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Esophageal squamous cell carcinoma (ESCC) remains a common aggressive malignancy in the world. Multiple studies have
shown evidence to support the hypothesis that certain functional genes that are engaged in the microenvironment of tumors
played a role in the progression of ESCC. Thus, to better analyze the prognostic values of important genes in ESCC, there is an
immediate need for an in-depth research study. From the TCGA database, the RNA-seq data and clinical features of 163 ESCC
patients were obtained. Using the ESTIMATE technique, we were able to calculate the ImmuneScore, the StromalScore, and
the ESTIMATEScore for each ESCC sample. The samples from the ESCC were split up into high score and low score groups
based on the median of the various scores. In this study, ImmuneScore, StromalScore, and ESTIMATEScore were not found to
be linked with overall survival of ESCC patients, according to our findings. Higher StromalScores were linked to more
advanced T stages and clinical stages. The intersection analysis that was exhibited by the use of a Venn diagram indicated that
there was a total of 944 upregulated genes that shared the same high score in both the ImmuneScore and the StromalScore
and that there was 0 downregulated gene that shared the same low score. Survival experiments confirmed MIR548P and
TRAV39 as critical prognostic biomarkers for ESCC patients. Importantly, we found that TRAV39 expression was positively
associated with T cell CD4 memory activated while negatively associated with B cell memory, dendritic cells activated, and
mast cells activated. In addition, we found that MIR548P expression was negatively associated with mast cells activated while
positively associated with T cell CD4 memory activated. Overall, we identified MIR548P and TRAV39 as new modulators for
ESCC, affecting the immune microenvironment of ESCC patients and may be a target of immunotherapy.

1. Introduction

Esophageal cancer has become a common malignant tumor
in this world [1]. In addition, it is a significant contributor to
deaths caused by cancer [2]. The number of cases of esoph-
ageal cancer, which are sadly rising at an alarming rate, will
not stop rising [3]. Esophageal squamous cell carcinoma
(ESCC) is the predominant histological type of esophageal
cancer worldwide [4]. Due to the absence of typical symp-
toms in the early stage, patients who have ESCC are always
detected at a late stage in the disease’s progression [5, 6].
On the other hand, metastasis is one of the primary causes
that leads to recurrence following surgical therapy, which

ultimately results in the failure of the therapeutic attempt
[7]. If the progression of the disease can be forecasted based
on the identification of pertinent signs in patients, then the
clinical prognosis of those patients will significantly improve
[8, 9]. Although relevant immunotherapies involving ESCC
are still in the basic stages of development, certain related
immunosuppressants have been applied in specific patients
and demonstrated long-lasting anticancer effectiveness as
well as controlled adverse responses [10, 11]. The ability to
make an accurate prognostic assessment of ESCC is essential
to the efficacy of clinical screen and treatments, as well as
customized medicine. Therefore, it is highly vital to identify
unique and reliable prognostic biomarkers from different
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Figure 1: Continued.
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dimensions in order to determine the best appropriate ther-
apy plans and improve the dismal outcome of patients with
ESCC.

The beginning, the course, and the development of
ESCC are all determined by the genes that are inherent to
the tumor cells, particularly the master transcription factors
[12, 13]. On the other hand, it has been observed that the
microenvironment of the tumor has a significant impact
on the gene expressions of the tumor specimens and, as a
result, the long-term survivals [14, 15]. The microenviron-
ment of tumor refers to the cellular milieu in which the
tumor itself is situated. Inflammatory mediators and extra-
cellular matrix (ECM) molecules are also a part of it, along
with immune cells, endothelial cells, and mesenchymal cells
[16, 17]. In the microenvironment of tumor, immune and
stromal cells are two major types of nontumor components
that could be useful for the diagnosis of tumors [18, 19].
Immune cells can help diagnose cancer, while stromal cells
help predict how aggressive a tumor will become. It has been
suggested that tumor-infiltrating immune cells (TIICs) and
stromal cells, which are two important categories of nontu-
mor cell components, are useful in the prediction of clinical
outcome of malignancies [20, 21]. Previous researches have
shown evidence that tumor-infiltrating lymphocytes (TILs)
play a key role in determining the clinical progression of a
variety of malignancies [22, 23]. Recently, several types of
cancers, including renal, prostate, colorectal, ovarian, blad-
der, and lung cancers, have been linked to TILs, specifically
cytotoxic T cells, memory T cells, and T helper 1 cells, which

are positively related to good clinical outcomes [24, 25]. In
addition to this, it was observed that the tumor microenvi-
ronment (TME) had an effect on the gene expression in
the cancer specimens as well as the prognostic results. These
findings shed light on the connection between the tumor
microenvironment and the evolution of cancer, suggesting
new approaches that could make the management of cancer-
ous tumors more effective.

