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Purpose. Esophageal squamous cell cancer (ESCC) is a deadly malignant tumor characterized by an overall 5-year survival rate
below 20%, with China accounting for approximately 50% of all cases worldwide. Our previous studies have demonstrated that
high integrin-linked kinase (ILK) expression plays a key role in development and progression of ESCC both in vitro and in vivo.
Here, we employed the drug repurposing approach to identify a novel FDA-approved anticancer inhibitor against ILK-induced
tumorigenesis and progression.Methods. We screened the ZINC15 database and predicted the molecular docking ability among
FDA-approved and publicly available drugs to ILK and then performed computational docking and visual inspection analyses of
the top 10 ranked drugs. Two computer-based virtual screened drugs were evaluated in vitro for their ability to directly bind
purifed ILK by surface plasmon resonance. Cytotoxicity of the two candidate drugs was validated in vitro using CCK-8 and LDH
assays. Results. We initially selected the top 10 compounds, based on their minimum binding energy to the ILK crystal, after
molecular docking and subjected them to further screening. Taking the binding energy of −10 kcal/mol as the threshold, we
selected two drugs, namely, nilotinib and teniposide, for the wet-lab experiment. Surface plasmon resonance (SPR) revealed that
nilotinib and teniposide had equilibrium dissociation constant (KD) values of 6.410E− 6 and 1.793E− 6, respectively, which were
lower than 2.643E− 6 observed in ILK-IN-3 used as the positive control. Te IC50 values for nilotinib and teniposide in ESCC cell
lines were 40 μM and 200–400 nM, respectively. Results of the CCK-8 assay demonstrated that both nilotinib and teniposide
signifcantly inhibited proliferation of cells (P< 0.01). LDH results revealed that both drugs signifcantly suppressed the rate of cell
death (P< 0.01). Conclusion. Te drug repositioning procedure can efectively identify new therapeutic tools for ESCC. Our
fndings suggest that nilotinib and teniposide are efcacious inhibitors of ILK and thus have potential to target ILK-mediated
signaling pathways for management of ESCC.

1. Background Information

Esophageal cancer is one of the most common malignant
tumors that threaten human health and life. Te disease is
ranked 7th and 6th with regards to morbidity and mortality
among global malignant tumors, respectively. In China,
esophageal cancer accounts for about 43.0% and 37.0% of all
global new cases and deaths worldwide, respectively, with
esophageal squamous cell cancer (ESCC) shown to be the
main subtype [1, 2]. ESCC has a 5-year survival rate of about

30%, due to its atypical early symptoms, high malignancy,
aggressiveness, and more limited treatment options [3].

Despite extraordinary advances in the cancer biology
feld, progress in the area of drug research and development
(R&D) remains slower than expected [4]. A promising so-
lution to the considerable drug development challenges of
novel compounds is drug repurposing (also called drug
repositioning, reprofling or retasking), a strategy for
identifying new clinical indications for approved or in-
vestigational drugs [5]. Approved drugs have undergone all
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phases of clinical trials in order to reach the market and thus
have known and accepted safety data, which substantially
reduce the R&D risk, time, and cost [6]. Sildenafl, a phos-
phodiesterase type 5 (PDE5) inhibitor, is a successful drug
repurposing example. Sildenafl was originally developed to
treat hypertension but was later approved by the FDA for the
treatment of erectile dysfunction and pulmonary hyper-
tension for the same [7, 8].

Te participation of computer-aided drug design
(CADD) can minimize the failure rate of research and
development and further consolidate the advantages of drug
repositioning, which includes two major types of drug de-
sign techniques: ligand-based drug design (LBDD) and
structure-based drug design (SBDD) [9]. As one of the most
commonly used in in silico approaches, SBDD utilizes the
structural information from a 3D protein structure to
predict macromolecular binding sites and ligand afnity
[10]. Molecular docking is a typical SBDD method used to
evaluate binding afnities between proteins and ligands [11].
For example, with performing molecular ft computations
on 3,671 FDA-approved drugs across 2,335 human protein
crystal structures, Dakshanamurthy et al. screened that
mebendazole, an antiparasitic drug, has the structural po-
tential to inhibit the angiogenic medium vascular endo-
thelial growth factor receptor 2 (VEGFR2), a mediator of
angiogenesis, which was also confrmed by experiments [12].

