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Given that myc was known to be a cancer-causing gene in several cancers including kidney renal clear cell carcinoma (KIRC). We
aimed to construct myc-regulated genes (MRGs)-based prognostic signature.We obtained the mRNA expression and clinical data
of KIRC fromTe Cancer Genome Atlas (TCGA) database and MRGs from the Molecular Signature Database (MSigDB). Ten,
a prognostic signature consisting of 8 MRGs (IRF9, UBE2C, YBX3, CDKN2B, CKAP2L, CYFIP2, FBLN5, and PDLIM7) was
developed by diferential expression analysis, cox regression analysis, and least absolute shrinkage and selection operator (lasso)
analysis. Patients with KIRC were divided into high- and low-risk groups based on risk scores of MRGs-based signatures. Patients
in the high-risk group showed inferior clinical characteristics and survival. In addition, the risk score was an independent
prognostic factor for KIRC, and the risk score�based nomogram displayed satisfactory performance to predict the survival of
KIRC.TeMRGs-based signature is also correlated with immune cell infltration and the mRNA expression of important immune
checkpoints (IDO2, PDCD1, LAG3, FOXP3, and TIGIT). Te tumor mutation burden (TMB) landscape between the high- and
low-risk groups showed higher levels of TMB in the high-risk group than in the low-risk group and that higher levels of TMB
predicted a poorer prognosis in KIRC. Furthermore, patients with KIRC in the high-risk group are more likely to experience
immune escape. At last, we found patients with KIRC in the high-risk group were more sensitive to several chemotherapy drugs
such as sunitinib, geftinib, nilotinib, and rapamycin than patients with KIRC in the low-risk group. Our study successfully
constructed and validated an MRGs-based signature that can predict clinical characteristics, prognosis, level of immune in-
fltration, and responsiveness to immunotherapy and chemotherapy drugs in patients with KIRC.

1. Introduction

Renal cell carcinoma (RCC) is global cancer that afects more
than 300,000 people worldwide each year [1]. Among all
RCCs, kidney renal clear cell carcinoma (KIRC) is the most
common pathological subtype, accounting for more than
70% of all RCCs [2]. Although KIRC is common, its onset is
insidious and the early clinical symptoms are mild or
nonexistent, and once patients developed typical clinical
symptoms such as hematuria, abdominal mass, and back
pain, it often indicates that cancer has entered an advanced
stage and the best time for treatment has been missed [3, 4].
In addition, KIRC is an invasive tumor that can often

develop distant organ metastases [5–7]. Delay in the di-
agnosis of KIRC and susceptibility of KIRC to metastasis
contribute to the unsatisfactory prognosis of patients.
Terefore, the identifcation of prognostic signatures and
customization of treatment options are necessary to allow
a satisfactory prognosis for patients with KIRC.

Myc is one of the most extensively studied oncogenes
and is closely correlated with the initiation, maintenance,
and progression of several cancers [8]. It encodes a protein
that functions primarily as a transcriptional regulator of
genes involved in the regulation of several cellular processes
such as cell growth, cell cycle, cell diferentiation, apoptosis,
angiogenesis, metabolism, and immune response [4, 9].
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Dysregulation of the expression of myc has been detected in
several types of cancer including KIRC, and studies have
demonstrated that myc played an important role in the
progression of KIRC [10–12]. In view of the important role
played by myc in KIRC progression, a comprehensive
analysis of genes regulated by myc was performed in
this study.

In the present study, we identifed diferentially
expressed myc-regulated genes (MRGs) and explored their
potential functions. Tese MRGs were further screened, and
we fnally obtained 8 MRGs (IRF9, UBE2C, YBX3,
CDKN2B, CKAP2L, CYFIP2, FBLN5, and PDLIM7) based
on which we successfully constructed and validated
a prognostic signature of KIRC. We uncovered the corre-
lation of MRGs-based signature with the clinical charac-
teristics and prognosis of KIRC. Based on the evidence that
myc was associated with the regulation of immune responses
in cancer [13–15], we also explored and unveiled the cor-
relation of MRGs-based signature with immune cell in-
fltration, immune checkpoint expression, tumor mutation
burden (TMB), and immune treatment response in KIRC. In
the end, we also found that the MRGs-based signature was
signifcantly correlated with the sensitivity of KIRC to
chemotherapeutic agents.

2. Methods

2.1. Data Acquisition. Te MRGs were derived from four
datasets including DANG_MYC_TARGETS_DN GeneSets
(31 genes), DANG_MYC_TARGETS_UP GeneSets (130
genes), DANG_REGULATED_BY_MYC_DN GeneSets
(251 genes), and DANG_REGULATED_BY_MYC_UP
GeneSets (68 genes) in the Molecular Signature Database
v7.1 (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb).
Te mRNA expression profles and clinical data of KIRC
samples and normal control samples were obtained from
Te Cancer Genome Atlas database (https://portal.gdc.
cancer.gov/).

