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Purpose. This study was aimed at identifying hub genes and ceRNA regulatory networks linked to prognosis in hepatocellular
carcinoma (HCC) and to identify possible therapeutic targets. Methods. Differential expression analyses were performed to
detect the differentially expressed genes (DEGs) in the four datasets (GSE76427, GSE6764, GSE62232, and TCGA). The
intersected DEmRNAs were identified to explore biological significance by enrichment analysis. We built a competitive
endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA. The mRNAs of the ceRNA network were used to perform
Cox and Kaplan-Meier analyses to obtain prognosis-related genes, followed by the selection of genes with an area under the
curve >0.8 to generate the random survival forest model and obtain feature genes. Furthermore, the feature genes were
subjected to least absolute shrinkage and selection operator (LASSO) and univariate Cox analyses were used to identify the hub
genes. Finally, the infiltration status of immune cells in the HCC samples was determined. Results. A total of 1923 intersected
DEmRNAs were identified in four datasets and involved in cell cycle and carbon metabolism. ceRNA network was created
using 10 lncRNAs, 67 miRNAs, and 1,923 mRNAs. LASSO regression model was performed to identify seven hub genes,
SOCS2, MYOM2, FTCD, ADAMTSL2, TMEM106C, LARS, and KPNA2. Among them, TMEM106C, LARS, and KPNA2 had
a poor prognosis. KPNA2 was considered a key gene base on LASSO and Cox analyses and involved in the ceRNA network. T
helper 2 cells and T helper cells showed a higher degree of infiltration in HCC. Conclusion. The findings revealed seven hub
genes implicated in HCC prognosis and immune infiltration. A corresponding ceRNA network may help reveal their potential
regulatory mechanism.

1. Introduction

According to 2018 estimates provided by Bray about the
incidence of cancer, liver cancer was responsible for
841,080 new cancer cases globally [1] and the incidence rates
are expected to increase remarkably by the year 2030 [2].
Hepatocellular carcinoma (HCC) is the most prevalent form
of liver cancer, representing 75-85% of all liver cancer cases

[3]. Previous studies confirmed that the main pathogenic
factors of HCC are the chronic hepatitis B virus (HBV) or
hepatitis C virus (HCV) infection, alcoholic liver disease,
and nonalcoholic fatty liver disease [4]. Statistics indicate
that 30%-40% of HCC patients are diagnosed in the early
stage [5]. Only a few methods for the prognosis and treat-
ment of HCC, these methods have been limited because
most HCC patients are diagnosed in advanced stages and
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surgically unresectable. Additionally, the methods depend
mainly on the tumor stage [6] to reflect the development
of tumor cells [7]. Therefore, identifying a sound risk strati-
fication system can effectively treat and improve outcomes.

Competing endogenous RNA (ceRNA), including long
noncoding RNA (lncRNA) and circle RNA (circRNA), can
combine competitive microRNA (miRNA) and interfere
with miRNA binding to messenger RNA (mRNA) to regu-
late gene expression and play important roles [8]. It has been
shown that microRNAs, by virtue of their capacity to inter-
act with many target genes, affect a wide variety of crucial
biological processes, including growth, proliferation, and
apoptosis of cells [9]. High expression of YKT6 [10] and
MTFR2 [11] associated with progression and poor prognosis
of HCC. Furthermore, EPHX2 was identified as an indepen-
dent prognostic biomarker for overall survival of patients
with HCC [12]. In summary, ceRNA is a factor that influ-
ences the incidence of HCC as well as its progression [13,
14]. The ceRNA was used to understand the interactions of
complex genes and identified the potential biomarkers for
diagnosing and treating HCC.

In this research, we mainly used the expression patterns of
the databases in the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) and the Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/) between HCC
and normal samples to perform bioinformatics analysis. The
purpose of this study is to construct a potentially competitive
endogenous RNA (ceRNA) network to identify the underlying
biological mechanisms of HCC. Furthermore, the model
classifier and the risk score model were utilized to more
precisely identify possible markers associated with prognosis
in HCC patients.

