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Background. Cervical cancer (CC) has long been a concern, as a gynecological cancer type of high-risk. At present, there are few
studies on the early detection of CC at the genetic level. The breakthrough is to recognize CC patients tending to have a worse
prognosis by checking the expression pattern of ferroptosis-related genes, which enjoy a great potential of being applied to
cancer treatment. Methods. Data used in this study was obtained from a series of public online databases, integrated with
ferroptosis-related gene collection stored from the FerrDb database and GeneCards database. The least absolute shrinkage and
selection operator- (LASSO-) penalized analysis was taken for modeling, and before, univariate Cox regression analysis got
done to shrink the candidates’ range. Several analyses were made for the evaluation of the efficacy of the new model, based on
CC patients’ overall survival (OS). Tumor microenvironment- (TME-) related analyses were conducted by various algorithms
on different populations, comprising CIBERSORT, ssGSEA, XCELL, etc. Nonnegative matrix factorization (NMF) clustering
got applied to find that ferroptosis-marker genes affect prognosis more than “driver” and “suppressor”. Hub-gene PTGS2 was
screened out by protein-protein interaction analysis and real-time qPCR after ferroptosis induction, and ELISA was conducted
for further verification on the correlation between ferroptosis and M1 polarization. Results. The twenty-five ferroptosis-related
genes model can estimate the prognosis of patients independently of other clinical factors, and the low-risk score group shows
higher expression of immune-enhancing cells, noteworthily for M1 macrophages. It is experimentally validated that the M1
marker TNF-α significantly increased after coculturing M1 macrophages and SiHa cells processed with ferroptosis inductor
before. The key gene to the model, PTGS2, presented to be a risk factor in cervical cancer, and its low-expression group has
stronger immune activity and higher tumor mutation burden, with the significantly highly mutated gene TENM2 in it showing
high drug sensitivity and neoantigen for patients with its mutant-type. Meanwhile, it influences macrophage polarization.
Conclusion. Prognosis of early-stage cervical cancer patients can be exactly predicted on ferroptosis-related genes. Among
model genes, PTGS2 may have a major impact by affecting macrophage polarization and mutation effects.

1. Introduction

Cervical cancer continues to be a threat to the health of
middle-aged women, particularly in countries with back-
ward healthcare facilities [1]. In 2018, there were approxi-
mately 569000 CC cases diagnosed and it caused probably
311,000 dead cases worldwide. It remains the status ranking
fourth in the list of most fatal malignant tumors for global
women [2]. Besides the high morbidity, there is a poor prog-
nosis for CC patients. The rate of failing to achieve complete

response for patients with locally advanced disease (FIGO
stage IIB-IVA) receiving concurrent standard treatment
(CCRT, with cisplatin alone or in combination) reached
about 30%-40% [3].

Ferroptosis was discovered as a new type of programmed
cell-death, which was differently defined from necrosis and
apoptosis and prompted by iron-dependent lipid peroxide
accumulation. The cytological feature for recognition of fer-
roptosis in cells is inclusive of cell volume reduction and
mitochondrial membrane density increasing. It can be
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triggered by substances in low-molecular or drugs which
function as system X (c) inhibitors or glutathione peroxidase
4 (GPX4) inhibitors, such as erastin, artemisinin, and its
derivatives, sorafenib. Ferroptosis had been reported to exert
an unneglectable influence on some types of tumor growth,
such as lymphocytes, RCC, and HCC [4–6]. Cancer cells
show an increased demand for iron to meet the need for
growth and proliferation, this iron dependency always cre-
ates a satisfying response to treatments based on iron-
catalyzed necrosis, that is what makes ferroptosis kill tumor
cells efficiently. The evasion of tumor cells to cell death
execution still remained a challenge for therapy, and FDA-
approved drugs recognized as ferroptosis inducers can
probably bring a new breakthrough [7].

