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Background. Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults. Thus, novel reliable
biomarkers need to be further explored to increase diagnostic, therapeutic, and prognostic effectiveness. Methods. Six datasets
containing CLL and control samples were downloaded from the Gene Expression Omnibus database. Differential gene
expression analysis, weighted gene coexpression network analysis (WGCNA), and the least absolute shrinkage and selection
operator (LASSO) regression were applied to identify potential diagnostic biomarkers for CLL using R software. The diagnostic
performance of the hub genes was then measured by the receiver operating characteristic (ROC) curve analysis. Functional
analysis was implemented to uncover the underlying mechanisms. Additionally, correlation analysis was performed to assess
the relationship between the hub genes and immunity characteristics. Results. A total number of 47 differentially expressed
genes (DEGs) and 25 candidate hub genes were extracted through differential gene expression analysis and WGCNA,
respectively. Based on the 14 overlapped genes between the DEGs and the candidate hub genes, LASSO regression analysis was
used, which identified a final number of six hub genes as potential biomarkers for CLL: ABCA6, CCDC88A, PMEPA1, EBF1,
FILIP1L, and TEAD2. The ROC curves of the six genes showed reliable predictive ability in the training and validation cohorts,
with all area under the curve (AUC) values over 0.80. Functional analysis revealed an abnormal immune status in the CLL
patients. A significant correlation was found between the hub genes and the immune-related pathways, indicating a possible
tight connection between the hub genes and tumor immunity in CLL. Conclusion. This study was based on machine learning
algorithms, and we identified six genes that could be possible CLL markers, which may be involved in CLL pathogenesis and
progression through immune-related signal pathways.

1. Introduction

Chronic lymphocytic leukemia (CLL) is a hematopoietic
malignancy characterized by the clonal accumulation of
mature B lymphocytes in the peripheral blood, bone mar-
row, and lymphoid tissues [1]. It was estimated that 20,160
new cases would be diagnosed, and 4,410 cases of death of
this disease would occur only in the United States in 2022
[2]. Notably, most newly diagnosed patients present only
with asymptomatic peripheral blood lymphocytosis or leu-
kocytosis [3]. Currently, the diagnosis of CLL is based
mainly on blood counts, blood smears, and immunopheno-

typing of circulating B lymphocytes [4, 5]. Immunohistolo-
gically, the coexpression of CD5 and CD23 on the clonal
population of B cells, detected by flow cytometry, can be
sued for the diagnosis of most CLL cases [6, 7]. Unfortu-
nately, a risk of misdiagnosis might exist between CLL and
other lymphoid malignancies with similar morphological
features and CD5 positivity, such as mantle cell lymphoma
[8, 9] and atypical lymphoplasmacytic lymphoma [10].
Neither the prognosis nor the treatment regimen of the
aforementioned disorders is the same, leading to serious
adverse consequences of a misdiagnosis [11–13]. Due to
the overlapping immunophenotypes and the possibility of
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the occurrence of similar histological patterns, lymphomas
may resemble CLL. Hence, flow cytometry, immunohisto-
chemistry, and anatomical pathology have particular limi-
tations in the diagnosis of CLL from other entities [14,
15]. Moreover, CLL cases are not uniform in clinical prac-
tice, and some exhibit atypical features such as CD5- or
CD23-negative [7, 16, 17]. Therefore, novel, more reliable
biomarkers are needed to improve the diagnosis of CLL.

Over the past decade, next-generation sequencing tech-
nology and microarray analysis have been widely applied
as fundamental methods in neoplastic disorders for multiple
clinical utilization, including molecular diagnosis and pre-
diction of prognosis [18, 19]. Genome studies have been
conducted to explore the transcriptome changes in CLL,
offering a novel method for potential markers and therapeu-
tic targets [20, 21]. For instance, the PTX3 gene was consid-
ered a marker associated with CLL disease [22]. Moreover,
the oncogene MSI2 was identified as a differential prediag-
nostic marker and potential therapeutic target of CLL [23].
In a previous study, miR-15b and miR-195 were reported
to have the potential to function as novel and noninvasive
biomarkers in the diagnosis and prognosis of patients with
B-CLL [24]. However, these studies still have disadvantages
as they are mainly single-center with small sample sizes,
and their results have not been verified by large-scale clinical
application.