2. Material and Methods

2.1. Data Preprocessing. There were a total of 600 HCC and
122 normal samples included within four different datasets
(GSE76427, GSE6764, GSE62232, and TCGA datasets).
RNA sequencing (RNA-seq) data, microRNA sequencing
data, and the corresponding survival data of liver hepatocel-
lular carcinoma (LIHC) patients were obtained from the
TCGA database [15]. RNA-seq data and microRNA
sequencing data of TCGA contained 369 primary HCC
and 50 normal tissues as well as 370 primary HCC and 50
normal tissues, respectively. Corresponding clinicopatholo-
gical features (age, sex, tumor differentiation degree, TNM
stage, survival time, and status) were also obtained from
the TCGA database are publicly available. Among these
samples, one formalin sample and one relapse sample were
excluded. Gene expression data of GSE76427, GSE6764,
and GSE62232 were available from the GEO database.
GSE76427 comprised 52 adjoining nontumor tissues as nor-
mal control and 115 tumor tissues with HCC. HCC patients
included in this dataset had a mean age of 63:45 ± 12:63
years, and 93 male and 22 female [16], conducted by
GPL10558 platform (Illumina HumanHT-12 V4.0 expres-
sion beadchip). GSE6764 was conducted by the GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array)
and comprised 35 HCC tissues and 10 adjoining nontumor

tissues. HCV infection cases observed in 13 samples from
cirrhotic tissues and 17 samples from dysplastic nodules
were excluded [17]. GSE62232 containing 81 solid HCC
and 10 nontumor liver samples was acquired on the basis
of the GPL570 platform (Affymetrix Human Genome
U133 Plus 2.0 Array). The individuals of HCC included in
this dataset had a mean age of 60:6 ± 13:49 years, and 67
male and 14 female [18]. The “varianceStabilizingTransfor-
mation” function of the DESeq2 package [19] was utilized
for normalizing the expression patterns of RNA sequencing
data and microRNA sequencing from the TCGA dataset.
Furthermore, expression profiles of GSE6764 and
GSE62232 were normalized using the “RMA” function in
the Affy package. The expression profile of GSE76427 was
used to normalize by the “lumiExpresso” function in the
Lumi R package.

2.2. Identification of Differentially Expressed Genes. By
employing the limma package in R, differential expression
analysis was carried out for gene expression to find the
DEGs between HCC tumor tissues and nontumor liver tis-
sues in GSE76427, GSE6764, and GSE62232 [20]. We also
utilized the DESeq2 package [19] to identify the DEGs of
TCGA. DEGs of all the four datasets (GSE76427, GSE6764,
GSE62232, and TCGA) were deemed to have statistical sig-
nificance if the adjusted P value was <0.05. Subsequently,
the intersected DEGs of four datasets were identified using
the Venn diagrams to obtain consistent expression, includ-
ing upregulated and downregulated DEGs.

2.3. Gene Ontology (GO) and Pathway Enrichment Analysis.
Cellular components (CCs), Biological processes (BPs), and
molecular functions (MFs) of intersected DEGs were used
to explore the biological significance by performing a GO
analysis. Kyoto Encyclopedia of Genes and Genomes
(KEGG) was utilized to explore significantly altered path-
ways enriched in the gene list. GO and KEGG pathways
were executed with the help of the clusterProfile package
[21]. Gene enrichment in the GO and KEGG pathway with
P value <0.05 were judged as significant.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA is a com-
putational approach that enables gene sets to identify
genomes excessively increasing or decreasing between bio-
logical phenotypes [22]. GSEA analysis was carried out to
ascertain the functions premised on the expressed profiles
of TCGA using the GSEA software (Version 4.1.0).

2.5. ceRNA Network Analysis. We examined the regulated
miRNAs using up/downregulated lncRNAs in four datasets
by Starbase databases (http://starbase.sysu.edu.cn/index
.php) while retaining the opposite expression direction of
lncRNAs and miRNAs. Among them, we extracted the
intersection of the regulated miRNAs of TCGA for the next
analysis. Meanwhile, we screened for miRNA-regulated
mRNAs on the Targetscan databases (https://www
.targetscan.org/vert_72/) while retaining the same expres-
sion direction of lncRNAs and mRNAs. Subsequently, we
generated the lncRNA-miRNA-mRNA regulatory network
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by downloading the binding sites of mRNA, miRNA, and
lncRNA using the Starbase and Targetscan databases.

2.6. Establishment of Random Survival Forest Model and
Least Absolute Shrinkage and Selection Operator (LASSO)
Regression Model. The mRNAs of the ceRNA regulatory net-
work were used to perform Cox and Kaplan-Meier analyses
in TCGA to obtain prognosis-related genes. We selected the
prognosis-related genes for the area under the curve (AUC)
analysis by pROC package. Next, we used prognosis-related
genes with an AUC >0.8 to construct the random survival
forest model with the help of the RandomSurvivalForest R
package. It was determined that genes with a relative impor-
tance >0.4 were the ultimate feature genes by examining the
link between the error rate and the number of classification
trees. Moreover, the feature genes were used to construct

the LASSO model and the hub genes were obtained using
“cv.glmnet” function in glmnet R package [23]. Subse-
quently, a univariate Cox analysis was carried out on the
hub genes to determine the prognostic significance utilizing
the forestplot R package. The hub genes with a hazard ratio
>1 were considered to lead to a poor prognosis.