Integrin-linked kinase (ILK), an intracellular protein
kinase, is not only involved in several signal transduction
processes but also regulates the cell cycle, migration, and
growth among other biological processes [13]. Previous
studies have shown that high ILK expression mediates
regulation of cell proliferation, migration, and diferentia-
tion in a variety of tumors and also afects therapeutic efects
of tumors [14–16]. Meanwhile, we found that ILK was highly
expressed in ESCC, while its interference using the lentivirus
markedly inhibited occurrence and development of ESCCs
[17]. Tis project aims to screen some small molecules to
inhibit ILK with high selectivity and activity that have be-
come drugs through computer-aided drug research and to
conduct primary screening and validation of their phar-
macological activities so as to provide experimental and
theoretical support for the research of novel anticancer-led
compounds.

2. Materials and Methods

2.1. Cell Cultures and Reagents. Human ESCC cell lines
KYSE150 and TE-1 were purchased from the Cell Bank at
the Chinese Academy of Science (Shanghai, China). Cells
were cultured in RPMI1640 medium, supplemented with
10% fetal bovine serum (FBS) (Gibco, Rockville, MD, USA)
and 1% penicillin-streptomycin (NCM Biotech, Soochow,
China). All cell cultures were incubated at 37°C and 5% CO2
in a humidifed atmosphere. Nilotinib was purchased from
MedChemExpress Co., Ltd. (Shanghai, China), while teni-
poside and ILK-IN-3 were acquired from Target Molecule
Corp. (Shanghai, China). All compounds were dissolved in
DMSO (MCE, Shanghai, China) before use.

2.2. Virtual Screening. First, we obtained a three-
dimensional structure of ILK protein from the ILK/alpha-
parvin core complex crystal structure downloaded from the
PDB database [18] and then extracted the ILK protein (A
chain) using the PyMOL tool. Subsequently, the potential
binding pockets of ILK protein were determined by using
the DoGSiteScorer online tool [19], which was developed to
predict the binding pockets and rank them based on the size,
surface area, and druggability score. Te chosen binding
pocket was further validated by fpocket [20] and CASTp [21]
tools. Next, we obtained the list of 1615 FDA-approved
drugs from the ZINC database [22] for virtual screening.
Tese drugs were converted to PDB formats using
MGLTools and then subjected to molecular docking using
the AutoDock Vina docking program [23]. We ranked the
drugs by their binding afnities when bound to binding
pockets. Finally, we selected 2 drugs with minimum free
energy for wet-lab validation.

2.3. In Vitro Assessment of Direct Drug Binding to ILK.
SPR experiments were carried out using a Biacore S200
instrument (Biacore, GE Healthcare, Boston, MA, USA) at
25°C. Summarily, ILK (ligand) was frst immobilized to the
activated CM5 sensor chip by amine coupling with pH 5.0
and sodium acetate concentration of 46 μg/mL. Te non-
reaction group was then blocked by injection of ethanol-
amine hydrochloride 1M (35 μL). Te drug (analyte) was
dissolved in 100% DMSO (to an initial concentration of
10mM) and diluted to 200 μM (5% fnal DMSO concen-
tration) with 20mM HEPES, 150mM NaCl, and 0.005%
surfactant P20 bufer (HBSP). It was further diluted with
HBSP + 5% DMSO (HBSP5%D). We then confrmed con-
centrations of compounds based on the solubility and the
test results from sensor chips of samples to be measured. An
increase in the RU value from the baseline indicates that
formation is complex and that the plateau region represents
a steady-state phase of interaction (RUeq), whereas a de-
crease in RU after 100 s indicates separation of the analyte
from immobilized ILK after injection of HBSP5%D bufer.
Finally, we performed sensorgram analysis using the Biacore
S200 evaluation software.

