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Tumor-associated Macrophages (TAMs) play a vital role in the progression of glioma. Macrophage M2 has been confirmed to
promote immunosuppression and proliferation of low-grade glioma (LGG). Here, we searched for genes negatively correlated
with Macrophages M2 by bioinformatical methods and investigated their protective ability for prognosis. LGG and adjacent
normal samples were screened out in TCGA and three GEO datasets. 326 overlapped differentially expressed genes were
calculated, and their biological functions were investigated by Go and KEGG analyses. Macrophage M2 accounted for the
highest proportion among all 22 immune cells by CIBERSORT deconvolution algorithm. The proportion of Macrophage M2
in LGG was also higher than that in normal tissue according to several deconvolution algorithms. 43 genes in the blue module
negatively correlated with Macrophage M2 infiltration were identified by weighted gene coexpression network analysis
(WGCNA). Through immune infiltration and correlation analysis, FGFBP3, VAX2, and SHD were selected and they were
enriched in G protein-coupled receptors’ signaling regulation and cytokine receptor interaction. They could prolong the overall
and disease-free survival time. Univariate and multivariate Cox regression analyses were applied to evaluate prognosis
prediction ability. Interestingly, FGFBP3 and AHD were independent prognostic predictors. A nomogram was drawn, and its
1-year, 3-year, and 5-year survival prognostic value was verified by ROC curves and calibration plots. In conclusion, FGFBP3,
VAX2, and SHD were protective prognostic biomarkers against Macrophage M2 infiltration in low-grade glioma. The FGFBP3
and SHD were independent factors to effectively predict long-term survival probability.

1. Introduction

With decades of worldwide study, the management of low-
grade glioma (LGG) remains controversial. LGG is a pro-
gressive and invasive disease of the central nervous system
[1]. Although LGG grows relatively slowly, the diffuse and
infiltrative characteristics means it could hardly be cured.
Malignant transformation to high-grade glioma would inev-
itably occur, and the mean survival is less than 10 years [2,
3]. Molecular parameters had been incorporated into glioma
classification and diagnosis by neuropathology guidelines
established in 2014 [4]. Subsequently, 2016 and 2021 World
Health Organization (WHO) brain tumor classifications
increasingly highlighted the role of molecular diagnostics,
although histology and immunohistochemistry remained

basic [5, 6]. Apart from surgical operation, the Temozolo-
mide, adjuvant PCV chemotherapy or radiotherapy, immu-
notherapies including vaccine therapies, immune checkpoint
blockade, and chimeric antigen receptor (CAR) T cells were
promising therapies for glioma [7, 8]. In view of evidence-
based and personalized medicine, individualized biomarkers
play important roles in the specific treatment, so we aimed
to find protective prognostic biomarkers of LGG to assistant
clinical diagnostics and therapy.

Tumor-associated Macrophages (TAMs), which are
essential in the tumorigenesis, angiogenesis, and metastasis
of glioma [9, 10], account for 30-50% of all noncancerous
cells in glioma-immune microenvironment [11]. Microglia/
Macrophages, the main component of glioma TAM, have
been categorized as M1 polarized (“classically activated”),
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Figure 1: Continued.
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Figure 1: Differential expression analysis and functional enrichment analysis. (a) Volcano plot of differential expression genes of LGG in
TCGA, GSE68848, GES4290, and GSE16011 databases. (b) The Venn diagram for overlapping DEGs. (c). GO enrichment analysis (top
10 in each section). BP: biological process; CC: cellular component; MF: molecular function. (d) KEGG enrichment analysis (top 30
KEGG terms).
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M2 polarized (“alternatively activated”), and nonpolarized
M0 Macrophages [12, 13]. Macrophages M1 promote Th1
immune response and produce proinflammatory cytokines
to exert antitumor effects [9, 14]. However, in tumor
immune microenvironment, Macrophages M1 transform
into M2 activated by interleukin-4, -10, -13 (IL-4, IL-10,
and IL-13), colony-stimulating factor-1 (CSF-1), and tumor
growth factor β (TGF-β) [11, 15]. Macrophages M2 pro-
mote glioma progression, angiogenesis, and immunosup-
pression by JAK2/STAT3 signaling, IL-10, IL-6, and
IGFBP1 [11, 16]. Expressions of Macrophages M1 were neg-
atively correlated with glioma WHO grade, while M2
showed a positive correlation with pathological grade along
with poorer survival [17].