Cervical cancer is not only with high-risk and rapid
progress but also insidious and always without symptoms.
About two-thirds of CC patients had advanced to locally
advanced cervical cancer when being diagnosed. Even with
correct multidisciplinary management, these patients proba-
bly ended with a low survival rate [8]. If there can be an
effective predictive index designed on the gene expression
pattern of early-stage CC patients, to screen for the suscepti-
ble population to CC in advance from the genetic level, the
curative ratio of early-stage cervical cancer may be signifi-
cantly improved. As mentioned above, ferroptosis may
enhance the effect of therapies and become an important
way to kill cancer cells. However, currently, there are few
studies on the correlation between ferroptosis and the occur-
rence and development of CC cells, as well as the prognosis
of cervical cancer patients.

In this study, we observed a new prognostic signature on
25 ferroptosis-related genes (FRGs). The model was estab-
lished on integration of expression data from TCGA-CESC
cohort and ferroptosis-related genes from FerrDb [9] and
GeneCards database, through the univariate Cox regression
combined with LASSO-penalized analyses and validated in
the microarray dataset GSE44001 from the GEO dataset. A
set of independent prognostic analyses got done to confirm
the reliability of the biomarkers. We scored the risk of tumor
samples with the new-built model and compartmentalized
the early-stage CC patients to groups inferring to the median
of the risk score as a cut-off, to further explore how the FRG
expression pattern immanently affected the prognosis of CC.
The results revealed the relationship between FRG expres-
sion and tumor immunity and tumor microenvironment
infiltration, providing new ideas for the application of fer-
roptosis in the field of CC. When compared with the model
from other research, this one enjoyed superiority in
accuracy. Nonnegative matrix factorization clustering was
conducted on expression submatrix partitioned by the role
of genes in ferroptosis; thereafter, we figured out that
ferroptosis-marker genes contributed most to the prognosis
of CC patients. As the most significantly increased marker-
gene among model features after ferroptosis induction,
analyses were launched around key-gene PTGS2. The low-
PTGS2 group enjoyed a higher percentage of M1 macro-
phages, with a higher tumor mutation burden, and the
mutation of the most significantly different mutated gene,
TEMN2, seemed to contribute to the efficacy of immuno-

therapy, for having a potential correlation with high neoan-
tigens and PD-L1 high-expression. Through real-time qPCR
and ELISA, we suggested the secretion level of M1 marker
TNF-α positively correlates with ferroptosis. Complete
information about the process was exhibited in Figure 1.

2. Materials and Methods

2.1. Data Resources. RNA sequencing data provided by a
combined cohort of TCGA, TARGET, and GTEx samples
from UCSC Xena website (https://xenabrowser.net/) and 306
CC patients’ genetic information got extracted (Table 1).
Clinical characteristics including grade, overall survival data,
HPV infection, clinical stage, and the age at initial diagnosis
were downloaded from the GDC TCGA CESC cohort also
on UCSC and cBioportal (http://www.cbioportal.org/). FRGs
were collected from the GeneCards database (https://www
.genecards.org/) by searching the keyword “ferroptosis,” and
selectively choosing genes with high relevance, and the FerrDb
database (http://www.zhounan.org/ferrdb/) by downloading
in CSV form. The FRGs stored from the FerrDb database
can be compartmentalized into three subtypes: driver, sup-
pressor, and marker, and depending on their roles in the fer-
roptosis process, the reliability of their correlations with
ferroptosis were divided into four confidence levels, from high
to low as validated, screened, predicted, and deduced. After the
integration with existing materials, complete expression data
of 281 ferroptosis-related genes were obtained. The microar-
ray dataset GSE44001 for external validation consisting of
300 patients with early-stage CC (Stage I or II) was acquired
from the GEO database [10] (https://www.ncbi.nlm.http://
nih.gov/geo/).

In order to focus the study on patients with early cervical
cancer, samples meeting the following criteria were
removed: (1) survival period < 30 days; (2) with incomplete
clinical information; [4] the cause of death had nothing to
do with CC; (4) healthy samples; and (5) clinical stage III
or IV. Thus, 209 samples were up for further analyses, see
Table 1 for details. The estimation on the immune cell infil-
tration of samples from TCGA was acquired from the web-
sitehttp://timer.cistrome.org/(TIMER 2.0), and the following
analyses on the somatic mutation of CC cases were based on
information stored directly from the TCGA website (https://
portal.gdc.cancer.gov/).