It was demonstrated that the metabolic, protein interac-
tion, and gene expression networks in biological environ-
ment fit in a scale-free topological distribution [25]. Genes
are clustered in the form of a coexpression network, in
which the ones connected with more genes are in the core
position in modules with high modular identity, which are
called hub genes [26, 27]. In previous studies, they have been
distinguished by the gene expression difference of samples
subjected to differential expression analysis alone [28, 29].
Weighted gene coexpression network analysis (WGCNA)
is a systematic biology method which is focused on estab-
lishing the correlation patterns among genes across microar-
ray samples and screening out hub genes without subjective
judgement [30, 31]. The least absolute shrinkage and selec-
tion operator (LASSO) has a strong predictive value and
low correlation for the selection of the best features for
high-dimensional data and prevent overfitting during
modeling [32, 33]. By its combination with the aforemen-
tioned bioinformatics analysis, in the present study, we
aimed to identify genes as diagnostic biomarkers for CLL,
with their differences and correlations. Additionally, we
performed functional enrichment analysis to explore the
possible mechanisms of their action and interaction.

2. Materials and Methods

2.1. Data Collection. Six datasets containing CLL and control
samples (Table 1), GSE14853, GSE26725, GSE31048,
GSE50006, GSE51528, and GSE55288, were downloaded from
the Gene Expression Omnibus database (GEO, https://www
.ncbi.nlm.nih.gov/geo/). The raw data of all studied datasets
were normalized to eliminate batch effects. We merged
GSE14853, GSE26725, GSE50006, and GSE55288 as a training

cohort for subsequent analysis, whereas GSE31048 and
GSE51528 were selected as diverse validation cohorts to verify
the result.

2.2. Identification of Differentially Expressed Genes (DEGs).
CLL and control samples were subjected to differential
expression analysis using the LIMMA package. DEGs had to
conform to the criterion of jlog FCj > 2, where FC denotes fold
change and adjusted P < 0:05. The heatmap and volcano plot
of the DEGs were visualized by “pheatmap” and “ggplot2”
packages.

2.3. Construction of a Gene Coexpression Network. WGCNA
was performed on the training cohort to construct a gene
coexpression network of CLL. Based on a scale-free topology
model, we quantified and integrated goodness of fit with
mean connectivity to ascertain the optimal soft threshold.
Multiple modules were next detected automatically, and
the topological overlap measure was computed to estimate
the adjacencies and similarities among the different modules
by average hierarchical clustering. Then, the topologically
similar modules were combined into a new cluster. The
Pearson correlation analysis was performed to assess the
correlations between the module genes and the clinical char-
acteristics. The module with the highest correlations was
selected, and the genes in the obtained module were further
assessed by Gene Significance (GS) and Module Member-
ship (MM). The genes with an absolute value of MM of over
0.8 and GS of over 0.5 were considered as candidate hub
genes for CLL. These measurements were analyzed and visu-
alized by “LIMMA” and “WGCNA” packages.

2.4. Identification and Validation of the Hub Genes. The
genes overlapped between the DEGs and the candidate hub
genes from WGCNA were aggregated by the “venn” pack-
age. LASSO regression was adopted to identify the optimal
panel of the final hub genes. Further, receiver operating
characteristic (ROC) curves were constructed to investigate
the accuracy and specificity of these genes for CLL diagnosis.
Furthermore, the diagnostic value of the hub genes was ver-
ified in the validation cohorts (GSE31048 and GSE51528) by
differential expression analysis and ROC curves. The results
of these analyses were visualized by “ggpubr” and “pROC”
packages.

2.5. Functional Enrichment and Correlation Analyses. To
investigate the possible mechanisms, the DEGs were sub-
jected to Gene Ontology (GO) and Kyoto Encyclopedia of

Table 1: Characteristics of the studied datasets.

GEO series Control samples CLL samples Data type

GSE14853 3 34 Training cohort

GSE26725 5 12 Training cohort

GSE31048 33 188 Validation cohort

GSE50006 32 188 Training cohort

GSE51528 12 217 Validation cohort

GSE55288 33 59 Training cohort
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Genes and Genome (KEGG) analyses. In addition, single
sample gene set enrichment analysis (ssGSEA) was applied
to contrast the enrichment levels of the immune-related
functions and cells between the CLL and the control samples.
The Spearman correlation analysis was implemented to
examine comprehensively the relationship between hub
genes and immunity characteristics. The data were evaluated
and visualized by the “clusterProfiler”, “enrichplot”, “DOSE”,
“pheatmap”, “GSVA”, “GSEABase”, “vioplot”, and “tidy-
verse” packages.