Through seeking genes negatively associated with M2
infiltration in LGG, we expected to find biomarkers for prog-
nosis evaluation and offer potential targeted genes for
immune microenvironment therapy.

2. Materials and Methods

2.1. Data Acquisition and Processing. Datasets with gene
expression and clinical information profiles numbered
GSE68848, GSE4290, and GSE16011 were downloaded from
the Gene Expression Omnibus (GEO) database. After
removing high grade glioma and pathological lacking sam-
ples, 95 LGGs and 28 adjacent normal samples were left in
GSE68848, 45 LGGs and 23 adjacent normal samples were
left in GSE4290, and 32 LGGs and 8 adjacent normal sam-
ples were left in GSE16011. In addition, 516 primary LGGs
and 5 normal samples were chosen from The Cancer
Genome Atlas (TCGA) database. Limma package in R [18]

was used for data rectification. The clinical information
was presented in Supplement File 1.

2.2. Differential Expression Analysis. Differential genes
(DEGs) were calculated by DESeq2 package in R [19]. Cut
off value of ∣log2 Fold Change ðFCÞ ∣ ≥1 and adj. p < 0:05
was defined as the differentially expressed genes in
GSE68848, GSE4290, and GSE16011. In TCGA dataset, the
cut off value was set to ∣log2 ðFCÞ ∣ ≥1 and adj. p < 0:05.

2.3. Enrichment Analysis. Gene functions were enriched in
three parts, respectively, by Gene Ontology (Go) analysis:
cellular component (CC), molecular function (MF), and bio-
logical process (BP). Kyoto Encyclopedia of Genes and
Genomes (KEGG) database was utilized to analyze biological
pathways and functions of target genes. Single gene enrich-
ment was achieved by Gene Set Enrichment Analysis
(GSEA). R package clusterProfiler [20] was applied for
enrichment analysis.

2.4. Evaluation of Immunocyte Infiltration. A deconvolution
algorithm based on gene expression called CIBERSORT [21]
was applied to evaluate the proportion of 22 infiltrating
immune cells. The leukocyte signature matrix (LM22) and
expression matrix of datasets were input to calculate the
immunocyte proportion in tumor and normal samples by
CIBERSORT.R. Moreover, the “IOBR” package [22] was
used to analyze the Macrophage levels by xCell, EPIC, and
ssGSEA methods.

2.5. Weighted Gene Coexpression Network Analysis
(WGCNA). The coexpression genes of Macrophage M2 were
got by weighted gene coexpression network analysis with R
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Figure 2: Proportion of 22 immune cells calculated by CIBERSORT. The immunocyte proportion of LGG in the (a) TCGA dataset, (b)
GSE16011 dataset, (c) GSE4290 dataset, and (d) GSE68848 dataset. (e) The immunocyte proportion between LGG and adjacent normal
tissue in GSE68848 dataset. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ns: no statistical significance.
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package termed “WGCNA” [23]. Samples were clustered by
a hierarchical clustering algorithm implemented in R func-
tion “hclust.” The soft thresholding power β = 8 was selected
by R function “pickSoftThreshold” (scale free R2 = 0:85).
The expression matrix was converted into the adjacent
matrix and then into the topological matrix for gene cluster-
ing. Average linkage hierarchical cluster approach was uti-

lized to cluster genes in a dendrogram. The dynamic tree
shear algorithm was also applied to determine gene module
assignment. Module eigengenes (MEs) were calculated by R
function “moduleEigengenes.” Gene significance (GS) and
module membership (MM) were defined as the correlation
value. Pearson correlation coefficients between them were
calculated.
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Figure 3: WGCNA analysis. (a) Clustering dendrogram of LGG samples in GSE68848 and heat map of Macrophage M2. (b) Selection of
soft thresholding power (optimal β = 8). (c) Dendrogram of different modules. (d) The relationship between coexpression modules and
Macrophage M2 proportion (the correlation value was labelled in each square, and the corresponding p value was labelled in the
bracket) (e) The scatter plot of blue module membership vs gene significance (correlation value = 0:49, p < 0:001).
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Figure 4: Correlation of tumor purity and immune cell infiltration (CD8+ T cell, CD4+ T cell, Macrophage, B cell, neutrophil, and dendritic
cell) with (a) FGFBP3, (b) VAX2, and (c) SHD.(p values < 0.001)).