Through the use of the ESTIMATE algorithm, we were
able to acquire the ImmuneScore and StromalScore of ESCC
patients that were stored in the TCGA database. The pur-
pose of this work was to determine which genes with key
functional roles were implicated in TME. After that, we fur-
ther explored their clinical significance.

2. Methods

2.1. Datasets and Data Processing. The TCGA-ESCA RNA-
seq FPKM data, together with clinical data and survival data,
were retrieved from the UCSC Xena database. There were
163 cases with ESCA and 11 normal cases, all of which
had their clinical data extracted from the above datasets.

2.2. Generation of ImmuneScore, StromalScore, and
ESTIMATEScore. Each sample’s ratio of immune-stromal
component in TME was estimated using the ESTIMATE
algorithm implemented in R language version 3.5.1 with
the estimate package and displayed as one of three scores:
ImmuneScore, StromalScore, or ESTIMATEScore.
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Figure 1: Associations between Immune/Stromal/ESTIMATE scores and survival rates in ESCC patients from TCGA datasets. Kaplan-
Meier survival analysis for (a) ImmuneScore, (b) StromalScore, and (c) ESTIMATEScore.
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Figure 2: Continued.
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ImmuneScore, StromalScore, and ESTIMATEScore all
showed positive correlations with the ratio of immune, stro-
mal, and the sum of the two components in TME, so higher
scores indicated larger ratios of the respective component.

2.3. Distinguishing of Differentially Expressed Genes (DEGs).
The “limma” algorithm was used to perform preprocessing
on the raw data that TCGA collected. The cut-offs for iden-
tifying DEGs were determined to be adjusted p values (adj. p
) less than 0.05 and |Log2 (FC)| greater than 1.

2.4. Heatmaps and Clustering Analysis. The web application
“ClustVis” was utilized in order to produce heatmaps [26].

2.5. Enrichment Assays of DEGs. R 4.0.2 and the related R
packages were utilized to carry out Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment assays, and the DEGs were utilized as the data
source. Only terms whose p and q values were lower than
0.05 were judged to have significantly increased abundance.

2.6. TME Component-Related Survival Analysis. After per-
forming survival analysis on all of the ESCC samples, we
separated them into two groups, one with high scores and
one with low scores. The Kaplan-Meier methods were
applied to generate the survival curve, and the log-rank test
was performed to establish whether or not there was any sta-
tistical significance. When the p value was less than 0.05, it
was considered statistically significant.

2.7. Cox Regression Analysis.We used the “survival” package
in R to carry out a univariate Cox analysis on the DEGs [27].

2.8. Difference Analysis of Scores with Clinical Stages. The
data on the clinicopathological characteristics of the ESCC
samples that corresponded to them were retrieved from
TCGA. The analysis was carried out using the R program-
ming language, and the significance test used was either
the Wilcoxon rank sum or the Kruskal-Wallis rank sum test,
depending on the number of clinical stages that were being
compared.

2.9. Immune Infiltration Analysis in ESCC Dataset.We made
use of CIBERSORT so that we could investigate the enrich-
ment of immune cells in the tumor microenvironment of
ESCC patients. Analyses were performed on the relative
abundance of 22 different types of invading immune cells,
including T, B, and NK cells, as well as macrophages, for
each sample. Spearman’s correlation was utilized in order
to explore the correlations between essential gene expression
and immune cells that were inferred by CIBERSORT. In
order to compare the locations of immune cells in groups
with high and low levels of gene expression, a Wilcoxon test
was carried out.