2.6. Statistical Analysis. Data analysis was performed using R
software (version 4.1.3). Student’s t-test was conducted to
determine the significance of the discrepancy between the
CLL and the control samples. Two-sided P < 0:05 was con-
sidered to indicate a statistically significant difference.

3. Results

3.1. Identification of DEGs. The flowchart illustrated in
Figure 1 presents the identification and validation of the
hub genes as well as the results of the subsequent analyses
conducted in the present study. According to the criterion
on the training set, 47 DEGs were identified between CLL
and control samples, of which 17 were upregulated and 30
were downregulated in CLL (Figures 2(a) and 2(b)).

3.2. Construction of a Gene Coexpression Network. With the
soft threshold of β = 5, the network was closer to the real
biological network state as it adhered to the power law distri-
bution (Figures 3(a) and 3(b)). A hierarchical clustering
analysis based on weighted correlation was further applied.
By segmenting the clustering results and merging the similar

LASSO regression

6 datasets retrieved
from GEO database

Training cohort
(GSE14853, GSE26725,

GSE50006 and
GSE55288)

Validation cohorts
(GSE31048 and

GSE51528)
Validation

Differentially expressed
gene analysis WGCNA

Predictive
ability verification Functional analysis

Correlation
analysis

6 hub genes
(ABCA6, CCDC88A,

PMEPA1, EBF1, FILIP1L
and TEAD2)

Figure 1: Flowchart of this study.
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Figure 2: Identification of DEGs between the CLL and the control samples. (a) Heatmap of the DEGs; (b) volcano plot of the DEGs.
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Figure 3: Continued.

5Journal of Oncology



–0.066
(0.2)

0.066
(0.2)

0.043
(0.4)

–0.043
(0.4)

0.17
(0.001)

Con

MEgrey

MEgreen

MEbrown

MEblue

MEred

MEturquoise

Module–trait relationships

Treat

1

0.5

0

–0.5

–1

–0.17
(0.001)

–0.33
(7e–11)

0.33
(7e–11)

0.37
(2e–13)

–0.37
(2e–13)

0.85
(3e–101)

–0.85
(3e–101)

(d)

Blue
0.0

0.1G
en

e s
ig

ni
fic

an
ce 0.2

0.3

Brown Green

Gene significance across modules, p-value = 0

Grey Red Turquoise

(e)

Figure 3: Continued.

6 Journal of Oncology



modules, a total number of six modules were obtained
(Figures 3(c)). Of them, the brown module, including 589
genes, showed the strongest correlation with CLL
(cor = 0:85, P = 3e − 101; Figures 3(d) and 3(e)). A tight cor-
relation between GS and MM (cor = 0:95; P < 1e − 200) was
also established. Based on the specified earlier criteria (an
absolute value of GS > 0:50 and MM> 0:80), 25 genes in
the brown module were identified as candidate hub genes,
which were further subjected to subsequent analysis
(Figure 3(f)).

3.3. Identification of the Hub Genes. Fourteen overlapped
genes were obtained based on the intersections of the DEGs
and the candidate hub genes (Figure 4(a)). To prevent over-
fitting and enhance the accuracy of the diagnostic value,
LASSO analysis was utilized to extract the following six
finally identified hub genes: ABCA6, CCDC88A, PMEPA1,
EBF1, FILIP1L, and TEAD2 (Figures 4(b) and 4(c)).

3.4. Characterization and Validation of the Hub Gene
Expression and Diagnostic Value. The boxplots revealed
the differential expression of the six hub genes between
the CLL and control samples in the training cohort
(Figures 5(a)–5(f)). Among them, ABCA6, CCDC88A,
FILIP1L, and TEAD2 were significantly upregulated,
whereas PMEPA1 and EBF1 were significantly downregu-
lated in the CLL samples. The results were verified in
the validation cohorts, and the consistent gene expression

patterns were obtained (Figures 5(g)–5(r)). All area under
the curve (AUC) values of the six hub genes were over
0.95 in the training cohort (Figures 6(a)–6(f)), showing a
satisfactory diagnostic value for CLL. To verify the diag-
nostic value of the hub genes, we also constructed ROC
curves for the validation sets (GSE31048 and GSE51528).
The same result was obtained for the GSE31048 dataset,
with all AUC values over 0.95 (Figures 6(g)–6(l)). In the
GSE51528 dataset, the maximum AUC value was 0.815
for FILIP1L (Figure 6(m)). CCDC88A (Figure 6(n)) and
PMEPA1 (Figure 6(o)) had AUC values of 0.856 and
0.861, respectively, whereas the other three genes had
AUC values over 0.95 (Figures 6(p)–6(r)).

