that of normal tissues (Figure 1(b)).
Interestingly, we found that tumor samples with distant

metastasis had lower risk scores, and risk scores were as-
sociated with clinical stage in the E-MTAB-8588 and
GSE65858 and TCGA-HNSC datasets, with higher stage
tumor samples owning lower TGF-β risk scores. +en we
found that HPV-positive patients had lower risk scores
(Figure 1(c)).

+e limma packages were used to perform differential
analysis of high-score and low-score samples from 8 dif-
ferent cohorts, and the differential genes were overlapped.
For GO_Biological Process analysis, these TGF-signaling
pathway regulator related genes were found to be
enriched in a variety of pathways, including cell adhesion,
integrin binding, and collagen binding, which were all
positively correlated, and G protein-coupled receptor ac-
tivity, which was negatively correlated.For GO_Cellular
Component analysis, these TGF-β signaling pathway
modulator related genes regulated focal adhesion, cell pe-
riphery. For GO_Molecular Function analysis, TGF-β sig-
naling pathway modulator related genes was related to cell
adhesion (Figure 1(d)). +e GO analysis may summarize
that the TGF-β signaling pathway affects the tumor cells
metastasis. In addition, KEGG analysis showed that TGF-β
signaling modulator related genes were also abundant in the
TGF-β signaling pathway, hippo signaling pathway, and
PI3K-Akt signaling pathway, and pathways in cancer
(Figure 1(e)). As expected, the TGF-β signaling pathway was
clearly the most common enrichment pathway for
these DEGs.

3.2. TGF-Beta Signaling Score is Associated with Prognosis in
HNSCC Patients. Patients in different cohorts were divided
into high TGF- risk groups and low TGF- risk groups based
on the optimal cutoff value of the TGF- risk score.K-M curve
showed that the overall survival rate of patients with high
risk was worse, and the overall survival rate of patients with
low risk was better, which was verified in TCGA-HNSC,
GSE75538, GSE65858, GSE42743 and E_MTAB_8588
datasets (Figure 2(a)). In addition, this risk score can also be
used to predict progression-free survival time and disease-
specific survival time. +e high-score group had a poor
prognosis, while the low-score group had the opposite
prognosis (Figures 2(b) and 2(c)).

3.3. TGF-Beta Signaling Score Represents Different Immune
Cell Infiltration. +e immune infiltration status of patients
affects the fate of tumor cells and predicts the sensitivity of
patients to immunotherapy. Firstly, we used seven different
algorithms to describe the immune cell infiltration status or
immune score level in the tumor immune microenviron-
ment of each patient in each dataset. Figure 3(a) shows the
results of Quantiseq algorithm, Figure 3(b) shows the results
of TIMER algorithm, Figure 3(c) shows the results of
MCPcount algorithm, Figure 3(d) shows the results of
CIBERSORT_ABS algorithm, Figure 3(e) shows the results
of CIBERSORT algorithm, Figure 3(f) shows the results of
ESTIMATE algorithm, and Figure 3(g) shows the results of
EPIC algorithm. We found that TGF-beta signaling score
was positively correlated with macrophages and fibroblasts,
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Figure 1: Construction of TGF-β signal score in eight datasets. (a) +e scatter diagram indicated the distribution of TGF-β signal score
across eight datasets. (b)+e scatter diagram exhibited the TGF-β signal score in HNSC and normal samples. (c) Relationship between TGF-
β signal score, HPV infection status,M stage and clinical stage in TCGA_HNSC and GEO database. (d)+e top 8 results of GO analysis (BP,
CC, and MF) in TGF-β signal pathway_H (red) and TGF-β signal pathway_L (blue). (e) +e results of KEGG analysis in TGF-β signal
pathway_H (red) and TGF-β signal pathway_L (blue).
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but negatively correlated with NK cells. +erefore, we
speculate that the immune microenvironment of patients
with a high-risk score has tumor-promoting activity, and
a low-risk score predicts that the tumor microenvironment
is in a hot TME state.

