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Objective. Accumulating evidence suggests that DNA damage is associated with numerous gynecological illnesses, particularly
advanced uterine corpus endometrial carcinoma (UCEC), illustrating the involvement of the DNA damage pathway in the
advancement of UCEC. �is research aimed to discover a robust subtype with the potential to contribute to the scienti�c
treatment of UCEC. Methods. In this work, the expression patterns of prognostic DNA damage-related genes were curated, and
consensus clustering analyses were undertaken to determine DNA damage subtypes in patients with UCEC in the TCGA cohort.
Two DNA damage-related subtypes were identi�ed for further investigation. Di�erentially expressed genes (DEGs) analysis, gene
ontology analysis, mutation analysis, and immune cell infraction analysis were performed to �nd the molecular mechanism
behind it. Finally, the polymerase chain reaction (PCR) was conducted to verify the correlation of the hub genes. Results. In total,
545 patients with UCEC were tested for two distinct DNA damage subtypes. �e clinical prognosis was poorer among patients
with DNA damage subtype 2 than those in subtype 1. �e DEGs analysis and PPI analysis showed that ASMP, BUB1, CENPF,
MAD2L1, NCAPG, SGO2, and TOP2A were expressed higher in UCEC tissues than in the normal tissues. Immune cell infraction
analysis showed that hub genes were associated with the tumor microenvironment (TME). Conclusion. Altogether, our research
identi�ed two distinct DNA damage subtypes that are complicated and heterogeneous. A better knowledge of the characteristics of
the TME may be gained by quantitative measurement of DNA damage subtypes in individual patients, which can also lead to the
development of more successful treatment regimens.

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the
most prevalent types of gynecologic cancers [1]. Each year,
UCEC claims the lives of over 50,000 women worldwide [2].
Currently, the routine clinical therapeutic approach for
patients su�ering from UCEC is surgery in conjunction with
radiotherapy and/or chemotherapy. Despite the fast prog-
ress in contemporary treatment, the death rate of patients
with UCEC has been steadily rising over the last several
years, and prognosis varies greatly from case to case [3].
Although certain clinical characteristics of patients with
UCEC and many molecular biological markers have been

utilized to anticipate their clinical prognosis, these strategies
are associated with drawbacks [4]. Hence, the development
of innovative therapy regimens and indicators is essential.

�e DNA damage checkpoint is a signaling response that
is triggered when there is damage to DNA [5]. Once trig-
gered, the checkpoint is responsible for inducing several
global (cell-wide) alterations in cell physiology, including
cell cycle arrest, regulation of DNA replication pathways,
and transcription upregulation of DNA repair genes [6].
Cancers are characterized by the presence of DNA damage,
a modi�ed regulation of DNA damage, and persistent in-
¥ammation. In spite of these restrictions, cancer cells
manage to resist apoptosis and continue to proliferate. One
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of the hallmark features of cancer cells is their capacity to
maintain proliferation and evade apoptosis while being
exposed to DNA-damaging agents. Both types of cancer cells
will eventually activate a DNA damage response, which will
detect and repair any DNA damage that has occurred.
Suppressing the process via which DNA damage is repaired
gives a potential therapeutic option in both disorders.

Immunotherapy is emerging as a potentially useful
treatment method since it has high specificity, long-time
benefits, and few adverse effects [7]. .e response rate of
immune checkpoint blockade treatment is quite low in
patients with UCEC due to the vast heterogeneity of the
disease, which includes clinicopathologic parameters, mo-
lecular features, and immunological microenvironment [8].
.erefore, identifying the fundamental benefits in patients is
essential for the advancement of immunotherapy consid-
ering UCEC variability. Despite this, the variability in the
immunological environment of UCEC is not completely
understood. Currently, it is difficult to arrive at a consensus
signature that can be used to characterize the immunological
functions in UCEC and appropriately classify patients with
UCEC. Even though several prognostic signatures have been
established for classifying patients with UCEC, they are
unable to assess the antitumor immune activity. Hence, in
this study, we examined two different DNA damage sub-
types, which will lead to a more in-depth understanding of
the characteristics of the TME and the discovery of a more
potent prognostic biological marker for UCEC.

2. Materials and Methods

2.1. Data Resources. .e Cancer Genome Atlas (TCGA)
(https://tcga-data.nci.nih.gov/tcga/) database was used to
extract molecular information of 545 individuals who were
diagnosed with UCEC. .e GDC data portal was used to
retrieve the clinical data and transcriptomic profiles that
were associated with the TCGA-UCEC dataset. .e En-
semble IDs were converted to gene symbols, and the frag-
ments per kilobase million (FPKM) values were converted to
reflect transcripts per million (TPM).