2.2. Identifcation of Diferentially Expressed MRGs.
Analysis of diferential mRNA expression of MRGs between
KIRC samples and normal control samples was performed
by running the limma R package. Diferentially expressed
MRGs were defned as the diference in mRNA expression of
MRGs in KIRC samples and normal control samples that
met both |log 2 fold change (FC)|> 1 and false discovery rate
(FDR)< 0.05.

2.3. Enrichment Analysis of MRGs. Gene Ontology (GO)
analysis focuses on the molecular function, biological pro-
cess, and cellular component of the gene product; Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis focuses on the metabolic pathways in which the
gene product is involved. In order to explore which func-
tions and metabolic pathways MRGs are mainly involved in,
GO and KEGG analyses were performed by running cluster
Profler R package, org.Hs.eg.db R package, and enrichplot R
package.

2.4. Establishment and Validation of MRGs-Based Prognostic
Signature. Samples included in the construction and vali-
dation of the risk model were subject to the two criteria of [1]
having complete mRNA expression of MRGs and [2] having
a minimum overall survival (OS) time of no less than
30 days. Te samples eligible for inclusion in the model
construction and validation were randomly divided into
training and validation sets in a 7 : 3 ratio by running the
caret R package.

First, to identify MRGs associated with the prognosis of
KIRC in the training cohorts, univariate cox regression was
performed. To avoid overftting of MRGs with the model,
least absolute shrinkage and selection operator (lasso) re-
gression was then performed to remove MRGs that over-
ftted with the model. Later, multivariate cox regression
analysis was performed to select risk MRGs independently
from other factors. Te risk score for each KIRC sample can
be estimated by the following formula:

Risk score � (Coef1∗mRNAexpression of gene1)

+(Coef2∗mRNAexpression of gene2)

+ . . .

+(Coefn∗ mRNA expression of gene n).

(1)

Te “Coef” is the coefcient in the lasso regression
model. Te KIRC samples in the training sets can be di-
vided into high- and low-risk groups based on the median
value of risk scores for all KIRC samples in the training sets.
Principal component analysis (PCA) was performed to
downscale this multigene signature model. Te
Kaplan–Meier survival analysis and time-dependent re-
ceiver operating characteristic (ROC) analysis were then
performed to assess the ability of this signature in pre-
dicting the prognosis of KIRC. To evaluate the reliability
and stability of the signature, the same analysis was per-
formed on the test set and the total set. Te “glmnet,”
“survival,” “survminer,” and “time ROC” R packages were
applied to perform these analyses.

2.5. Establishment of Risk Score-Based Nomogram. Te
correlation of MRGs-based signatures with the clinical
characteristics of KIRC samples was frst explored. Next,
Cox regression analysis was performed to analyze whether
the risk score of MRGs-based signature was an independent
prognostic factor for the KIRC sample. A nomogram pre-
dicting the overall survival (OS) of the KIRC sample at 1, 2,
and 3 years was constructed based on the independent
factors of KIRC. Ten, calibration curves were plotted to
evaluate the performance of the nomogram in predicting
KIRC for 1, 2, and 3 years of OS. Te “survival” and “rms” R
packages were used to perform these analyses.

2.6. Immune Analysis of MRGs-Based Signature. Given the
importance of the tumor microenvironment (TME) in tu-
morigenesis and progression, the ESTIMATE algorithm was
applied to analyze the level of infltration of two important
components of the TME, stromal cells, and immune cells.
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Ten, the TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algo-
rithms were applied to assess diferences in immune cell
infltration in high- and low-risk groups, respectively. Next,
Diferences in immune cell abundance and diferences in the

enrichment of immune-related functions in high- and low-
risk groups were revealed by the ssGSEA enrichment analysis.
Furthermore, diferences in themRNA expression of immune
checkpoints between high- and low-risk groups and corre-
lations of risk scores with immune checkpoints were analyzed.
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Figure 1: Diferentially expressedMRGs in the TCGA database. (a) Heatmap showedMRGs diferentially expressed between KIRC samples
and normal samples. Red represented the upregulation of MRGs expression and green represented downregulation of MRGs expression.
(b) Volcano displayed diferentially expressed MRGs. FC: fold change, fdr: false discovery rate, KIRC: kidney renal clear cell carcinoma,
MRGs: myc-regulated genes, TCGA: Te Cancer Genome Atlas.
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2.7. Analysis of TMB and TIDE Based on MRGs Signature.
Te TMB in KIRC was evaluated based on this formula:
TMB� (total count of variants)/(the whole length of exons).
We analyzed the respective mutational profles of the KIRC
samples in the high- and low-risk groups by applying the
Maftools R package. Diferences in TMB between KIRC
patients in high- and low-risk groups, diferences in
Kaplan–Meier survival for KIRC patients with high and low
levels of TMB, and diferences in Kaplan–Meier survival
across subgroups stratifed by H−TMB+high risk,
H−TMB+ low risk, L−TMB+high risk and L−TMB+ low
risk were further analyzed by applying the limma, ggpubr,
survival, and survminer R packages.