3.4. TGF-Beta Signaling Score Associated with Immuno-
modulator Expression. In addition, we collected antigen
presentation, immunoinhibitor, immunostimulator, che-
mokine, and receptor-related factors to explore the corre-
lation between TGF-beta signaling score and immune
regulators in each patient. Figure 4(a) displayed the pre-
dictive result of the correlation between TGF-beta signaling
score and immunostimulator. Figure 4(b) shows the pre-
diction results of the correlation between TGF-beta signaling
score and cytokines, and Figure 4(c) shows the prediction
results of the correlation between TGF-beta signaling score
and immunoinhibitors. Figure 4(d) shows the prediction
results of the correlation between TGF-beta signaling score
and receptors, and Figure 4(e) shows the prediction results
of the correlation between TGF-beta signaling score and
antigen presentation. We found that TGF-beta signaling
score was positively correlated with immunomodulators
such as CD276, NT5E, CXCL12, TNFSF4, CXCL2, CCL2,
CXCL8, TGFBR1, and KDR, and significantly negatively
correlated with CXCL17, KIR2DL3, and KIR2DL1.

3.5. TGF-Beta Signaling Score Strongly Reflects Immuno-
therapy Response. Considering the strong indication of
TGF-beta on immunotherapy, we calculated the TGF-beta
score in the immunotherapy cohort and evaluated the
clinical outcomes, and immune response. Figure 5(a) is the

ROC curve of each dataset. +e area under the curve is
greater than 0.6, indicating that the model has good pre-
diction performance. Figure 5(b) displays that patients with
high-risk score have a good therapeutic effect on PD-1
monoclonal antibody and a poor therapeutic effect on
CTLA-4 and PD-L1monoclonal antibody, whichmeans that
patients with a high-risk score are more suitable for PD-1
monoclonal antibody treatment.

3.6. TGF-Beta Signaling Score-derived Risk Score (Lasso-Cox)
can be Better used in Clinics. +us, TGF-beta signaling
pathway regulators can be used to effectively predict the
prognosis of patients with the head and neck squamous cell
carcinoma and the clinical response to immunotherapy.
However, considering the complexity of clinical application
of the ssGSEA algorithm, the Lasso-cox algorithm had
stronger clinical applicability. We used expres-
sion× coefficient to calculate TGF-beta signaling score. To
begin, univariate Cox regression analysis was used to screen
21 prognostic-related regulatory factors of the TGF-beta
signalling pathway (Figure 6(a)). +e Lasso regression
model reduced the dimension of candidate prognostic genes,
with a total of 10 prognostic genes included in the model
(Figures 6(b) and 6(c)). Finally, a multivariate COX re-
gression model was used to construct a risk model.

Risk score � (0.3850∗CBL) +(−0.4569∗CDH1)

+(0.3703∗CITED2) +(0.3106∗ENG)

+(−0.4749∗TGFBR3).

(1)

According to the risk median, the patients were divided
into high and low risk groups. +e K-M curve showed that
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Figure 2: +e prognostic value of TGF-β signal score. (a) Patients in the low-TGF-β signal score group (orange) displayed better overall
survival than those in the high- TGF-β signal score group (gray). (b) Patients in the low-TGF-β signal score group (orange) displayed better
progress-free survival than those in the high- TGF-β signal score group (gray). (c) Patients in the low-TGF-β signal score group (orange)
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the patients in the high-risk group showed poor clinical
results, and the patients in the low-risk group showed longer
survival times (P value <0.001, Figure 6(d)). +e heatmap
showed that CBL, CITED2, and ENG were highly expressed
in the high-risk group, while CDH1 and TGFBR3 were lowly
expressed (Figure 6(e)). ROC curve demonstrated that the 1-
year survival rate prediction performance was 0.770, the 3-
year prediction rate was 0.713, and the 5-year prediction rate
was 0.782 (Figure 6(f )). In addition, we conduct verification
in the external dataset, and the results are consistent with the
above (Figures 7(a)–7(c), P value� 0.027), ROC curve dis-
played that the 1-year survival rate prediction performance
was 0.706, the 3-year prediction rate was 0.609, and the 5-
year prediction rate was 0.599 (Figure 7(d)). +e consistency
test found that the kappa value was greater than 0.7, sug-
gesting that it was reliable to replace the ssGSEA algorithm
with LASSO-COX (Figure 7(e)).