2.10. Statistical Analysis. Utilizing the R programming lan-
guage, statistical analyses were carried out. A p < 0:05 was
considered statistically significant.
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Figure 2: Associations of Immune/Stromal/ESTIMATE scores with clinical factors. (a) ImmuneScore, (b) StromalScore, and (c)
ESTIMATEScore.
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3. Results

3.1. Survival Analysis of ESCC Patients in Three Different
Scores. In order to profile the relationship that existed
between the various scores and the outcomes of the patients,

we employed a combination of ESTIMATE algorithms and
Kaplan-Meier survival analyses. ImmuneScore
(Figure 1(a)), StromalScore (Figure 1(b)), and ESTIMATE-
Score (Figure 1(c)) were found to have no correlation with
overall survival in ESCC patients.
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Figure 3: The discovery of DEGs that are common to both the ImmuneScore and the StromalScore. (a) A heatmap for DEGs that was
developed by comparing the group with the high score to the group with the low score using ImmuneScore. (b) Heatmap for DEGs in
StromalScore. (c, d) Diagrams in the form of Venn plots illustrating upregulated and downregulated DEGs that are common to both
ImmuneScore and StromalScore.
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3.2. Analysis of the Correlations between Scores and Clinical
Features of Patients with ESCC. After that, we performed
an analysis to see whether or not there was a correlation
between clinical factors of ESCC patients and the scores.
We observed that ImmuneScore did not have a significant
link with a number of clinical features of ESCC patients,
including gender and TMN stage (Figure 2(a)). However,
we observed that a higher StromalScore was related to
advanced T stages and clinical stages (Figure 2(b)). Mover,

we found that higher ESTIMATEScore predicted an
advanced T stages and clinical stages (Figure 2(c)).

3.3. DEGs Shared by ImmuneScore and StromalScore. The
comparative analysis between samples with high scores and
those with low scores was carried out in order to determine
the precise variations of gene profile in TME relating immu-
nological and stromal components. ImmuneScore provided
a total of 1754 DEGs, which are significantly different from
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Figure 4: Enrichment analysis of DEGs. (a) GO enrichment analysis. (b) EGG pathway analysis.
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the median (samples with high score vs. low score). There
were 1615 genes that showed an increase in expression,
whereas 139 genes showed a decrease (Figure 3(a)). In a sim-
ilar fashion, 1668 DEGs were derived using StromalScore.
These differentially expressed genes included 1609 genes
with an increase in expression and 59 genes with a decrease
in expression (Figure 3(b)). The intersection analysis that
was presented in the form of a Venn diagram revealed that
there was a total of 944 upregulated genes that had the same
high score in both the ImmuneScore and the StromalScore
and that there was a total of 0 downregulated gene that
had the same low score. Both of these scores were deter-
mined by the ImmuneScore and the StromalScore
(Figures 3(c) and 3(d)). These DEGs could have been the
deciding factor in determining the status of the TME.

3.4. Functional Correlation Assays. Enrichment analyses of
GO were carried out in order to learn more about the role
of DEGs. The results indicated that the DEGs were mainly
related to immune response-activating cell surface receptor
signaling pathway, immune response-activating signal trans-
duction, lymphocyte-mediated immunity, external side of
plasma membrane, immunoglobulin complex, plasma mem-
brane signaling receptor complex, T cell receptor complex,
immune receptor activity, glycosaminoglycan binding,
immunoglobulin receptor binding, and antigen binding
(Figure 4(a)). The results of KEGG assays revealed that the
DEGs were mainly enriched in chemokine signaling path-
way, cytokine-cytokine receptor interaction, cell adhesion

molecules, osteoclast differentiation, neutrophil extracellular
trap formation, phagosome, tuberculosis, and B cell receptor
signaling pathway (Figure 4(b)).

3.5. The Identification of Survival-Related DEGs in ESCC
Patients. We carried out a univariate Cox regression on
944 DEGs in order to investigate the crucial genes that play
functional roles in ESCC. Only MIR548P and TRAV39, as
can be shown in Figure 5(a), were found to be related to
an increased likelihood of overall survival among ESCC
patients. According to the findings of the Kaplan-Meier
method, the 5-year overall survival rate of patients whose
MIR548P expression was low was noticeably lower than that
of patients whose MIR548P expression was high. This differ-
ence was statistically significant (Figure 5(b)). A finding that
was quite similar to this one was noticed when patients
exhibited a low expression of TRAV39 (Figure 5(c)).