In addition, the diference in the therapeutic efcacy of
immune checkpoint inhibitors between the high- and low-
risk groups was obtained by calculating the diference in
tumor immune dysfunction and exclusion (TIDE) scores in
the TIDE database (http://tide.dfci.harvard.edu/) between
the high- and low-risk groups.

2.8. Drug Sensitivity Analysis. To further investigate the
sensitivity of KIRC to common chemotherapeutic drugs in
the high- and low-risk groups, we searched the Genomics of
Drug Sensitivity in Cancer (GDSC, http://www.
cancerRxgene.org) database combined with the applica-
tion of the R package to compare the diferences in half-
maximal inhibitory concentration (IC50) values.

2.9. StatisticalAnalyses. All statistical analyses in the present
study were performed by R (version 4.0.0). Wilcoxon rank-
sum test was used to compare gene expression diferences

between KIRC samples and normal control samples. As for the
correlation analysis, the Pearson correlation coefcient was
adopted when the data met the three conditions of continuous
variables, normal distribution, and linear relationship, other-
wise, the Spearman correlation coefcient was used. P values
less than 0.05 were considered statistically diferent.

3. Results

3.1. Identifcation of the Diferentially Expressed MRGs.
We obtained 480 MRGs from the MSigDB database, and the
mRNA expression levels of MRGs were obtained by com-
paring with RNA-seq data downloaded from the TCGA
database including 539 KIRC samples and 72 normal control
samples. By diferential expression analysis, we fnally
successfully identifed 94 diferentially expressed MRGs
including 18 downregulated MRGs and 76 upregulated
MRGs based on the screening criteria of |log 2 FC|> 1 and
FDR< 0.05. Te results of this diferential expression
analysis are presented in the form of a heat map and
a volcano map, respectively (Figures 1(a), 1(b)).

3.2. Functional Enrichment Analysis of Diferentially
Expressed MRGs. To uncover the potential molecular func-
tions and mechanisms of diferentially expressed MRGs, we
performed GO and KEGG pathway enrichment analysis on
diferentially expressed MRGs. According to the low to high p
values and high to low correlation coefcients, we found that
the top three GO terms in biological process (BP) were re-
sponse to oxygen levels, wound healing, and response to
decreased oxygen levels. In the cellular component (CC)
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Figure 2: Enrichment analysis of diferentially expressed MRGs. (a) GO analysis including BP, CC, and MF categories of diferentially
expressed MRGs. (b) KEGG pathway analysis of diferentially expressed MRGs. BP: biological process, CC: cellular component, GO: gene
ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes, MF: molecular function, MRGs: myc-regulated genes.
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category, collagen−containing extracellular matrix, apical part
of the cell, and secretory granule membrane occupied the top
three GO terms. Extracellular matrix structural constituent,
growth factor binding, and G protein−coupled receptor
binding were the top three GO terms in the molecular
function (MF) category. Te results of the KEGG pathway
enrichment analysis showed that diferentially expressed
MRGs were closely associated with Epstein−Barr virus in-
fection, human papillomavirus infection, and PI3K−Akt
signaling pathway. Te results of GO and KEGG pathway
enrichment analysis are shown together in Figure 2.
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Figure 3: Construction of MRGs-based signature. (a) Univariate regression analysis to identify MRGs associated with the prognosis of
KIRC. (b) Lasso regression analysis to remove MRGs that overftted with the model. (c) Tenfold cross-validation to obtain satisfactory
parameters. KIRC: kidney renal clear cell carcinoma, Lasso: least absolute shrinkage and selection operator, MRGs: myc-regulated genes.

Table 1: Te list of genes and coefcients in the prognostic
signature.

Genes Coef
IRF9 0.223355169440029
UBE2C −0.225284628293333
YBX3 0.480900005160846
CDKN2B −0.596863859303069
CKAP2L 0.953589914105029
CYFIP2 −0.470828182577709
FBLN5 −0.186711438630099
PDLIM7 0.334470058632468
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3.3. Construction and Validation of a PrognosticMRGs-Based
Signature. A total of 515 KIRC samples were included in the
construction and validation of the risk model. Te 515 KIRC
samples were next randomly divided into a training set of
361 samples and a test set of 154 samples in a ratio of 7 : 3.
Te results of the univariate Cox regression analysis in the
training set showed that 37 MRGs were signifcantly asso-
ciated with the prognosis of the KIRC sample (p< 0.05)
(Figure 3(a)). Next, we successfully constructed a risk model
consisting of 8 MRGs (IRF9, UBE2C, YBX3, CDKN2B,
CKAP2L, CYFIP2, FBLN5, and PDLIM7) by performing the
lasso regression analysis (Figures 3(b) and 3(c)). Te list of
genes and coefcients used to construct the risk model are
shown in Table 1.