2.4. Evaluation of Anticancer Activity of the Two Screening
Compounds

2.4.1. CCK-8 Assay. KYSE150 and TE-1 cells were, re-
spectively, seeded into 96-well culture plates (5×104 cells per
well) and incubated for 24 h at 37°C, 5% CO2, and 100 μL of
diferent concentrations of the candidate drugs was prepared
and added to 1640 medium, followed by 48h incubation.Te
medium was refreshed; then, 100 μL of the medium with
10% CCK-8 was added to each test well, followed by 2 h of
incubation at 37°C. A microplate reader (BioTek In-
struments, Inc., Winooski, VT, USA) was used to measure
OD at 450 nm in each well, and changes in cell proliferation
ability were detected.
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2.4.2. LDH Assay. KYSE150 and TE-1 cells were, re-
spectively, seeded into 96-well plates (5×104 cells/well) and
incubated for 24 h at 37°C, 5% CO2. 150 μL of diferent
concentrations of the candidate drugs was added to 1640
medium and incubated for 48 h, followed by addition of
15 μL of LDH release reagent with maximum enzyme ac-
tivity. Te contents were incubated for 1 h and centrifuged;
then, 100 μL of each of the supernatants was added into the
corresponding well of a 96-well plate. A microplate reader
was used to measure OD in each test well at 490 nm, and
changes in cytotoxicity were detected.

3. Results

3.1. Identifcation of Potential ILK Binding Drugs by Virtual
Screening

3.1.1. ILK Protein and the 3D Crystal Structure. Te three-
dimensional structure of the ILK protein was obtained from
the ILK/alpha-parvin core complex crystal structure in the
PDB database (3KMU) according to ILK protein sequence
(supplementary fle). Next, the ILK protein (A chain) was
extracted using PyMOL, and its three-dimensional structure
is shown in Figure 1.

3.1.2. Prediction of Binding Pockets. We utilized the online
tool DoGSiteScorer for prediction and description of po-
tential binding pockets of the ILK protein. Te top 9 pre-
dicted binding pockets are listed in Table 1. We only
considered the frst binding pocket during molecular
docking, due to the fact that its contact surface area was

much larger than that of others. Meanwhile, we used two
other popular tools, fpocket and CASTp, to predict the
binding pocket and found similar results.

3.1.3. Molecular Docking and Screening Results. We
screened the FDA-approved drug library, downloaded from
the ZINC 15 database, for potential hits during our virtual
screening. Te library contains 1615 FDA-approved drugs.
Te drugs were retrieved in the MOL2 format and then
converted to the .pdbqt format using MGLTools. During
transformation, both Gasteiger charges and polar hydrogen
atoms were added, and drugs were prepared for docking.

Next, we utilized AutoDock Vina tools to dock FDA-
approved drugs and ILK protein using the following mo-
lecular docking parameters: a binding site area of
(28∗ 30∗ 32) angstrom with coordinates of (X: 6.292, Y:
18.998, and Z: 12.265). Te output format of the data was
sorted by the minimum binding energy of these drugs to the
ILK crystal. Next, we selected the top 10 hits from the
molecular docking for further screening, as shown in Ta-
ble 2. Taking the binding energy of −10 kcal/mol as the
threshold, two drugs, namely, nilotinib (ZINC6716957) and
teniposide (ZINC4099009), were selected for subsequent
wet-lab experiments. For each drug, the ligand-target
complex with the least binding energy pose is illustrated
in Figure 2 and Figure 3, while information for their
chemical formulas is listed in Table 3.

3.1.4. Assessment of Direct Drug Binding to ILK In Vitro.
To validate the virtual screening results, we carried out SPR
in vitro to evaluate the biomolecular interaction of drugs.

Figure 1: 3D structure of the ILK protein.

Table 1: Information of the top 9 predicted binding pockets.