3.6. Relationships between MIR548P and TRAV39
Expressions and Clinicopathological Features in ESCC. In
order to investigate the connection between the expressions
of MIR548P and TRAV39 and the clinicopathological fac-
tors of human ESCC, clinical follow-up information was
gathered from all of ESCC patients. Our research revealed
that an elevated level of TRAV39 expression was associated
with an advanced clinical stage in ESCC patients
(Figure 6(a)). On the other hand, we did not discover any
data that supported the hypothesis that there was a positive

++++++++++
+ ++++ +++++++++++++++++

++++++
+++ +

++++ +

+
++ +

++++
++

+++ ++++++++++++++++
++

++ ++++ + + +++ +

+

+
p = 0.044

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6

Time (Years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

81 56 23 9 6 2 0
81 51 16 7 2 1 0Low

High

0 1 2 3 4 5 6

Time (Years)

TR
AV

39

TRAV39
+ High

+ Low

(c)

Figure 5: The identification of survival-related DEGs. (a) Univariate analysis was applied to screen the survival-related DEGs in ESCC
patients based on TCGA datasets. (b) Kaplan-Meier curves for overall survival after surgery according to expression of MIR548P and
TRAV39 expression in ESCC patients.
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Figure 6: Relationships between (a) MIR548P and (b) TRAV39 expressions and clinicopathological features in ESCC.
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Figure 7: TIC profile in the tissue samples from the tumors and correlation analysis. (a) The distribution of the 21 different types of TICs
found in ESCC tumor samples is shown as a barplot. (b) A heatmap displaying the correlation between 21 different types of TICs, with a
number in each little box reflecting the p value of correlation between two different types of cells. (c, d) All ESCC cases were divided into
the high and low (c) MIR548P and (d) TRAV39 expression groups, based on the median of MIR548P and TRAV39 expressions, and the
Wilcoxon rank-sum test was carried out.
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link between the expression of MIR548P and the clinico-
pathological characteristics of ESCC patients (Figure 6(b)).

3.7. Correlation of MIR548P and TRAV39 with the
Proportion of TICs. In order to provide additional evidence
that MIR548P and TRAV39 expressions were correlated
with the immune microenvironment, it was determined with
the use of the CIBERSORT algorithm what proportion of
immune subsets had invaded the tumor, and 21 different
immune cell profiles were constructed using ESCC samples
(Figures 7(a) and 7(b)). The dysregulated levels of immune
cells are shown in Figures 7(c) and 7(d). Importantly, we
found that TRAV39 expression was positively associated
with T cell CD4 memory activated while negatively associ-
ated with B cell memory, dendritic cells activated, and mast
cells activated (Figure 8(a)). In addition, we found that
MIR548P expression was negatively associated with mast
cells activated while positively associated with T cell CD4
memory activated (Figure 8(b)). Thus, our findings sug-
gested MIR548P and TRAV39 were involved in the function
of immune microenvironment.

4. Discussion

ESCC is one of the most common forms of aggressive cancer
worldwide, and it is especially prevalent in China, where it
ranks as the fourth most common reason for people to pass
away from cancer-related causes [28, 29]. The 5-year sur-
vival rate for ESCC patients is roughly 17%. Due to the
absence of a single, reliable clinical approach for early iden-
tification, ESCC is associated with a typically dismal progno-
sis globally [30, 31]. ESCC accounts for approximately 90%
of all occurrences of esophageal cancer. The ongoing dismal
clinical outcome suggested that there was an immediate
need to increase our understanding of the molecular mech-
anism behind the carcinogenesis of ESCC [32, 33]. The

above knowledge could help in the creation of innovative
ways for predicting the patient’s prognosis. There was an
increasing body of evidence suggesting that aberrant regula-
tion of certain proteins was essential for the advancement of
ESCC [34, 35]. Therefore, the mortality rate of ESCC
patients can be lowered and clinical outcomes can be
improved by the discovery of novel biomarkers that can be
used in early diagnosis and prognostic assessment to better
personalize therapy.