8 Journal of Oncology



2.6. Immunocyte Infiltration and Survival Analysis. Cox Pro-
portional Hazard Models of immunocyte in LGG and GBM
were got from TIMER (Tumor Immune Estimation
Resource) database (https://cistrome.shinyapps.io/timer/).
Correlations between gene expression and immunocyte
infiltration in LGG were also evaluated by TIMER database.
Survival information and expressions of single gene among
GBM, LGG and normal tissue were obtained from Gene
Expression Profiling Interactive Analysis (GEPIA) database
(http://gepia.cancer-pku.cn).

2.7. Construction of Prognostic Model. The prognostic model
was constructed on TCGA-LGG dataset due to the extensive
and complete survival data in it. Primary LGG samples in
TCGA database were randomly divided into a training data-
set (n = 256) and a testing set (n = 256). In the training data-
set, univariate Cox proportional hazards regression analysis
was used to verify the prognosis predictability with the cut-
off of p value < 0.05. Then, a multivariate Cox proportional
hazards regression analysis was applied to further filter these
candidate genes and the Akaike information criterion (AIC)
was used to avoid overfitting. The risk scores were calculated
based on the following formula by “survival” package in R.
The median risk score was used as the cut-off value to distin-
guish high and low risk groups. Kaplan-Meier curves and
time-dependent ROC curves were used to analyze its ability
of prognosis prediction.

Risk score = h tð Þ = h0 tð Þ × exp 〠βiXi

� �
: ð1Þ

In the risk score formula, “hðtÞ” represents the risk func-
tion at “t” time and “h0ðtÞ” was the baseline risk function
when all covariates’values were zero at “t” time. “X” was
the expression of each prognostic gene and “β” represented
the coefficients in the multivariate Cox regression model.

2.8. Establishment and Analysis of Nomogram Prognosis
Model. Risk score was seemed as a single variate in univari-
ate and multivariate Cox regression analysis together with
clinical variables such as age and gender in training and test-
ing dataset. Next, all independent prognostic factors were
incorporated to construct a nomogram to assess the 1-year,
3-year, and 5-year overall survival (OS) of LGG. Besides,
the calibration curve of the nomogram was plotted to esti-
mate the nomogram’s predictive ability. Time-dependent

ROC curves were drawn to evaluate predictive sensitivities
and specificities of prognostic factors.

3. Results

3.1. Differentially Expressed Genes and Functional
Enrichment Analysis. Differential expression analysis of
LGG and adjacent normal tissue in the 4 datasets showed
2142 DEGs in GSE68848, 1598 DEGs in GSE4290, 1415
DEGs in GSE16011, and 1509DEGs in TCGA-LGG
(Figure 1(a)). 326 overlapping genes (Figure 1(b)) were cho-
sen for GO and KEGG enrichment analysis (Figure 1(c)).
DEGs were enriched in the biological functions such as reg-
ulation of transsynaptic signaling, modulation of chemical
synaptic transmission, and ion and gated channel activity.
DEGs were also involved in the pathways such as neuroac-
tive ligand-receptor interaction and calcium signaling path-
way (Figures 1(c) and 1(d)).

3.2. Proportion of Macrophage M2. Proportion of 22
immune cells was calculated by CIBERSORT deconvolution
algorithm in LGG. Macrophage M2 accounts for the highest
proportion among them (Figures 2(a)–2(d). Macrophage
M2 counts for 44% ± 12:0% of all immunocytes in TCGA-
LGG dataset, 25% ± 6% in GSE16011, 21% ± 10% in
GSE4290, and 25% ± 12% in GSE68848 with p value <
0.05. The GSE68848 dataset was selected for further
WGCNA calculation in which Macrophage M2 proportion
was significantly higher than that in adjacent normal tissue
(Figure 2(e), p < 0:01) by Mann–Whitney U test. Moreover,
in order to further confirm the result, we used more decon-
volution algorithms to estimate Macrophage M2 in
GSE68848 dataset, such as xCell, EPIC, and ssGSEA algo-
rithms. Not surprisingly, Macrophage proportion also was
higher than that in normal tissue (Figure S1).