No. pocket Volume Å³ Surface Å² Drug score Simple score P_1
P_1 1790.91 2139.69 0.81 0.68
P_2 494.21 564.73 0.72 0.28
P_3 492.67 762.3 0.7 0.28
P_4 378.3 674.96 0.71 0.19
P_5 355.52 753.96 0.52 0.26
P_6 242.37 426.74 0.43 0.1
P_7 148.54 274.23 0.31 0
P_8 142.34 450.42 0.24 0
P_9 114.18 263.03 0.26 0
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Summarily, the recombinant ILK protein was immobilized
on an activated CM5 chip with the pH value of the most
suitable coupling reaction. Te results of the ability of ILK
protein to bind the two drugs at various concentrations are
shown in Figure 4. ILK-IN-3 was included as a positive
control [24]. Te SPR results showed that the top 2 drugs
with strong afnities predicted by virtual screening could
indeed bind to ILK. Biacore S200 software revealed that the
drugs’ dissociation constant (KD) values were in the mi-
cromolar range and were comparable to those of the control
(Table 4). Interestingly, teniposide (KD� 1.793 μM) had
a higher afnity for ILK than for ILK-IN-3 (KD� 2.643 μM).

3.2. Evaluation of Anticancer Activity in the Two Compounds.
Next, we used CCK-8 and LDH release assays to determine
the function of the two compounds in proliferation and
death of ESCC cells. To this end, we targeted KYSE-150 and
TE-1 human esophagus squamous cancer cells, in which ILK
was expressed at relatively higher levels than other ESCC
cells according to our previous studies [17]. Notably, nilo-
tinib had an IC50 value of 40 μM, while the IC50 value of
teniposide ranged from 162.7 to 396.2 nM in these ESCC cell
lines (Figures 5(a) and 5(b)). Tis suggested that teniposide
has a relatively higher cytotoxic efect on ESCC cells than on
nilotinib, consistent with the SPR results. Moreover, an

Table 2: Te top 10 drugs with minimum binding energy to the ILK crystal.

No. Generic name Molecular formula Binding energy (kcal/mol)
d1 Nilotinib C28H22F3N7O −10.5
d2 Teniposide C32H32O13S −10.3
d3 Doxycycline C22H24N2O8 −9.9
d4 Celsentri C29H41F2N5O −9.8
d5 Saquinavir C38H50N6O5 −9.8
d6 Lumacaftor C24H18F2N2O5 −9.7
d7 Rolapitant C25H26F6N2O2 −9.7
d8 SQV C38H50N6O5 −9.7
d9 Netupitant C30H32F6N4O −9.7
d10 Raltegravir C20H21FN6O5 −9.7

Figure 2: 3D illustration of molecular docking of nilotinib molecules with ILK protein.

Figure 3: 3D illustration of the molecular docking of teniposide and ILK protein.
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Figure 4: Sensorgram plots for the compounds selected by virtual screening and computational docking ((b) nilotinib; (c) teniposide) and of
ILK-IN-3 (a) as the control.

Table 4: ILK afnity in selected compounds and ILK-IN-3 (control) measured by SPR experiments.

Receptor Ligand KD (M) R max (RU)

ILK protein
ILK-IN-3 (control) 2.64E− 06 4.724

Nilotinib 6.41E− 06 12.52
Teniposide 1.79E− 06 2.386
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Figure 5: Evaluation of the anticancer activity of two screening compounds. (a, b) IC50 values of nilotinib and teniposide in ESCC cells. TE-
1 and KYSE150 cells were treated with diferent concentrations of two drugs for 48 hours.Te cell viability was assessed by CCK8 assay, and
IC50 values were calculated. (c, d) Cell viability and LDH release of ESCC cells (TE-1 and KYSE150) detected using the CCK8 and LDH
assay after treatment of nilotinib and teniposide conditioned medium or control medium (∗∗∗p < 0.001).
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increase in drug concentration was associated with a de-
crease in viability and an increase in death of ESCC cells
(Figures 5(c) and 5(d)).

4. Discussion

Te research on ESCC therapy progress is slow; therefore,
there is an urgent need to identify efective antitumor
therapeutic drug targets. Generally, drug development is
a difcult task that takes a long period of time and is ac-
companied by high costs and high risk as well as low payofs.
In contrast, drug repurposing, which is an approach to
discover a new efect for an already approved drug in novel
disease types, ofers a higher success rate, lowers the risk
ratio, and shortens the time taken before clinical use [6].
Notably, researchers are currently employing virtual
screening (VS) based on target structures as an efective
method for new drug discovery. Tis approach not only
allows for rapid screening of a large number of compounds
in drugs within a short period of time but is also a novel way
to discover new drugs, as evidenced by recent successes
[25, 26]. Since most small molecules may have multiple
molecular targets, the discovery of new therapeutic targets
for a drug is essential for new indications [27].