The TME was home to a wide variety of cell types, all of
which are integral parts of tumor tissues and play a crucial
part in both the beginning and progression of cancers [36].
The cells and substances that make up the TME were con-
stantly undergoing change, which served to both identify
characteristics of the tumor and encourage immune evasion,
growth, and metastasis [37]. Multiple studies have shed light
on the therapeutic relevance of the TME in the prediction of
therapy efficacy and patient prognosis [38]. In recent years,
various medications that target the TME, such as immune
checkpoint inhibitors and angiogenesis inhibitors, have
shown significant success in regulating the progression and
spread of malignancies [39, 40]. These drugs included angio-
genesis inhibitors. In this study, we determined the percent-
ages of TME components and carried out survival analysis
pertaining to those findings. However, according to the find-
ings, neither the ESTIMATEScore nor the StromalScore nor
the ImmuneScore was substantially connected to the overall
survival rate of patients with ESCC. The immunological state
was shown to be connected with the clinical outcome of
ESCC patients, which was not consistent with our data but
has been corroborated by an increasing number of research.
I hypothesized that the small number of participants could
be responsible for this outcome. Then, DEGs were discov-
ered by TME score-related gene expression difference analy-
sis, and GO and KEGG enrichment analyses were carried
out. The results illustrated that the DEGs were enriched in
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Figure 8: Correlation of TIC proportion with the expression of (a) TRAV39 and (b) MIR548P.
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cytokine-cytokine receptor interaction, chemokine signal-
ing pathway, cell adhesion molecules, osteoclast differenti-
ation, neutrophil extracellular trap formation, phagosome,
tuberculosis, and B cell receptor signaling pathway. The
univariate Cox regression analysis was also performed
using the DEGs. Only MIR548P and TRAV39 were related
with an increased likelihood of overall survival in ESCC
patients, according to our findings. In addition, survival
experiments demonstrated that a high expression of
MIR548P and TRAV39 predicted a decreased overall sur-
vival rate. Moreover, we found that TRAV39 was posi-
tively associated with an advanced clinical stage. It has
been known to us that clinical stage is a very important
index to predict the prognosis of patients. In clinical prac-
tice, doctors also make different treatment plans according
to the clinical stages. Our findings highlighted the impor-
tant roles of TRAV39 expression in ESCC progression.
To date, the expression and function of MIR548P and
TRAV39 were rarely reported.

Immune cells have the ability to mediate chemothera-
peutic resistance and sensitivity, which can increase patients’
chances of survival when they have ESCC [14]. It has been
established beyond a reasonable doubt that the primary
immune cell subtypes that are positively associated to the
important genes include immune effector cells (M1 macro-
phages and CD8 T cells), plasma cells that have the capacity
to secrete antibodies, Treg cells, and activated memory CD4
T cells [41, 42]. Immune cells such as naive CD4 T cells and
M0 macrophages, activated DC cells, and memory B cells are
examples of immune cells that have a negative relationship
with important genes. One of the hallmark host immunolog-
ical responses to tumor cells is the infiltration of immune
cells, which has been linked in numerous studies to both
the initiation and progression of cancers. This reaction is
one of the hallmarks of the immune system of the host. It
has been observed that a high expression of Tregs and a
low ratio of M0 macrophages are two factors that lead to a
positive prognosis of overall survival and disease-free sur-
vival in patients with ESCC [43, 44]. It is commonly
accepted that CD8+ T lymphocytes destroy tumor cells by
attaching to MHCI antigens. Additionally, the total number
of CD8+ cells has been shown to have a favorable correlation
with tumor grade and a better patient prognosis in cases of
ESCC [14, 43]. Memory CD4+ T cells, meantime, suppress
the expansion of tumor cells by encouraging the multiplica-
tion of CD8+ cells. The anticancer activity of memory CD4+
T cells is further supported by previous findings demonstrat-
ing that an increase in disease-free survival of ESCC patients
is directly associated to an increase in activated memory
CD4+ T cells [44, 45]. In this study, we found that TRAV39
expression was positively associated with T cell CD4 mem-
ory activated while negatively associated with B cell memory,
dendritic cells activated, and mast cells activated. In addi-
tion, we found that MIR548P expression was negatively
associated with mast cells activated while positively associ-
ated with T cell CD4 memory activated. Our findings sug-
gested that high expression of TRAV39 and MIR548P
predicted a poor prognosis due to the promotion of antitu-
mor immunity in ESCC.

5. Conclusion

Our findings identified two novel regulators involved in
ESCC progression. The expressions of TRAV39 and
MIR548P might aid in the prediction of the clinical outcome
of ESCC patients, especially the status of TME. TRAV39 and
MIR548P can be utilized as a promising modulator in the
development of immunotherapy for ESCC.
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