2.2. Construction of DNA Damage Subtypes by Consensus
Clustering Analysis. .e ConsensusClusterPlus program
was used to determine the DNA damage subtypes. To cat-
egorize UCEC specimens, a consensus matrix was developed
with the use of consensus clustering analysis. Using PAM
algorithm and Pearson correlation coefficient as a measure
of distance, 500 bootstraps were displayed, each of which
involved patients with UCEC included in the TCGA cohort.
Moreover, the number of clusters was determined to be
between 2 and 8, and consensus clustering was chosen for
categorizing the relevant genes that were immunologically
significant for prognosis. To determine which classification
was the most accurate, a consistency matrix and a consis-
tency cumulative distribution function were utilized [9].

2.3.MutationAnalysis. .e TCGA dataset was searched and
accessed to obtain the RNA-sequencing expression profiles,

genetic mutation, and relevant clinical data of 545 patients
(https://portal.gdc.com). .e “maftools” package of the R
software was utilized to retrieve the data on mutations,
which were then visualized by this program. .e histogram
displays genes that had a greater mutational frequency in 545
patients.

2.4. Identification of DEGs. .e significance analysis in-
cluded within the empirical Bayes techniques that is con-
tained inside the limma package was performed to identify
DEGs. P value <0.01 and |logFC|> 1.5 were chosen as the
threshold values to determine whether DEGs were signifi-
cant. Additionally, using the cBioPortal web platform
(https://www.cbioportal.org), we established a network of
DEGs and their co-expression genes.

2.5. Analysis of Gene Ontology and Pathway Enrichment.
Metascape (https://metascape.org/) is an online platform
that integrates membership search, gene annotation,
interactome analysis, and functional enrichment premised
on over 40 separate knowledge bases via an integrated in-
terface. Using Metascape, we carried out functional en-
richment analysis of DEGs.

2.6. Analysis of Enrichment of Protein–Protein Interactions
(PPIs). An enrichment study of PPIs was performed using
the Metascape database for each gene list that was provided.
Only the physical interactions observed in STRING, with
a physical score of >0.132 and BioGRID were considered.
.e final result is a network comprising of selected proteins
that when combined with a minimum of one other member
of the list creates a physical interaction. .e Molecular
Complex Detection (MCODE) algorithm 10 (Version 1.2;
https://baderlab.org/Software/MCODE) was employed to
determine which components of the network were densely
connected when the number of proteins in the network
ranges between 3 and 500 [10].

2.7. Gene Expression Validation and Survival Analysis of Hub
Genes. To provide additional evidence that hub genes
perform significant roles in the onset and prognosis of
UCEC, we examined the expression of these genes and their
value as a prognostic indicator using the GEPIA database
(https://gepia.cancer-pku.cn/). GEPIA is an interactive
online platform for analyzing gene expression. It comprises
9,736 samples of malignancies and 8,587 normal tissue
samples [11, 12].

2.8. Immune Cell Infraction Analysis. To assess the reliable
results of immune score evaluation, we used ssGSEA al-
gorithms. Patients with UCECwere separated into high- and
low-expression groups. To explore the role of hub genes in
TME, the differences across groups were examined.

2.9. Quantitative RT-PCR. We extracted total RNA from
paraneoplastic and tumor tissues of patients with UCEC
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using the TRIzol reagent (Sigma-Aldrich, St. Louis, MO,
USA). .en, RNA from each sample (2 μg) was subjected to
quantitative reverse transcription-polymerase chain reaction
using the FastStart Universal SYBR® Green Master (Roche,
Germany) on an ABI QuantStudio 5 Real-Time PCR System
(.ermo Fisher Scientific, USA). In a volume of reaction that
was 20 μl, the cDNA was utilized as a template (contained
10 μl of PCR mixture, 0.5 μl of reverse and forward primers,
2 μl of cDNA template, and applicable volume of water). .e
PCR reactions were carried out as follows: the cycling
conditions commenced with an initial DNA denaturation
phase performed at 95°C for 30 seconds, followed by 45
cycles at 94°C for 15 s, at 56°C for 30 seconds, and at 72°C for
20 seconds. .ere was a triple analysis for each specimen. By
employing the 2−ΔΔCTmethod, readings from the threshold
cycle (CT) were obtained and then standardized to the levels
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in
all samples. .e mRNA expression levels in UCEC tissues
were compared to those in paracancerous tissue controls.
Table 1 presents the sequences of primer pairs corre-
sponding to the target genes.