Te risk score for the KIRC samples in the risk model
was obtained according to the following formula: Risk
Score� (mRNA expression of IRF9 ∗
0.223355169440029)− (mRNA expression of UBE2C ∗
0.223355169440029) + (mRNA expression of YBX3 ∗
0.480900005160846)− (mRNA expression of CDKN2B ∗
0.596863859303069) + (mRNA expression of CKAP2L ∗
0.953589914105029)− (mRNA expression of CYFIP2 ∗
0.470828182577709)− (mRNA expression of FBLN5 ∗
0.186711438630099) + (mRNA expression of PDLIM7 ∗

0.334470058632468). In this way, we can calculate the
median value of risk scores for all KIRC samples in the
model, and based on the median value, the KIRC samples
can be divided into high-risk and low-risk groups. Te
results of PCA analysis showed a signifcant discrete trend in
the three-dimensional plane for the high- and low-risk
groups (Figure 4).

TemRNA expression of the eightMRGs in the high- and
low-risk groups was presented as a heatmap in Figure 5(a).
Tere was a signifcant diference in OS between the high- and
low-risk groups, as shown in Figure 5(b), where the
Kaplan–Meier survival analysis between the high- and low-
risk groups showed that OS was signifcantly lower in the
high-risk group than in the low-risk group (p � 2.331e − 15).
Consistent with this, the survival status of the high-risk group
(percentage of death status 54%) was also signifcantly worse
than that of the low-risk group (percentage of death status
17%) (Figure 5(c)). Te time-dependent ROC showed the
accuracy of the risk score in predicting OS at 1, 2, and 3 years
in the KIRC sample to be 0.743, 0.726, and 0.739, respectively
(Figure 5(d)). Te test set and the overall set were performed
with the same analysis to verify the stability and reliability of
the model constructed from the training set. MRGs in-
corporated into the constructed risk model exhibited
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Figure 4: PCA analysis: (a) PCA analysis in the training set; (b) PCA analysis in the test set; (c) PCA analysis in the overall set. PCA:
principal components analysis.
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expression levels consistent with the training set in both the
test and total sets (Figures 5(a), 6(a), 7(a)). Te diferences in
OS and survival status in the high- and low-risk groups in the
test and total sets were consistent with those exhibited in the
high- and low-risk groups in the training set (Figures 5(b),
5(c), 6(b), 6(c), 7(b), and 7(c)). Time-dependent ROC analysis
showed that the accuracy of the risk score in predicting the 1-
year, 2-year, and 3-year OS of the KIRC sample in the test set
was 0.893, 0.803, and 0.735, respectively (Figure 6(d)), and in
the overall set was 0.788, 0.748, and 0.739, respectively
(Figure 7(d)). Te risk scores for both the test and total sets
demonstrate similar accuracy in predicting the 1-year, 2-year,
and 3-year OS of the KIRC samples as the risk scores for the
training set.

3.4. Correlation between MRGs-Based Signature and Clinical
Characteristics. We also explored the correlation between
MRGS-based signatures and clinical characteristics of the KIRC
samples. Te heatmap (Figure 8) showed that the mRNA ex-
pression levels of IRF9, UBE2C, YBX3, CKAP2L, and PDLIM7
were higher in the high-risk group than in the low-risk group,

while the mRNA expression levels of CDKN2B, CYFIP2, and
FBLN5 were lower in the high-risk group than in the low-risk
group. In addition, an important fndingwas that samples in the
high-risk group possessed inferior clinical characteristics in-
cluding higher grade, stage, T-staging, and M-staging in the
TNM staging system than those in the low-risk group.