3.3. Identification of Genes Negatively Correlated with
Macrophage M2 by WGCNA. The coexpression network
(Figure 3(a)) was constructed by 326 DEG expression in 95
LGG samples in GSE68848, along with Macrophage M2 heat
map. The optimal soft thresholding power β was 8
(Figure 3(b)). Dendrogram of coexpression modules was
shown in Figure 3(c), and the genes were classified into 4 dif-
ferent modules. Blue module had the most significant nega-
tive correlation with Macrophage M2 in Figure 3(d)
(correlation value = −0:33, p = 0:001). 43 gene memberships
in the blue module were significantly related to gene signifi-
cance (GS) of M2 Macrophages with a correlation value of
0.49 and p value < 0.001 (Figure 3(e)).

3.4. Identification of Hub Genes. To further select the hub
genes which negatively correlated with Macrophage M2,
we analyzed the immune infiltration levels in LGG and the
correlation of tumor purity with TIMER database. The top
five negative correlation genes were FGFBP3, ID4, VAX2,
SHD, and STON1. Since genes highly expressed in the
immune microenvironment are expected to have negative
associations with tumor purity, ID4, and STON1 which
had an unsignificant association with tumor purity
(p > 0:05) were excluded. The hub genes were FGFBP3,

Table 1: Cox Proportional Hazard Model of immunocytes in LGG.

Id HR HR.95 L HR.95H p value

Age 1.057 1.040 1.073 0.000

B_cell 18.189 0.075 4411.806 0.300

CD8_T cell 42.057 0.054 32746.198 0.271

CD4_T cell 0.296 0.000 601.131 0.754

Macrophage 308.109 6.722 14123.299 0.003

Neutrophil 0.020 0.000 52.734 0.330

Dendritic 3.14 0.081 122.299 0.540
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Figure 5: Continued.
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Figure 5: Expression and prognosis of hub genes negatively correlated with Macrophage M2. (a) Expression of FGFBP3 between LGG and
normal tissue(left figure, red column: LGG, gray column: normal tissue, p < 0:05); the overall survival (mid figure, red curve: high FGFBP3
expression, blue curve: low FGFBP3 expression, p < 0:01) and disease free survival curves (right, p < 0:01). (b) FGFBP3 expression (p > 0:05),
OS (p > 0:05), and DFS (p > 0:05) in GBM. (c) VAX2 expression (p < 0:05), OS (p < 0:05), and DFS (p < 0:05) in LGG. (d) VAX2 expression
(p < 0:05), OS (p > 0:05), and DFS (p > 0:05) in GBM. (e) SHD expression (p < 0:05), OS (p < 0:01), and DFS (p < 0:01) in LGG. (f) SHD
expression (p > 0:05) OS p > 0:05), and DFS prognosis (p > 0:05) in GBM.

11Journal of Oncology



–0.4

–0.2

0.0

En
ric

hm
en

t s
co

re

–2

0

2

Ra
nk

ed
 li

st
 m

et
ric

FGFBP3

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS
REACTOME_GPCR_LIGAND_BINDING

10000 20000 30000

Rank in ordered dataset

(a)

Figure 6: Continued.

12 Journal of Oncology



–0.6

–0.4

–0.2

0.0

En
ric

hm
en

t s
co

re

–6

–4

–2

0

2

Ra
nk

ed
 li

st 
m

et
ric

VAX2

10000 20000 30000

Rank in ordered dataset

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS
REACTOME_GPCR_LIGAND_BINDING

(b)

Figure 6: Continued.

13Journal of Oncology



VAX2, and SHD. Correlation of tumor purity and immune
cell infiltration (B cell, CD8+ T cell, CD4+ T cell, Macro-
phage, neutrophil, and dendritic cell) is shown in Figure 4.
FGFBP3 (correlation value = −0:317, p < 0:001), VAX2
(correlation value = −0:302, p < 0:001), and SHD
(correlation value = −0:342, p < 0:001) were all negatively
correlated with Macrophage infiltration in LGG.