3.5. Functional Enrichment and Correlation Analyses. Func-
tional enrichment analysis was used to establish the possible
mechanism involved in the genesis of CLL. GO function
analysis results indicated that the biological processes
included mainly B-cell proliferation, leukocyte cell-cell
adhesion, and positive regulation of leukocyte cell-cell adhe-
sion (Figure 7(a)). The KEGG analysis included predomi-
nantly an intestinal immune network for IgA production,
ECM-receptor interaction, and hematopoietic cell lineage
(Figure 7(b)). The ssGSEA results showed that various
immune-related functions and cells had significant differ-
ences between the CLL and the control samples
(Figures 7(c) and 7(d)). Furthermore, the correlation analy-
sis revealed significant correlations between the hub genes
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Figure 3: Construction of a gene coexpression network. (a) Analysis of the scale-free network topology for the optimal soft threshold; (b)
validation of the optimal soft threshold; (c) WGCNA cluster dendrogram and module assignment; (d) heatmap of the module-trait
relationships; (e) histogram of the gene significance across modules; (f) scatterplot of the module membership and gene significance in
the brown module.
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and the immune-related functions and cells (Figures 7(e)
and 7(f)), indicating that hub genes may play a crucial role
in the pathogenesis and progression of CLL through
immune status regulation.

4. Discussion

The primary finding of the present study is the successful
identification and validation of six diagnostic biomarkers
for CLL based on differentially expressed gene analysis,
WGCNA, and LASSO regression. The following functional
enrichment analysis revealed the crucial impact of immune
dysfunction on CLL occurrence and progression. The signif-
icant correlations between hub genes and tumor immunity
promote the uncovering of the possible mechanism of the
involvement of these six genes in the pathogenesis of CLL.
The identification of the diagnostic biomarkers might fur-
ther facilitate the diagnosis of CLL in clinical practice.

In the present study, 47 DEGs and 25 candidate hub
genes were extracted through differentially expressed gene
analysis and WGCNA, respectively. Subsequently, LASSO
regression analysis was used to identify the six final hub
genes from the fourteen intersecting genes between the
DEGs and the candidate hub genes. The gene expression
patterns in the training cohort and different validation
cohorts were consistent, with a statistically significant differ-
ence between the CLL and the control samples. Nevertheless,
the values of control samples in the GSE51528 dataset were
not the same as those in other cohorts. Unlike other datasets
using normal cells isolated from peripheral blood as normal
controls, the GSE51528 dataset used normal B-cell subpopu-
lations from tonsils as controls. The expression of the same
gene could be different in various tissues, and the AUC value
could have differed because of the use of different tissues as
controls. Despite this drawback, the AUC values of the six
genes were over 0.8. The six newly identified biomarkers still
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Figure 5: Continued.
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had a good performance in predicting CLL diagnosis even in
the tonsils as controls instead of in specimens of peripheral
blood. Of the identified hub genes, ABCA6, a member of
the ATP-binding cassette transporter family, acts as a prob-
able transporter which may play a role in macrophage lipid
transport and homeostasis [34, 35]. PMEPA1 regulates cell
proliferation, differentiation, migration, and immunosup-
pression through the TGF-beta signaling pathway [36, 37].
EBF1 has been confirmed to be the key pioneer transcription
factor of B-cell specification and commitment by poising or
activating lineage-specific genes and repressing genes related
with alternative cell fates [38–40]. Overexpressed FILIP1L
was found to modulate the antiangiogenic activity in endo-
thelial cells, leading to inhibition of cell proliferation and
migration as well as an increase in apoptosis [41]. TEAD2
has been found to be relevant to tumor suppression by
restricting proliferation and promoting apoptosis through
the Hippo signaling pathway [42, 43]. CCDC88A serves as
a nonreceptor guanine nucleotide exchange factor which
binds to and activates guanine nucleotide-binding protein
G (i) alpha subunits, involved in multiple biological pro-
cesses, such as cell migration and cellular immunity
[44–48]. However, the specific role of these six genes in
CLL has not been reported yet.