Furthermore, the relationship between MRGs-based
signature and the prognosis of KIRC in each clinical sub-
group stratifed by age (≤65 years or >65 years), gender
(female or male), grade (G1 + 2 or G3+ 4), stage (stage I + II
or III + IV), T stage (T1 + 2 or T3 + 4), M stage (M0 or M1),
and N stage (N0 or N1) was analyzed. Te Kaplan–Meier
analysis showed that higher risk scores were correlated with
worse prognosis in multiple subgroups including age
≤65 years or >65 years, female or male, G1 + 2 or G3 + 4,
Stage I + II or III + IV, T1 + 2 or T3 + 4 stage, M0 orM1 stage,
and N0 stage compared to lower risk scores (Figure 9). It
should be noted that in the N1 subgroup (Figure 9), the risk
score was not signifcantly associated with the prognosis of
the KIRC sample, which may be due to the small number of
KIRC samples in the N1 subgroup.
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Figure 5: Validation of eight MRGs signature in the training test (n� 361). (a) Heatmap of 8MRGs expressions.Te color from green to red
represents the expression level of MRGs from low to high. (b) Kaplan–Meier survival analysis results for the KIRC samples between high-
and low-risk groups. (c) Comparison of survival status of KIRC samples between high- and low-risk groups. (d) Te ROC curve of the risk
score in predicting 1-year, 2-year, and 3-year survival times for the KIRC samples. KIRC: kidney renal clear cell carcinoma, MRGs: myc-
regulated genes, ROC, receiver operating characteristic.
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3.5. Construction of theNomogram. We included the clinical
characteristics including age, gender, grade, stage, Tstage, M
stage, N stage, and risk score of the KIRC sample in uni-
variate and multivariate Cox regression analysis models. Te
results of univariate Cox regression analysis showed age (HR
1.019; 95% CI 0.998–1.039; p � 0.073), grade (HR 1.914;
95% CI 1.362–2.688; p< 0.001), stage (HR 1.685; 95%
CI 1.342–2.116; p< 0.001), T stage (HR 1.830; 95%
CI 1.376–2.435; p< 0.001), M stage (HR 3.437; 95%
CI 2.008–5.884; p< 0.001), N stage (HR 3.018; 95%
CI 1.369–6.654; p � 0.006), and risk score (HR 1.133; 95%
CI 1.084–1.184; p< 0.001) were signifcantly correlated with
the prognosis of the KIRC samples (Figure 10(a)). However,
the results of the multivariate Cox regression analysis
showed that only age (HR 1.043; 95% CI 1.018–1.068;
p< 0.001), M stage (HR 3.338; 95% CI 1.038–10.741; p �

0.043), and risk score (HR 1.088; 95% CI 1.027–1.152; p �

0.004) were independent prognostic factors for the KIRC
samples (Figure 10(b)). In addition, we compared the ac-
curacy of risk and traditional clinical characteristics in
predicting prognosis in the KIRC. Te results showed that
the accuracy of risk in predicting one-year OS in the KIRC
sample was 0.743, which was only less accurate than that of

the stage (AUC� 0.854) and Tstage (AUC� 0.839), and better
than most of the clinical variables such as age (AUC� 0.579),
gender (AUC� 0.497), grade (AUC� 0.716), M stage
(AUC� 0.721), and N stage (AUC� 0.567) (Figure 10(c)).

To further predict the prognosis of KIRC, we constructed
an MRGs-based nomogram. As shown in Figure 11(a), the
nomogram predicted the OS of the KIRC sample at 1, 2, and
3 years, respectively. Te C-index of 0.747 implied that the
nomogram had moderate accuracy in predicting KIRC 1-
year, 2-year, and 3-year OS. In addition, the calibration
curves also showed that the 1-year, 2-year, and 3-year
survival probabilities of the patients with KIRC predicted
by the nomogram were consistent with the actual survival
probabilities of the patients (Figures 11(b)–11(c)).

3.6. Diference of Immune Characteristics of MRGs-Based
Signature. To explore the correlations betweenMRGs-based
signature and immune characteristics in the TME, we
performed a series of analyses including the correlation
analyses between MRGs-based signature and immune cells,
immune checkpoints, and immune escape. Te results of
stromal cell and immune cell infltration analysis in TME
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Figure 6: Validation of eight MRGs signature in the test set (n� 154). (a) Heatmap of 8 MRGs expressions. Te color from green to red
represents the expression level of MRGs from low to high. (b) Kaplan–Meier survival analysis results for the KIRC samples between high-
and low-risk groups. (c) Comparison of survival status of KIRC samples between high- and low-risk groups. (d) Te ROC curve of the risk
score in predicting 1-year, 2-year, and 3-year survival times for the KIRC samples. KIRC: kidney renal clear cell carcinoma, MRGs: myc-
regulated genes, ROC: receiver operating characteristic.
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showed that higher levels of immune cell infltration in the
high-risk group than in the low-risk group in TME
(p � 2.8e − 07) (Figures 12(a)–12(c)).Te results of immune
cell infltration analysis based on TIMER, CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC algorithms showed that the risk score of
MRGs-based signature was closely correlated with the in-
fltration of immune cells (Figure 12(d)). Enrichment
analysis of immune-related functions in the high- and low-
risk groups showed that APC_co_stimulation, checkpoint,
cytolytic_activity, HLA, Infammation−promoting,
T_cell_coinhibition, T_cell_costimulation, and Type_-
I_IFN_response were more active in the high-risk group
than in the low-risk group (Figure 12(e)).