4. Discussion

Previous literature has reported that the TGF-β pathway is
a key factor in tumorigenesis. However, TGF-β has two
“tracks.” From one perspective, TGF-β protects tumor cells
from malignant evolution [21]. In turn, TGF-β regulation
processes, such as proliferation, differentiation, and im-
munosuppression, may be used by cancer cells [22]. In
addition, TGF-β expression and activation can be consid-
ered as a potential target for antitumor therapy [23]. With
the discovery of the biological mechanism of TGF-β regu-
lating tumor, the therapeutic ability of TGF-β has been paid
more and more attention.

At present, TGF-β signaling pathway is widely utilized to
predict the prognosis of various tumors, such as bladder
cancer, hepatocellular carcinoma, and breast cancer [24–26].
Previous work has shown that TGF-β is essential for the
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tumorigenesis and invasion of head and neck squamous cell
carcinoma. For example, TGF-β promotes tumor metastasis
by regulating lncRNA, EPB41L4A-AS2 [27]. Wang et al.
demonstrated that up-regulated TGF-β promotes epithelial-
mesenchymal transition (EMT) through STAT3 activation,
which drives invasion and metastasis of head and neck
squamous cell carcinoma [28]. In addition, Zheng et al.
established seven TGF-β-pathway related gene features with
good prediction efficiency. +e model was employed to
predict the efficacy of immunotherapy and chemotherapy
such as cisplatin, erlotinib, paclitaxel, and crizotinib [29].
+ese studies have shown that TGF-β is closely related to
head and neck squamous cell carcinoma. However, few
studies systematically explore the role of TGF-β-related
characteristics in regulating TME characteristics and pre-
dicting the prognosis of HNSC.+erefore, we prioritized the
role of TGF-β in HNSC in this article to make up for this gap.
We have extracted TGF-β related gene sets from previously

published literature. +en, according to our algorithm, we
selected five important genes to construct TGF-β charac-
teristics. +ese genes include CBL, CDH1, CITED2, ENG,
and TGFBR3.

+ese five genes are related to tumor progression.
Belizaire et al. demonstrated that increased LYN activation
and interaction with mutant CBL promoted CBL phos-
phorylation, phosphoinositol 3-kinase regulatory subunit 1
(PIK3R1) recruitment and downstream phosphatidylinosi-
tol 3-kinase (PI3K)/AKT signal transduction, thereby pro-
moting tumor progression [30]. Zhuang et al. found that
miR-204-5p inhibited epithelial-mesenchymal transition
(EMT) and STAT3 signal transduction by targeting SNAI2,
SUZ12, HDAC1, and JAK2. In addition, the above factors
formed inhibitory complexes on the CDH1 promoter to
maintain the EMT state of tumor tissue. CDH1 modulates
the status of head and neck squamous cell carcinoma,
according to these studies [31]. Shin et al. demonstrated that
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CITED2, as a molecular chaperone, leads PRMT5 and p300
to nucleolin, thereby activating nucleolin and promoting
metastasis in cancer [32]. TGF-β type III receptor (TGFBR3)
is an important part of TGF-β signal transduction, which
acts as tumor suppressor in tumor and stromal cells through
SMAD4-dependent and non-dependent manner during
head and neck squamous cell carcinogenesis. Based on these
five genes, we organized multiple HNSC datasets (TCGA-
NHSC, GSE41613, GSE42743, GSE65858, GSE75538,
GSE8471, GSE117973, and E_MTAB_8588) to explore and
verify high-value TGF-β risk score.