3.5. Survival Analysis of Genes Negatively Correlated with
Macrophage M2. Cox Proportional Hazard models for
immunocytes in LGG were established by TIMER database

(Table 1). Macrophages showed notable mortality risk in
LGG. Hub genes negatively correlated with Macrophage
M2 all showed a remarkable difference between LGG and
adjacent normal tissue (Figures 5(a), 5(c), and 5(e)) while
not in GBM(Figures 5(b), 5(d), and 5(f)). FGFBP3, VAX2,
and SHD were all protective prognostic factors for overall
survival (OS) and disease free survival (DFS) (log rank p <
0:05, pðHRÞ < 0:05, Figures 5(a), 5(c), and 5(e)), while no
significant impact was found in GBM (log rank p > 0:05, pð
HRÞ > 0:05, Figures 5(b), 5(d), and 5(f)).

3.6. Gene Set Enrichment Analysis (GSEA) of Hub Genes.
FGFBP3, VAX2, and SHD were all enriched at the bottom
of the ordered dataset with negative enrichment score peaks
(Figure 6). FGFBP3 was enriched in the reactome of G alpha
I signaling events with a Normalized Enrichment Score ð
NESÞ = −1:566, Nominal p value ðNOMÞ p = 0:017, and
False Discovery Rate q value ðFDRÞ q = 0:013. FGFBP3 was
also enriched in GPCR ligand binding (NES = −1:609,
NOM p = 0:017, and FDR q = 0:013). VAX2 was enriched
in the reactome of G alpha I signaling events
(NES = −1:746, NOM p = 0:031, and FDR q = 0:023) and
GPCR ligand binding (NES = −1:753, NOM p = 0:031, and
FDR q = 0:023). SHD was enriched in KEGG cytokine-
cytokine receptor interaction (NES = −1:669, NOM p =
0:027, and FDR q = 0:022) and NABA ECM regulators
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Figure 6: GSEA enrichment results in TCGA-LGG dataset, including FGFBP3, VAX2, and SHD.

Table 2: Univariate and multivariate Cox regression results of hub
genes.

Unicox

Gene HR HR.95 L HR.95H p value

FGFBP3 0.572 0.430 0.762 <0.001
VAX2 0.616 0.509 0.747 <0.001
SHD 0.681 0.596 0.778 <0.001
Multicox

Gene HR HR.95 L HR.95H p value

FGFBP3 0.708 0.526 0.953 0.023

SHD 0.734 0.636 0.849 <0.001
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Figure 7: Continued.
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(NES = −1:494, NOM p = 0:027, and FDR q = 0:022). The
results revealed that FGFBP3 and VAX2 may negatively reg-
ulated the reactome of G alpha I signaling events and GPCR
ligand binding. SHD might lead to the downregulation

trends of KEGG cytokine-cytokine receptor interaction and
NABA ECM regulators. Moreover, other significantly
enriched pathways of the above three genes were detailed
in supplementary files 2.
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Figure 7: Assessment the prediction accuracy of prognostic factors. The risk score distribution in training dataset (a) and testing dataset (d).
Kaplan-Meier curves for OS based on the risk score in the training dataset (b) and testing dataset (e). (shaded areas represent 95%
confidence intervals. Patient number of different risk ranks at different times is listed below the curve. p values < 0.01). Time-dependent
ROC curve of 1-year, 3-year, and 5-year survival rate in training dataset (c) and testing dataset (f).
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3.7. Identification Independent Prognostic Risk Factors of
LGG. Univariate Cox regression analysis revealed FGFBP3,
VAX2, and SHD were all significantly associated with the
OS of LGG in the training dataset (Table 2). Hazard Ratios
(HR) of FGFBP3, VAX2, and SHD were all less than 1 with
the p values < 0.001, indicating all of them were protective
prognostic factors for LGG. After several permutation oper-
ations, the AIC value was minimized (AIC: 550.920) when
only FGFBP3 and SHD were involved in the regression
equation. Multivariate Cox regression showed that the HR
of FGFBP3 and SHD were 0.708 and 0.734, respectively,
proving that FGFBP3 and SHD were independent prognos-
tic factors for LGG (Table 2). FGFBP3 and SHD were inte-
grated into a predictive risk score, and the median risk
score was applied as the cut-off value to distinguish high
and low risk groups. In the training dataset, 128 patients
were classified into the high risk group and other 128
patients were in the low risk group (Figure 7(a)). High risk
group suffered from more mortality risk than the low risk
group in Kaplan-Meier curve (log-rank test, Figure 7(b)).
Time-dependent receiver operating characteristic (ROC)
curves were drawn to evaluate the prediction accuracy. Areas
under the time-dependent ROC curve (AUC) were 0.792
(1-year), 0.764(3-year), and 0.721(5-year) in the training
dataset (Figure 7(c)). In the testing dataset, patients were
divided into the high risk group (n = 127) and the low risk
group (n = 129) (Figure 7(d)). Overall survival time of the
high risk group was significantly shorter than the low risk
group (Figure 7(e)). AUCs were 0.771 (1-year), 0.658 (3-
year), and 0.596 (5-year) in the testing dataset
(Figure 7(f)).