We further explored the diferences in the expression of
immunosuppressive molecules in the high- and low-risk
groups. Te results showed that most of the immune
checkpoint molecules in the high-risk group, including
ICOS, PDCD1, CD70, LAIR1, CD28, CD40, CD160,
TNFSF9, LAG3, BTLA, CD48, CD44, CD200R1, TIGIT,
TNFSF4, TMIGD2, TNFRSF14, LGALS9, TNFRSF9, CD86,
CD244, and TNFRSF25, with higher expression levels than

those in the low-risk group (Figure 13(a)). We also analyzed
the correlation between the expression of several key im-
mune checkpoints and risk scores. Te results showed that
IDO2 (R� 0.3, p � 4.2e − 08), PDCD1 (R� 0.33, p � 1.7e −

09), LAG3 (R� 0.44, p � 3e − 16), FOXP3 (R� 0.4,
p � 1.1e − 13), and TIGIT (R� 0.3, p � 4.9e − 08) were
positively correlated with the risk score (Figure 13(b)). Te
results of the immune infltration analysis showed the
immunosuppressed status of the KIRC samples in the high-
risk group.

3.7. Diference between TMB and TIDE Based on MRGs
Signatures. We further explored mutational characteristics
between high- and low-risk groups. Te TMB landscape in
the high- and low-risk groups showed that the frequency of
mutations in SETD2, BAP1, and MTOR was higher in the
high-risk group than in the low-risk group (Figure 14(a)). In
addition, the results of the correlation analysis between risk
and TMB levels showed that the levels of TMB in the high-
and low-risk samples were close to being statistically dif-
ferent (p � 0.069) (Figure 14(b)). Te Kaplan–Meier sur-
vival analysis showed higher levels of TMB were associated
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Figure 7: Validation of eight MRGs signature in the overall set (n� 515). (a) Heatmap of 8 MRGs expressions. Te color from green to red
represents the expression level of MRGs from low to high. (b) Kaplan–Meier survival analysis results for the KIRC samples between high-
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with a worse prognosis for KIRC patients (p � 0.001)
(Figure 14(c)). Results of survival analysis for subgroups
stratifed by H−TMB+high risk, H−TMB+ low risk,
L−TMB+high risk, and L−TMB+ low risk showed that
patients with high levels of TMB and high risk have the worst
prognosis, while those with low levels of TMB and low risk
have the best prognosis (p< 0.001) (Figure 14(d)).

Immune checkpoint inhibition therapy has become a hot
treatment modality for cancer [16]. Te TIDE score is
gaining popularity because it is more accurate than a single
biomarker for predicting the efcacy of immune checkpoint
blockade for cancer [17].We analyzed the diference in TIDE
scores between the high- and low-risk groups, and the results
showed that the TIDE scores were signifcantly higher in the
high-risk group than in the low-risk group (p< 0.01)
(Figure 15).

3.8. Analysis of MRGs-Based Signature and Chemotherapy
Drug Sensitivity. Te results of the correlation analysis
between MRGs-based signature and chemotherapeutic drug
sensitivity showed that the patients in the high-risk group
had lower IC50 values compared to patients in the low-risk
group for sunitinib, geftinib, nilotinib, rapamycin, mito-
mycin.C, paclitaxel, vinblastine, salubrinal, parthenolide,
and metformin. However, the IC50 values for embelin and
thapsigargin were lower in the low-risk group than in the
high-risk group (Figure 16).