3. Results

3.1. Identification of Two Distinct DNA Damage Subtypes in
UCEC. .is research retrieved the mRNA expression pro-
files of hypoxia-related genes for UCEC samples from the
TCGA cohort. DNA damage-related genes are listed in
Table S1. Patients with UCEC were clustered according to
the expression profiles of prognostic hypoxia-associated
genes using consensus clustering analysis. .e clustering
consistency was analyzed with k values ranging from 2 to 8.
Consequently, choosing a k value of 2 was the best option.
.is resulted in the identification of two immune subtypes
among patients with UCEC, namely, immune subtype 1
(n� 399) and immune subtype 2 (n� 146) (Figure 1(a)). .e
survival analysis showed that the patients in subtype 2 had
a poorer outcome than those in subtype 1 (Figure 1(b)).

3.2. Mutation Statue in Subtypes. In addition, we examined
the distribution of SNPs among the UCEC samples. In all,
377 UCEC samples had genetic alterations in DNA damage
subtype 1 (Figure 1(c)), whereas 161 UCEC specimens had
mutations in DNA damage subtype 2 (Figure 1(d)).

3.3. Identification of DEGs between the Subtypes. .e Limma
program was used to analyze the DEGs, and the results
revealed 2,465 DEGs. Of these, 2,465 genes experienced
substantial upregulation, while 11 genes experienced
downregulation. Figure 2(a) displays the volcano plot cre-
ated using the data from each dataset’s gene expression
profile. Figure 2(b) depicts a heatmap of the top DEGs in the
database.

3.4. EnrichmentAnalysis ofGO terms andKEGGPathways for
DEGs. We analyzed the putative mRNA targets utilizing the
gene ontology (GO) database. .e analysis of the molecular

function (MF), cellular component (CC), and biological
process (BP) of putative targets that had been clustered
utilizing the R software’s ClusterProfiler program illustrated
a considerable enrichment of DEGs in functions like mitotic
cell cycle, retinoblastoma gene in cancer, and regulation of
cell cycle process (Figure 2(c)).

3.5. Development of PPI Networks and Module Analysis.
.e Metascape database served as a basis for establishing
a PPI network incorporating DEGs (Figures 3(a)-3(b)). .e
two most significant modules were extracted from this PPI
network by employingMCODE, one consisting of genes that
were upregulated, and the other consisting of genes that
were downregulated. Hub genes were selected for further
analysis. Hub genes were mostly enriched in the pathways
like progesterone-mediated oocyte maturation, platinum
drug resistance, and oocyte meiosis (Figures 3(c)–3(d)).

3.6. Analysis and Verification of Hub Genes. .e retrieval of
the GEPIA database also revealed that ASMP, BUB1,
CENPF, MAD2L1, NCAPG, SGO2, and TOP2A had sub-
stantial differences in expression between tumor and normal
tissues of UCEC (Figures 4(a)–4(g)). All hub genes had
higher expression in tumor groups compared with normal
groups. Moreover, the results suggested that all hub genes
were valuable in UCEC, which further confirmed that the
results of our study are valuable.

3.7. Hub Genes and Immune Infiltrates. Finally, ssGSEA
showed that ASMP, BUB1, CENPF, MAD2L1, NCAPG,
SGO2, and TOP2A were positively related with the immune
cells like .2 cells (Figures 5(a)–5(g)). In contrast, all hub
genes were negatively correlated with the immune cells, such
as CD56 bright NK cells.

3.8. Assessment of UCEC Gene Expression. To validate the
expression of ASMP, BUB1, CENPF, MAD2L1, NCAPG,
SGO2, and TOP2A genes in tumor samples and adjoining
nontumor samples, we measured their relative mRNA ex-
pressions using qPCR. .e findings illustrated that the av-
erage level of ASMP, BUB1, CENPF, MAD2L1, NCAPG,
SGO2, and TOP2A expression was substantially elevated in
UCEC tissues (Figures 6(a)–6(g)).

4. Discussion

With low incidence and mortality rates of UCEC, endo-
metrial cancer often exhibits a favorable prognosis at an
early stage [13]. However, at an advanced stage, it has poor
prognosis, lacks specific early symptoms, and there are no
effective strategies for early detection [14]. Developing
a reliable prognostic model to offer parameters for de-
termining clinical treatment choices is thus a priority [15].