3.8. Prognostic Risk Model and Nomogram. Age, gender, and
risk score were put into univariate and multivariate Cox pro-
portional hazards regression analysis to select independent
prognostic variables for a prognostic risk model. Univariate
analysis indicated that age and risk score were significantly
associated with the OS of LGG patients both in the training
dataset (HR > 1, p < 0:001, Figure 8(a)) and the testing data-
set (HR > 1, p < 0:001, Figure 8(c)). According to multivari-
ate Cox regression analysis, age and risk score were
independent prognostic variables in the training set
(HR > 1, p < 0:001, Figure 8(b)) and testing set (HR > 1, p
< 0:001, Figure 8(d)). Gender was not a prognostic factor
in all the Cox analysis (p > 0:05). The result was consistent
with the statistical analysis and clinical experience.

A simple nomogram was designed to predict the overall
survival rate based on protective prognostic genes against
Macrophage M2 infiltration in low-grade glioma
(Figure 9(a)). Well prediction accuracy of the nomogram
was revealed by 1-year (Figure 9(b)), 3-year (Figure 9(c)),
and 5-year (Figure 9(c)) calibration curves plotted in testing
dataset. AUC values of ROC curves in the training set
(Figure 10(a)) and testing set (Figure 10(b)) were all more
than 0.7, indicating a well prediction ability in long-term
survival.

4. Discussion

LGGs are slowly progressing tumor with ineluctable malig-
nant potential. Biological features of LGG are quite different
from GBM, and it is considered as a therapeutic time win-
dow before malignant transformation. Since LGGs often
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Figure 8: Univariate and multivariate Cox proportional hazard regression analysis of age, gender, and risk score. (a) Univariate Cox in
training dataset. (b) Multivariate Cox in training dataset. (c) Univariate Cox in testing dataset. (d) Multivariate Cox in testing dataset.
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Figure 9: Continued.
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Figure 9: (a) Nomogram for protective prognostic factors against Macrophage M2 infiltration in LGG. (b) 1-year (c) 3-year, and (d) 5-year
calibration plots of the nomogram.
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Figure 10: 1-year, 3-year, and 5-year ROC curves for nomogram in the training dataset (a) and testing dataset (b).
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occur in adolescents and children with a life expectancy of
several years, the preservation of cognitive abilities and life
quality is the same vital as prolonging progression free sur-
vival [24]. Traditional surgery, chemotherapy, and radio-
therapy might threaten the quality of life, while therapies
for regulating tumor immune microenvironment might
minimize the damage.

Macrophages M2 predominate in the immune microen-
vironment of glioma. They did not play the antitumor role of
immune cells any longer and instead promote the occur-
rence, proliferation, and migration of glioma, along with
immunosuppression [16, 25]. Seeking biomarkers against
Macrophages M2 infiltration would be hopeful for prognosis
prediction and immunotherapy.