4. Discussion

In this study, we identifed 94 MRGs and analyzed the
potential functions of theseMRGs.Te results of the GO and
KEGG pathway enrichment analysis displayed the com-
plexity of the function of theMRGs signature, suggesting the
application potential of the MRGs signature. Combining cox
regression analysis and lasso regression analysis we suc-
cessfully constructed a prognostic signature consisting of
eight MRGs (IRF9, UBE2C, YBX3, CDKN2B, CKAP2L,
CYFIP2, FBLN5, and PDLIM7). Te results of PCA and t-
SNE analysis displayed that the signature received good
dimensionality reduction, which implied the reliability of
the risk model. Te results of the prognostic analysis of the
samples in the test and total sets further increase the
credibility of our risk model constructed using the training
set. Te results of the correlation analysis between MRGs-
based signature and clinical characteristics revealed that
patients in the high-risk group were signifcantly associated
with malignant clinical characteristics such as high grade,
high stage, high T stage, and high M stage, which implied
a poor prognosis for patients. In addition, the results of the
Kaplan–Meier survival analysis for subgroups showed sig-
nifcant diferences in OS between patients in high- and low-
risk groups across multiple subgroups. Te results of these
analyses implied the satisfactory performance of MRGs-
based signatures to predict the prognosis of KIRC. Te
results of univariate and multivariate Cox regression
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Figure 9: Continued.
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Figure 9: Kaplan–Meier survival analysis of high- and low-risk KIRC samples between subgroups stratifed by age, gender, grade, stage, T
stage, M stage, and N stage. KIRC: kidney renal clear cell carcinoma.
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Figure 10: MRGs-based risk signature was an independent prognostic factor for the KIRC samples. (a) Univariate cox regression analysis of
risk scores and clinical characteristics to identify factors associated with the prognosis of KIRC. (b) Multivariate cox regression analysis of
risk scores and clinical characteristics was performed to identify factors that could independently infuence the prognosis of KIRC. (c) ROC
curves for risk score and clinical characteristics to predict prognosis of KIRC. KIRC: kidney renal clear cell carcinoma,MRGs: myc-regulated
genes, ROC: receiver operating characteristic.
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Figure 11: Construction of a nomogram: (a) Construction of nomogram for predicting 1-year, 2-year, and 3-year OS of KIRC based on
MGRs signature. (b) Calibration curves for predicting the 1-year, 2-year, and 3-year OS of KIRC. KIRC: kidney renal clear cell carcinoma,
MRGs: myc-regulated genes, OS: overall survival.
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Figure 13: Relationship between the immune checkpoint and MRGs-based signature. (a) Diferences in expression of immune checkpoints
between high- and low-risk groups. (b) Correlation analysis of risk scores with immune checkpoint expression. MRGs: myc-regulated genes.
(∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001).

0

531

TM
B

SPEN

FBN2

CSMD3

HMCN1

LRP2

DST

KDM5C

DNAH9

MUC16

MTOR

BAP1

SETD2

TTN

PBRM1

VHL

5%

3%

3%

3%

5%

5%

5%

4%

8%

9%

15%

13%

14%

34%

46%

0 43

No. of samples

Risk

Missense_Mutation

Translation_Start_Site

Nonsense_Mutation

Frame_Shif_Del

Frame_Shif_Ins

In_Frame_Del

Multi_Hit

Risk

high

low

Altered in 76 (81.72%) of 93 samples.

0

103

TM
B

SPEN

FBN2

CSMD3

HMCN1

LRP2

DST

KDM5C

DNAH9

MUC16

MTOR

BAP1

SETD2

TTN

PBRM1

VHL

1%

2%

6%

5%

6%

4%

5%

3%

6%

6%

5%

10%

18%

37%

44%

0 56

No. of samples

Risk

Nonsense_Mutation

Frame_Shif_Ins

Frame_Shif_Del

Missense_Mutation

In_Frame_Del

Nonstop_Mutation

Multi_Hit

Risk

high

low

Altered in 101 (80.16%) of 126 samples.

(a)
Figure 14: Continued.

16 Journal of Oncology



analyses demonstrated that risk score could independently
predict the prognosis of patients with KIRC, and risk score-
based nomogram and calibration curves suggested satis-
factory accuracy of MRGs-based signature in predicting the
prognosis of KIRC patients.

Te TME is highly complex, and the study of TME can
help provide new ideas for the treatment of tumors [18].
Stromal cells and immune cells are two important cell
members of the TME [19]. Stromal cells have been dem-
onstrated to be closely associated with the growth, metas-
tasis, drug resistance of several cancers [20–22], and
immune cells, depending on their type, can play an im-
portant role in fghting tumors and in promoting tumor
progression or immune escape, respectively [23, 24]. Ana-
lytical results of TME based on MRGs signature showed that
higher risk scores were associated with higher levels of
immune cell infltration, with no signifcant correlation