ILK was originally thought to be a serine/threonine
protein kinase that interacts with the cytoplasmic domain of
β-1 integrin and mediates the connection between cells and
the extracellular matrix. Functionally, it afects the trans-
mission of extracellular signals and also plays a central role
in regulating fundamental processes, such as cell mor-
phology, motility, growth, survival, diferentiation, and gene
expression [13]. To date, the exact molecular mechanism
underlying ILK signal transduction has been quite contro-
versial [28]. However, a recent study showed that ILK is
a pseudokinase [29]. Subsequently, numerous studies have
revealed that ILK plays a key role in epithelial-mesenchymal
transition (EMT), invasion, and angiogenesis, suggesting
that it could be an attractive target for tumor therapy
[30–32]. In fact, some studies have shown that ILK is not
only upregulated in a variety of malignancies but is also
associated with a poor patient prognosis. At the same time,
our research group previously demonstrated that interfering
with ILK can signifcantly inhibit proliferation, invasion, and
migration of ESCC cells and also improve patient prognosis
[17, 33]. ILK, as a therapeutic target, has attracted a lot of
research attention. For instance, some researchers have
designed small-molecule compounds targeting ILK to in-
hibit tumor growth, although these studies have neither
clearly described whether these compounds directly bind to
ILK nor demonstrated their specifcity, which necessitates
further exploration before their clinical application
[24, 34–36].

In the present study, we screened two known drug
compounds with strong ILK binding afnity, nilotinib and
teniposide, from the ZINC15 drug database, containing
1615 FDA-approved drugs, using the VS approach based on
the ILK protein structure. In addition, we validated purifed
ILK proteins using molecular biology techniques and
measured the inhibitory efects of these compounds on ILK

with a view of verifying reliability of the computerized
virtual screening results. Our results showed that both
nilotinib and teniposide had a stronger binding afnity to
ILK than the positive reference compound ILK-IN-3,
a phenomenon that initially demonstrated the feasibility of
the protein structure-based drug virtual screening method.
Subsequently, we evaluated the antitumor activity of the two
inhibitors on ESCC TE-1 and KYSE150 cells and found that
both inhibitors signifcantly promoted cell death and
inhibited proliferation, consistent with drug virtual
screening results.

Tese results suggest that the observed antitumor efects
of nilotinib and teniposide on ESCC are partially related to
ILK’s binding ability coupled with their inhibitory efects.
Nilotinib, which belongs to the second-generation tyrosine
kinase inhibitor (TKI), has been used as an efective therapy
in clinical treatment of chronic myeloid leukemia (CML)
that is intolerant or resistant to imatinib (Gleevec) [37]. On
the other hand, teniposide, a chemotherapeutic agent that
targets DNA topoisomerase II, has been primarily used for
treatment of acute lymphoblastic leukemia, lymphoma, and
brain cancer in children [38]. However, the drug’s efcacy
has also been studied in other diferent types of solid tumors
[39–41], with the resultant data suggesting that it may inhibit
tumor growth through other targets. Tis also suggests that
the drug might have multiple molecular targets, and the
discovery of new therapeutic targets for the drug is essential
to broaden new indications. Te results of the present study,
albeit preliminary, demonstrated that the two drugs have
antitumor activity. In the future, we intend to validate the
observed antitumor efects and underlying mechanisms of
the screened drugs using in vitro and in vivo experiments.

5. Conclusion

Tere is a need to continually screen for ILK inhibitors to
identify broad antitumor activity and high selectivity be-
cause of the problems of selectivity and specifcity in the
current research on ILK inhibitors. In this study, we
employed VS, based on the ILK protein structure, to fnd out
two potential antiesophageal squamous cell carcinoma
drugs, which are nilotinib and teniposide, and verifed the
binding ability of ILK protein with two compounds by
surface plasmon resonance (SPR). In addition, we validated
the antitumor activity of the two drugs in esophageal
squamous cell carcinoma cell lines. All the above results
confrmed that both nilotinib and teniposide are efective
and selective ILK inhibitors, and this role merits further
investigation.
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