2.7. Seven Hub Gene-Risk Scores Based on Cox Regression
Analysis. After performing a multivariate Cox regression
analysis premised on the outcomes of seven hub genes, risk
scores were then computed. Following the construction of
the risk score model premised on the median risk score,
the HCC patients of the TCGA dataset were further classi-
fied into high- and low-risk groups, and their overall survival
(OS) rates were compared. Furthermore, to determine the
impact that hub genes have on the HCC patients’ prognoses,
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Figure 1: The detailed flow chart for this research AUC, area under the curve; DElncRNA, differentially expressed long noncoding RNA;
DEG, differentially expressed genes; DEmRNA, differentially expressed messenger RNA; Gene Set Enrichment Analysis; LASSO, least
absolute shrinkage, and selection operator; K-M curve, Kaplan-Meier curve; TCGA, The Cancer Genome Atlas; ssGSEA, single sample
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a nomogram was developed with the use of the rms package
of the R program. With the help of the ggstatsplot package,
correlations between hub genes and risk scores were derived.

2.8. Identification of Key Gene. To further illustrate the
expression of hub genes between HCC and control samples
in the TCGA dataset, we created a heat map and a violin
plot. Above all, time-dependent receiver operating charac-
teristic curve (ROC) analysis was conducted using the “sur-
vivalROC” R package to evaluate the prediction accuracy of
the 1-, 3-, 5- year of the key gene. The Kaplan–Meier sur-
vival curve was utilized to make a comparison between the
high- and low-risk groups for the survival of the key gene.
Furthermore, P adjust value <0.05 was selected as the crite-
rion for determining differentially expressed miRNAs
(DEmiRs), after which we plotted the associated ceRNA reg-
ulatory network of key genes.

2.9. Immune Infiltration Analysis. Single-sample gene set
enrichment analysis (ssGSEA) calculated the degree of
immune cell infiltration in the HCC patients of 24 immune
cell types using marker gene sets [24]. Using the limma R
program, variations in the types of immune cells seen
between HCC and control samples were computed Radar
and scatter plots show correlation plots of risk score of
immune cells and hub gene. Second, we adopted the Pearson
correlation to determine the link between the seven hub
genes and the immune cell types. Additionally, The CIBER-
SORT algorithm was utilized to execute an analysis of the
infiltration levels of 22 different types of immune cells in
HCC samples taken from the TCGA dataset.

2.10. Statistical Analysis. The analyses of the present study
were conducted utilizing the Bioinforcloud platform
(http://www.bioinforcloud.org.cn).

3. Results

Workflow of the present study (Figure 1).

3.1. Biological Function of DEGs between HCC and Controls.
To obtain dysfunctional genes associated with HCC, we
identified DEGs between HCC and controls (Figure 2(a)).
In total, 9,366 DEGs were identified in GSE62232, 11405
DEGs in GSE76427, 4995 DEGs in GSE7696, and 14,038
DEGs in TCGA. A total of 1,933 intersected DEmRNAs
were detected in four datasets, including 10 lncRNA and
1,923 mRNA. Among them, 1,104 were upregulated and
829 downregulated DEGs in HCC and controls
(Figure 2(b)). Intersected DEGs were involved in the cell
cycle and carbon metabolism (Figure 2(c)). Additionally,
intersected DEGs were involved in 1,584 BP, 210 CC, and
213 MF (Figure 2(d)). GSEA showed that genes of the
TCGA dataset were positively linked to DNA replication
and the cell cycle (Figure 2(e)) and were inversely linked to
the ERBB signaling pathway and HIF-1 signaling pathway
(Figure 2(f)).

3.2. Identification of Hub Genes Related to Prognosis. The
ceRNA regulatory network was constructed using the 366
prognosis-related mRNAs that were obtained from Kaplan-
Meier and Cox survival analyses (Table S1). Based on AUC
analysis, 366 prognosis-related mRNAs were analyzed to
determine their possible involvement in the GSE76427 and
TCGA datasets. As depicted in Figure 3(a), 211 genes with
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an AUC of <0.80 were found in both datasets. Figures 3(b)
and 3(c) provide an orderly representation of the
association between the error rate for the data, the number
of classification trees, and the importance of the 14 genes.
LASSO regression model was performed to identify 7 hub
genes, SOCS2, MYOM2, FTCD, ADAMTSL2,
TMEM106C, LARS, and KPNA2 (Figures 3(e) and 3(f)).
In univariate Cox regression analysis, TMEM106C, LARS,
and KPNA2 had a poor prognosis (Figure 3(f)).