TGF-β signal transduction has been proved to inhibit
the main factors of adaptability and innate immune re-
sponse in the progression of tumor [33]. We evaluate the
characteristics of TME from a TGF-β signal related risk
score perspective. First, we verified that TGF-β risk score
predicted clinical outcomes and immune characteristics in
tumor microenvironment. As shown in our figure, pa-
tients with higher risk scores always have a lower OS rate,
higher tumor grading, and staging. Secondly, we screened
the TGF-β signal related genes between high-risk and low-
risk scoring groups. +e characteristics of cell adhesion,

integrin binding, and collagen binding in patients with
a high-risk score were significantly enriched. Immuno-
therapy significantly increased the survival rate of patients
with advanced NHSC. +erefore, it is urgent to develop
accurate immunotherapy indicators. Here, we associate
the risk score with the expression of immunoregulatory
factors, including antigen presentation, immunoinhibitor,
immunostimulator, chemokine, and receptor-related
factors. +e results showed that patients with a lower
risk score had more therapeutic effects on PD-L1 and
CTLA-4 monoclonal antibodies but had poor therapeutic
effects on PD-1 monoclonal antibodies, indicating that
patients with a lower risk score were not suitable for PD-1
monoclonal antibody treatment. In addition, this study
was based on the TCGA and GEO public databases, which
require our data set to confirm. However, there are still
deficiencies and doubts. +e results also showed that the
risk score was positively related to macrophages, which
was regarded as a semaphore to prevent anti-cancer
immunity. +erefore, the pre-existinganti-cancer activ-
ity of high-risk score patients may be limited by high levels
of tumor-infiltrating macrophages (M2) and
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overexpression of many inhibitory immune checkpoints
such as TGFBR1 and KDR.

Korkut et al. proposed a detailed analysis of genomic
changes in TGF-β signaling pathways in pan-cancer. Cor-
relation analysis showed that TGF-β signal mutation, am-
plification, deletion, DNAmethylation, and miRNA changes
were found in each type of cancer, and the mutation hot spot
of TGF-β was determined, indicating that potential bio-
markers can be used for further treatment and cancer di-
agnosis. +eir work provides a broad molecular perspective
for future research on the function and treatment of multiple
cancer pathways mediated by TGF-β superfamily. We
compare our work with published research. First of all, our
candidate genes were screened from TGF-β related gene sets,
using Lasso algorithm and COX regression model, re-
spectively. Secondly, we constructed a risk model consisting
of five genetic characteristics and associated it with tumor
microenvironment immune characteristics and in-
dividualized treatment strategies. +ird, we employed
multiple GEO queues to verify the predictive performance of
our model. +erefore, our model may predict the prognosis

of HNSC and guide individualized precision medicine
[34–36]. It is worth noting that this topic accurately screens
the key genes, constructs the prognosis model efficiently,
associates the model with immune profiles, and evaluates the
predictive performance of clinical outcomes and patients’
clinical responses to immunotherapy. Expected results were
achieved in the data analysis.

However, several aspects of our research inevitably have
defects. First of all, all our results are based on public data.
Due to the limitation of our clinical data, more prospective
data are urgently needed to further verify the characteristics
of TGF-β. Second, the clinical application of TGF-β features
needs more exploration. +e risk model is based on RNAseq
data, not combined with time, space, and single cell RNA
transcriptome data. In addition, we will design the corre-
sponding gene detection kit according to the five genes of the
risk model. +irdly, we dogmatically regard the median
TGF-β risk score as the critical value of all analyses, which
needs further verification. +e lack of prospective validation
of ICB treatment datasets in HNSC cohorts makes it difficult
to further explore the association between immunotherapy
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and risk score. In the future, multicenter, large-sample
immunotherapy cohort investigations will be conducted
to further examine the potential of this model to predict
clinical treatment of immunotherapy. In conclusion, we
have made a small step forward in exploring the reasonable
prognostic indicators of HNSC. We developed and verified
a well-founded TGF-β risk score based on real clinical data.
+e TGF-β risk score has been proved to be able to stratify
the clinical results and TME phenotypes of HNSC. It also
verified the sensitivity of HNSC immunotherapy.

5. Conclusion

Our study provided an indispensable reference for further
investigation of the role of TGF-β in the tumor microen-
vironment and immunotherapy efficiency, and rendered

personalized prognosis monitoring and potential biological
treatment targets for HNSC.
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