In our study, 4 databases were chosen to search for dif-
ferential genes, in which high grade glioma and samples
without complete information were removed. To diminish
the discrepancy of a single dataset, the overlapping differen-
tial genes were chosen for further study. Their biological
functions were enriched in regulation of transsynaptic sig-
naling, modulation of chemical synaptic transmission, ion
and gated channel activity, as well as neuroactive ligand-
receptor interaction. By CIBERSOR deconvolution algo-
rithm, Macrophages M2 were found to account for the high-
est proportion in LGG. 43 genes negatively correlated with
M2 were chosen by WGCNA analysis. Then, three hub
genes which most negatively correlated with the degree of
M2 immune infiltration and tumor purity were selected.
FGFBP3, VAX2, and SHD were all highly expressed in
LGG as protective prognostic factors for OS and DFS, while
no significant difference was found in GBM. FGFBP3 and
VAX2 negatively regulated the reactome of G alpha I signal
events and GPCR ligand binding. SHD led to downregula-
tion trends of KEGG cytokine-cytokine receptor interaction
and NABA ECM regulators. The FGFBP3, VAX2, and SHD
were all proved as protective prognostic factors. Multivariate
Cox regression revealed that FGFBP3 and SHD were inde-
pendent prognostic predictors. Risk scores were calculated,
and a nomogram was drawn in training dataset. The prog-
nostic predictability was verified in the testing dataset by cal-
ibration plots and ROC curves.

Fibroblast growth factor binding protein 3 (FGFBP3) is
highly expressed in the central nervous system, which is
essential for neuronal survival and differentiation in brain
[26]. It affects carbohydrate and lipid metabolism [27] and
was also found to have close relationships with breast cancer
[28], angiogenesis [29], and familial pancreatic cancer [30].
The FGFBP3 regulates the FGF and FGFR signaling path-
ways. Duplication of the tyrosine kinase region of FGFR1
was found in 1/4 pediatric low-grade astrocytomas.
cIMPACT-NOW reported that FGFR1 mutations are typical
of low-grade gliomas which indicated an inert clinical
behavior and long survival time [31]. The 2021 WHO classi-
fication of central nervous system defined FGFR as the
Genes/Molecular Profiles Characteristic of polymorphous
low-grade neuroepithelial tumor, diffuse low-grade glioma,
diffuse midline glioma, and dysembryoplastic neuroepithe-
lial tumor [6]. Ventral Anterior Homeobox 2 (VAX2) is a
transcription factor that regulates the dorsoventral specifica-

tion of the forebrain and Wnt signaling [32, 33]. The VAX2
has recently attracted many attentions in cancers and has
been proved to regulate the malignant progression of thyroid
cancer [34], breast cancer [35], and bladder cancer [36]. Src
Homology 2 Domain Containing Transforming Protein
(SHD) was over expressed in the cortex and frontal cortex,
having a close relationship with spinal muscular atrophy
type IV. In addition, with the development of nanotechnol-
ogy, nanomaterials loaded with small interfering ribonucleic
acid have been used in many types of cancer [37–41]. Hence,
we believed that VAX2, FGFBP3, and SHD would be pro-
moting targets for LGG therapies based on nanomaterials.

As with other studies based on the TCGA database, there
were several limitations in the study. Our clinical survival
study was only based on the TCGA database because the
other three GEO datasets lacked integrated clinical informa-
tion such as age, gender, or survival states. When extending
our findings to patients of different ethnicities, caution is
advised. Apart from that, the nomogram must be validated
in multicenter cohorts in the future [42].

In short, FGFBP3, VAX2, and SHD might be effective
prognostic predictors of LGG against Macrophage M2 infil-
tration. The FGFBP3 and SHD were independent predictors.
Further studies were necessary for the specific mechanisms
on how those genes regulating Macrophage M2 in the gli-
oma immune microenvironment to affect LGG progression.

5. Conclusions

Our study identified differential genes and their biological
functions between LGG and normal tissues. Various bioin-
formatics methods were applied, and FGFBP3, VAX2, and
SHD were identified as protective prognostic factors against
Macrophage M2 infiltration in LGG. The FGFBP3 and SHD
were independent predictors, and a nomogram based on
them could well predict the overall survival time. It might
provide a new prospect for LGG immunotherapy from the
perspective of regulating Macrophages M2 in central ner-
vous system.
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