3.3. Construction of Hub Genes and Calculation of Risk Score
in HCC. The distributions of the risk scores, RFS and hub
gene expression of the 369 patients in the TCGA dataset
are shown in Figure 4(a). The hub genes were incorporated
into a nomogram model to predict the HCC patients’ prog-
noses (Figure 4(b)). The calibration curve demonstrated
excellent agreement between the observed and predicted
OS over 1 and 3 years in the TCGA cohort (Figure 4(c)).
The AUC analysis of seven hub genes as illustrated in
Figure 4(d) and the relevant findings illustrated that the
seven hub genes had a better diagnostic power in the prog-
nostic model. We additionally examined the link between
hub genes and risk scores and found that KPNA2, LARS,
and TMEM106C had a positive link to risk scores, whereas
an inverse correlation was observed between ADAMTSL2,
MYOM2, FTCD, SOCS2, and risk scores (Figure 4(e)).

3.4. KPNA2 as a Key Gene in Prognosis for HCC. In four
datasets (GSE76427, GSE6764, GSE62232, and TCGA), the
results suggested that hub genes of AUCs value, adjusted P
value, and fold change were depicted in Figure 5(a). A heat
map showed the expression level of hub genes, stage, gender,
event, and groups in TCGA (Figure 5(b)). In comparison
with controls, ADAMTSL2, FTCD, KPNA2, LARS, and

TMEM106C were found to be expressed at a high level in
HCC (Figure 5(c)). Time-dependent ROC survival analysis
was employed to examine the prognosis of KPNA2 and the
findings illustrated that the AUCs values over 1, 3, and 5
years were all greater than 0.66 (Figure 5(d)). Moreover,
the predicted 1-year survival time for HCC patients indi-
cated that KPNA2 had considerably improved OS
(Figure 5(e)). The volcano plot showed a total of 901
DEmiRs, comprising 730 upmodulated miRNAs and 171
downmodulated miRNAs (Figure 5(f)). Ultimately,
Figure 5(g) depicts the obtained binding sites within the
lncRNA HCP5-KPNA2-miR-214-3p as ceRNA regulatory
network. Above all, KPNA2 performs an essential function
in the ceRNA regulatory network, making it a key gene in
the prognosis and fundamental biological processes involv-
ing HCC.

3.5. Estimation of Infiltrating Immune Cells in HCC. T
helper (Th) 2 cells, T helper cells, and plasmacytoid den-
dritic cells (pDCs) all have higher degrees of infiltration
between HCC and controls in four datasets (Figure 6(a)).
Figure 6(b) depicts the association between the median
risk score and the types of immune cells. Among them,
CD8 T cells, Th17 cells, and DC exhibited a substantially
positive correlation, whereas Th2 cells exhibited a signifi-
cantly negative correlation (Figure 6(c)). By determining
the Pearson correlation between the hub genes and the
24 different types of immune cells, we observed that
KPNA2 and Th2 cells had a considerably high association
in HCC samples (Figure 6(d)). To further evaluate the
proportion of immune cells for TCGA, the findings indi-
cated that HCC samples were extensively infiltrated by
Macrophages M2 (Figure 6(e)).
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Figure 4: Seven feature gene-risk scores based on Cox analyses. (a) Expression, risk score, and survival status of seven genes in HCC patients
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4. Discussion

HCC is a malignancy with a high death rate and an unfavor-
able prognosis, necessitating novel diagnostic and therapeu-
tic markers [25]. In this research, we determined the seven
hub genes of HCC prognosis as vital biomarkers, which
can be used to improve outcomes of patients with HCC.
We constructed a ceRNA regulatory network to explore
the biological mechanism, including lncRNA HCP5-hsa-
miR-214-3p-KPNA2. Furthermore, we also found a high
degree of immune cell infiltration with seven hub genes.

Intersected DEGs of four datasets were involved in the
cell cycle and carbon metabolism. Previous research has
shown that cell cycle regulation inhibits the proliferative
ability of HCC cells [26]. Importantly, GSEA showed that
genes of the TCGA dataset were enriched in the cell cycle
and carbon metabolism. Studies have shown that tumor cells
often regulate the genes of the cell cycle producing damage
and inactivation of this pathway may be involved in tumor
development [27]. Furthermore, high expression of miR-
452-5p performs an integral function in the progression of
HCC through carbon metabolism [28].