DNA damage often occurs in cells under the pressure of
exogenous agents, including exposure to ultraviolet (UV)
light, ionizing radiation, and chemicals, as well as endog-
enous factors, such as replication errors and oxidative stress,
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Figure 1: (a) A heatmap illustrating the sample clustering at consensus k� 2 according to the expression profiles of prognostic immune-
related genes. (b) Kaplan–Meier survival analysis of the clusters. (c, d) Oncoprint illustrating the somatic mutation landscape in UCEC
samples with DNA damage subtypes 1 and 2.

Table 1: Primer pairs for the target genes.

Gene Forward primer sequence
(5′-3′)

Reverse primer sequence
(5′-3′)

ASPM GCGTTTGCTTTTCAGGTGGA CCTCCACATAGCCTGAATAAGTGA
BUB1 CGGCTTCTAGTTTGCGGTTC ACCCACTGTATGTATTGAAGGAC
CENPF CGTCCCCGAGAGCAAGTTTA GTGGAAGAGTCTGGCTTGCT
MAD2L1 AGAGCCCAGGAGGAACTGAA TGGATGGAGGCAACAAACGA
NCAPG GGCGCCCATTGTTACTGTTG AGCATCATTCTTCTCTATGTGGACT
SGO2 GAACCCAAAAATCAGGAATAGACC ACTTCATCTTCTCATCTTGTCTCTG
TOP2A CCGTCACCATGGAAGTGTCA CATGTCTGCCACCCTTGGAT
GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG

4 Journal of Oncology



which eventually cause single-strand breaks (SSBs) or
double-strand breaks (DSBs) in DNA [16, 17]. DNA damage
triggers a sophisticated signal transduction pathway that
detects damage to DNA and transmits this data to the cell to
trigger cellular responses to DNA damage. .e DNA
damage response maximizes the ability of the cells to repair
DNA and increases their survival once the damage is done
[18]. However, in severe DNA damage, apoptosis and cell
senescence occur since DNA damage response halts ad-
vancement of the cell cycle [19]. .e damage and repair
machinery of DNA play a role in UCEC microsatellite

instability, which is caused by HPV infection (which knocks
out TP53) [20]. .e DNA in a cell is capable of being
remodeled and repaired due to an arsenal of enzymes that
are present in the cell. Nonetheless, their actions must be
strictly controlled in a spatial, temporal, and DNA lesion-
appropriate manner to maximize DNA repair and minimize
necessary and possibly harmful modifications in DNA
structure throughout normal cellular functions. Cells have
evolved to detect and rectify mistakes that occur during
DNA replication so that they can appropriately preserve the
integrity of the genetic code. If these mistakes cannot be
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fixed, mechanisms are put into place to either destroy the cell
via a process called apoptosis and/or force the cell to go
through a process called senescence. Nonetheless, one of the
characteristics of cancer is genomic instability, which may be
caused by interruption of the DNA damage response (DDR).
.is can contribute to the evasion of death and senescence,
or the uncontrolled proliferation of cells with DNA repli-
cation errors.

Numerous research reports have demonstrated links
between dysfunctional DNA repair pathways and malig-
nancy, although most of these investigations are not

associated with UCEC. One of the most significant benefits
of our research is that it is an unbiased investigation
transcending the candidate-gene method, and takes into
consideration the complex interaction of DNA repair genes
in a variety of UCECs. Meanwhile, some hub genes in-
cluding ASMP, BUB1, CENPF, MAD2L1, NCAPG, SGO2,
and TOP2A were found via bioinformatics analysis and
experiment. Among these hub genes, MAD2L1 has been
reported to be associated with UCEC, and maintains the
stemness characteristics of UCEC. Furthermore, NCAPG
was confirmed to be dysregulated in UCEC in GSE63678 and
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Figure 3: (a).e PPI network depicting DEGs and their co-expression genes. (b) Hub genes among the DEGs. (c, d) Heatmap and network
of GO enrichment analysis of hub genes.
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Figure 4: (a–g) .e levels of hub gene expression and their prognostic significance based on data from the GEPIA database.
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Figure 5: (a–g) Correlation of hub gene expression and immune cell infraction.
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Figure 6: Continued.
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GSE17025 [21]. Additional research ought to investigate the
other hub genes to find more potential biomarkers
for UCEC.

5. Conclusion

In this study, we used machine learning to identify distinct
UCEC DNA damage-associated subtypes, each of which had
distinct molecular properties, immunological features, and
prognostic outcomes. Furthermore, hub genes were
screened by bioinformatics analysis and confirmed by ex-
periment. .e microenvironment was analyzed by ssGSEA.
In all, our findings may offer patients with UCEC a potential
new treatment strategy.
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