To explore the possible mechanisms by which the hub
genes were involved in the nosogenesis of CLL, we per-
formed GO, KEGG, ssGSEA, and correlation analyses. GO
function analysis indicated that the biological processes of

DEGs were enriched mainly in B-cell activation and prolifer-
ation as well as the regulation of leukocyte cell-cell adhesion.
KEGG analysis predominantly included immune-associated
pathways (e.g., an intestinal immune network for IgA pro-
duction, ECM-receptor interaction, and leukocyte transen-
dothelial migration). These results suggest that CLL is
closely related to tumor immunity. Therefore, ssGSEA was
applied to further investigate the differences in the immune
cell infiltration between CLL and control samples. We found
that T-cell coinhibition was significantly upregulated in the
CLL group, which is a vital element contributing to immune
function suppression by providing inhibitory signals to acti-
vated T cells [49, 50]. Furthermore, various immune-related
cells, such as CD8+ T cells and regulatory T cells (Tregs),
were significantly more overexpressed in the CLL samples
than in the controls. CD8+ T cells exhibited profound func-
tional deficits in the proliferation and cytotoxicity despite an
increase in their absolute numbers in the peripheral blood
[51, 52]. Treg, which is a subset of CD4+ T cells, was also
found to be increased in CLL patients [53–55]. Dysregula-
tion of Tregs leads to an unbalanced immune system and
contributes to immune suppression, disease progression,
and poor prognosis [56–58]. Coinhibitory molecules
expressed by tumor infiltrating T cells and Tregs were previ-
ously considered to constitute a pivotal mechanism by pro-
moting tumor immune evasion [59, 60]. The correlations
of the hub genes identified here with immune-related func-
tions and cells were also determined, showing significant
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Figure 5: Differential hub gene expression between the CLL and the control samples. (a)–(f) ABCA6 (a), CCDC88A (b), EBF1 (c), FILIP1L
(d), PMEPA1 (e), and TEAD2 (f) in the training cohort; (g)–(l) ABCA6 (g), CCDC88A (h), EBF1 (i), FILIP1L (j), PMEPA1 (k), and TEAD2
(l) in the GSE31048 dataset. (m)–(r) ABCA6 (m), CCDC88A (n), EBF1 (o), FILIP1L (p), PMEPA1 (q), and TEAD2 (r) in the GSE51528
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interactions between the hub genes and tumor immunity.
Thus, it is reasonable to assume that the selected genes
may modulate the tumor microenvironment and promote
tumor immune evasion in CLL through inhibitory immune
cells. Serious defects in the immune system and the capacity
of leukemic cells to escape immune recognition played an

irreplaceable role in the nosogenesis and progression of
CLL, which was in agreement with the findings of the pres-
ent study [1, 61]. Therefore, we speculated that the biomark-
ers established may be involved in the suppression of the
immune response, which supports the proliferation and sur-
vival of CLL cell through its immune-related pathways.
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Figure 6: Diagnostic value of the hub genes for CLL. (a)–(f) ROC curves of FILIP1L (a), CCDC88A (b), PMEPA1 (c), ABCA6 (d), EBF1 (e),
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This study is not without limitations. First, multiple
datasets were retrieved from GEO database, which could
have increased the potential heterogeneity due to disparate
annotation platforms and clinical covariates of the samples
included. The batch effects among datasets could not be
completely eliminated. Second, we used public data in our
investigation, and thus prospective investigations are needed
to validate its predictive power in research with clinical sam-
ples. Finally, the underlying molecular mechanisms of the
novel biomarkers were not undermined and confirmed by
in vivo or in vitro studies. Hence, the aforementioned defi-
ciencies will be addressed in our further research.

5. Conclusion

In conclusion, six genes (ABCA6, CCDC88A, PMEPA1,
EBF1, FILIP1L, and TEAD2) for CLL diagnosis were identi-
fied by bioinformatics analysis. In addition, the constructed

ROC curves confirmed that these genes possessed a good
diagnostic value for CLL with high sensitivity and accuracy.
Integrated analyses revealed significant interactions between
these hub genes and tumor immunity, indicating that the
biomarkers may promote CLL cell tumorigenesis and sur-
vival via the suppressed immune response through its
immune-related pathways. Machine learning algorithms
identified that these genes could be possible CLL marker
genes, providing the foundation for further experimental
studies. However, future research is needed to evaluate the
performance of these hub genes and their precise underlying
mechanism of action in clinical practice.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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