Seven hub genes (SOCS2, MYOM2, FTCD, ADAMTSL2,
TMEM106C, LARS, and KPNA2) involved in the process of
the HCC prognosis were identified. SOCS2 was associated
with distinct stages that indicated poor survival outcomes for
patients with HCC [29]. Previous studies have shown that
FTCD is a protective factor in HCC development and progno-
sis [30]. Overexpression of TMEM106C [31] and KPNA2 [32]
predicted an unsatisfactory prognosis in HCC patients. Down-
regulated MYOM2 was observed in a majority of clinical cases
of breast cancer [33], however, the role of MYOM2,
ADAMTSL2, and LARS in HCC development and prognosis
remains unclear.

In this present research, in the TCGA liver cancer
cohorts, a high level of KPNA2 expression accurately pre-
dicted the 1-, 3-, and 5-year survival times, with AUCs of
0.742, 0.697, and 0.663, correspondingly. A risk score and
nomogram model also indicated that high-expressed
KPNA2 led to an unfavorable prognosis. There was also a
strong association between the risk score and KPNA2, which
suggests that KPNA2 could be a crucial biological marker in
determining the prognosis of patients with HCC. Recently,
an increasing number of studies have demonstrated that
lncRNA and miRNA primarily mediated posttranscriptional
regulation, and that dysregulation of this process has been
linked to many malignancies [34]. Interestingly, through tar-
geting KPNA2, the lncRNA HCP5 served as a ceRNA, which
had the effect of adversely modulating the expression of
miR-214-3p. Downmodulation of lncRNA HCP5 in HCC
tissues, when contrasted to normal samples, could affect
the proliferation, metastatic and invasive, while the relevant
mechanism of HCC still needs to be elucidated [35]. miR-
214-3p is shown to modulate cell growth, metastasis, and
apoptosis in HCC cells, endometrial cancer cells, and retino-
blastoma cells by directly targeting certain genes linc00665
[36], ATWIST1 [37], BCB1, and XIAP [38]. In general, this
ceRNA regulatory network further helps us understand the
regulatory mechanisms of these genes in HCC.

ssGSEA indicated that Th2 cells and plasmacytoid den-
dritic cells (pDCs) all exhibited a higher degree of infiltration
between HCC and controls. An intratumoral infiltration of
pDCs is predictive of an unfavorable prognosis among
patients who undergo curative resection for HCC; pDCs
exist in numerous primary as well as metastatic human neo-
plasms [39]. Furthermore, the significantly positive correla-
tion between Th2 cells and KPNA2 that Th2 cells were
linked to HCC patient survival [40]. Th17 cells, dendritic
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Figure 5: Expression of hub genes and construction of ceRNA regulated network. (a) The log-fold change, AUC, and adjusted P value of
seven genes in TCGA, GSE76427, GSE62232, and GSE6764. (b) Stage, gender, event, and expressed levels were shown in HCC and control
in HCC. (c) Violin plots illustrated the expression of seven hub genes. The thick black bar in the middle indicates the interquartile range, and
the black line extending from it represents the 95% confidence interval. (d) Time-dependent receiver operating characteristic curve analysis
displayed the AUC values over 1, 3, and 5 years. (e) Estimating the survival time of the KPNA2d by Kaplan-Meier survival curve. (f)
Differentially expressed miRNAs were identified between controls and HCC samples in TCGA. Red represents upregulated miRNAs,
whereas green represents downregulated miRNAs. (g) Bind sites of HCP5/has-miR-214-3p/KPNA2. Orange indicates upregulated, and
yellow indicates down-regulated. HCC, hepatocellular carcinoma; AUC, area under the curve; TCGA, The Cancer Genome Atlas.
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cells (DCs), and CD8 T cells were positively linked to the
risk score of prognosis. The levels of Th17 cells were sub-
stantially elevated in tumors of patients with HCC [41].
DCs and CD8+ T cells have increased infiltration levels
and are associated with relapse, compared with primary
HCC [42]. The seven hub genes were defined as biomarkers
for OS and we constructed a high immune cell infiltration
model to predict the HCC patients’ prognoses.

Despite the new findings at the level of bioinformatics
analysis, understanding of the prognosis and immune-
related biomarkers are still limited. Firstly, the markers asso-
ciated with HCC currently lack sufficient sensitivity and
specificity. Secondly, molecular and animal experiments are
needed to verify the biomarkers and apply the biomarkers
from preclinical studies in clinical practice.

5. Conclusion

SOCS2, MYOM2, FTCD, ADAMTSL2, TMEM106C, LARS,
and KPNA2 are vital biomarkers and involved in the process
of the HCC prognosis and immune infiltration.
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