between stromal cells and risk scores. Tis suggested that
MRGs-based signature may afect the prognosis of KIRC by
infuencing the immune cell landscape in TME. Te higher
level of immune cell infltration and immune function en-
richment scores in the high-risk group further suggested that
the infltration of immune cells in TME may have con-
tributed to tumor progression. Te results of the analysis of
the diference in the expression of immune checkpoints
between high- and low-risk groups implied an immuno-
suppressed status in the KIRC samples from the high-risk
group. Studies have shown that IDO2 was associated with B-
cell immunity and can regulate T-cell-related immunity by
afecting B-cell intrinsic mechanisms [25, 26]. PDCD1, also
known as PD1, were known as programmed death ligands
and receptors, respectively, and its combination with PD-L1
allows tumor cells to evade the body’s immune surveillance
[27]. FOXP3 is an important marker molecule of Tregs that
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Figure 14: Correlation analysis of prognostic signature with TMB. (a) Te mutational landscape between high- and low-risk groups.
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Figure 16: Diferential analysis of IC50 value of sunitinib, geftinib, nilotinib, rapamycin, mitomycin.C, paclitaxel, vinblastine, salubrinal,
parthenolide, metformin, embelin, and thapsigargin between high- and low-risk groups. IC50: half-maximal inhibitory concentration.
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directly or indirectly regulates the activity and function of
Tregs, and changes in its protein levels have been shown to
be closely associated with a variety of human diseases in-
cluding tumorigenesis and metastasis [28–31]. LAG-3 was
demonstrated to negatively regulate T-cell function, and
antibodies to LAG-3 could relieve the inhibition of T-cell
function by Tregs [32]. TIGIT is expressed in various T-cell
subsets (CD4+ T, CD8+ T, Tregs) and can suppress the
body’s innate and adaptive immunity through various
mechanisms and is considered a promising target for im-
munotherapy [33]. Takamatsu et al. demonstrated that
profles of LAG-3, TIM-3, and TIGIT were valuable for
predicting the prognosis and TME of KIRC [34]. Te sig-
nifcant positive correlation of risk scores with these key
immune checkpoints further confrmed that upregulation of
the expression of immune checkpoint in the KIRC patients
from a high-risk group may be responsible for their poor
prognosis.

With the widespread use of high-throughput sequencing
technology, TMB has become a marker for predicting the
response to immune checkpoint blockade in several types of
cancer [35]. Although, in general, higher levels of TMB in
cancer can lead to more infltration of CD8+ Tcells and thus
contribute to a better prognosis by exerting an antitumor
efect, KIRC has been shown to be cancer that challenged
conventional thinking about cancer immunology based on
this evidence that KIRC has amodest mutation burden but is
responsive to immunotherapy and higher CD8+ T-cell in-
fltration is usually associated with a poorer prognosis
[36, 37]. Our study displayed that patients with KIRC in the
high-risk group had higher levels of TMB than those with
KIRC in the low-risk group and that the higher the TMB the
worse the prognosis for KIRC, which further validated the
unusual relationship between the TMB and immunology in
KIRC. SETD2, BAP1, andMTOR possessed higher mutation
frequencies in the high-risk group than in the low-risk group
implying that these three cancer-driven mutations may
promote the progression of KIRC. Te diference in TIDE
scores between KIRC in the high- and low-risk groups re-
fected the efectiveness of immune checkpoint blockade,
with higher TIDE scores indicating poorer immune
checkpoint blockade, and higher TIDE scores for KIRC
patients in the high-risk group than those in the low-risk
group suggesting that patients in the high-risk group were
more likely to experience immune escape, which was con-
sistent with our analysis results that KIRC patients in the
high-risk group had a worse prognosis than those in the low-
risk group.

Of these MRGs, some have been shown to be associated
with KIRC progression. IRF9 was thought could predict the
prognosis and immune characteristics of KIRC as a member
of a multigene signature [38, 39]. UBE2C was shown to be
closely associated with the proliferation and invasion of
KIRC and could predict the immune characteristics and
prognosis of KIRC [40–42]. Jafri et al. identifed germline
CDKN2B mutations as a novel causative agent of familial
KIRC, suggesting an important role for CDKN2B in the
initiation of KIRC [43]. CYFIP2 was predicted to be
downregulated in KIRC and downregulation of expression

of CYFIP2 was associated with poor prognosis of KIRC [44].
In a rat model, FBLN5 was found to be associated with the
metastasis of KIRC [45]. Other MRGs were not reported in
KIRC, so our future studies will focus on these MRGs.

Te results of the analysis of diferences in sensitivity to
chemotherapeutic agents between high- and low-risk groups
revealed that patients in the high-risk group benefted more
from treatment with sunitinib, geftinib, nilotinib, rapa-
mycin, mitomycin.C, paclitaxel, vinblastine, salubrinal,
parthenolide, and metformin, while patients in the low-risk
group benefted more from treatment with embelin and
thapsigargin. Tese fndings provide a theoretical basis for
individualized pharmacological treatment of patients
with KIRC.

Te lack of prognostic information in all KIRC-related
datasets in the GEO database resulted in our inability to
validate our results with an independent external dataset,
which is the main limitation of this study. Further studies
need to be performed to explore the molecular mechanisms
and biological functions of MRGs-based signatures.

5. Conclusion

In this study, a prognostic signature consisting of 8 MRGs
(IRF9, UBE2C, YBX3, CDKN2B, CKAP2L, CYFIP2, FBLN5,
and PDLIM7) in KIRC was successfully constructed and
validated.TeMRGs-based signature can predict the clinical
characteristics, prognosis, immune characteristics, and
sensitivity to chemotherapeutic agents of patients with KIRC
and has the potential to be applied in the clinical setting.
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