2.2. Construction of Prognostic Signature for Early-Stage CC
Patients according to FRGs

2.2.1. The Model Construction. “Survival” package by R was
applied to conduct a univariate Cox regression analysis, with
the range of p value < 0.05, which showed genes that were
significantly correlated with the prognostic survival of CC
patients among the 281 FRGs. Later, a 10-folded LASSO-
penalized analysis was made via the “glmnet” tool [11, 12]
to screen for genes whose expression level works as the main
risk characteristics that contribute most to the prognosis.
We derived the regression coefficients of selected candidate
genes whose expression data were taken into the calculation
and figured out risk scores of CC patients according to the
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following formula: risk score = expression × coefficient of gene
1 + expression × coefficient of gene 2 + expression × coefficient
of gene n. The model got verified by having the datasets from
GEO going through the same formula. We took the median
value of the risk scores as a standard to compartmentalize CESC
patients into low- and high-risk clusters.

2.2.2. Validations on the Accuracy of the Prediction. Obvi-
ously, unlike advanced ones, there are few effective methods
for patients with early-stage tumors to assess the risk of their
current disease; thus, we hoped risk score can be considered
as a new-found potential prognostic indicator of CC. To see
the accuracy of its function of prediction, risk core was taken
as a variable juxtaposed with other clinical features, includ-
ing clinical stage, neoplasm histologic grade, HPV infection,
and age, and analyzed with Cox regression model in both
multivariate and univariate ways. ROC (time-dependent

receiver operating characteristic) and DCA (decision curve
analysis) were shown in curves, made to compare risk score
with other clinical indicators. We chose the survival data on
the 1st, 3rd, and 5th years as time nodes for the analysis.
Meanwhile, we also collected models with a similar function
of predicting CC patients’ prognosis from other researches
and scored the samples we used to model; then, ROC curves
were put into comparison to show the superiority of our
new-built model.

2.3. GO and KEGG Enrichment Analysis. Gene Ontology
(“ GO ” in short) and Kyoto Encyclopedia of Genes and
Genomes (“ KEGG ” in short) analyses got operated to reveal
the enriched signaling pathways. Thanks to R packages
“clusterProfiler,” “enrichplot,” and “ggplot2.” Pathways meet-
ing the standards below got taken as significantly enriched: (1)
p value < 0.05 and (2) q-value < 0.05.

CC samples from CBioportal and USCS
TCGA, TARGET, and GTEx combined cohort (n = 306)

Early-stage patients only

40 prognostic candidates

LASSO penalized analysis

Univariate cox regression analysis

Metadata set (n = 209)

289 FRGs from FerrDb and genecards

Experimental
validation

Cell culture, RNA extraction, and real-time qPCR
Protein-protein interaction

TICs

Hub-gene PTGS2

Mutation analysis

CXCL2, PTGS2, VEGFA

NMF respectively based on genes
of 3 differrent functions

300 patients
of GSE44001 Survival analysis

GO

TICs by
multi-algorithms

KEGG

25-gene prognostic signature

⁎ FRG: Ferroptosis-related genes

TIC: Tumor-infiltrating immune cells

Figure 1: The flowchart.
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2.4. Survival Analysis. The original materials for survival
analysis were overall survival data extracted from the pheno-
type data on the UCSC Xena website, of the CC cohort on
GDC TCGA. All the survival analyses of this study got
accomplished by R “survminer” package [13]. Results with
a range of p value < 0.05 got taken as having significance.

2.5. Analyses about Immune Features on Groups Divided
according to Risk Scores. Single sample GSEA (ssGSEA) was
conducted with the “GSVA” R package [14], while immune-
gene-sets got obtained from the database called MSigDB
(https://www.gsea-msigdb.org/).The ESTIMATE algorithm
with R software [15] was adopted to evaluate the components
of the TME and stromal-immune proportion of each CC sam-
ple, and the results were converted into 3 numeric indicators
as immune score, stromal score, and ESTIMATE score,
respectively. The larger the value, the larger the proportion
of the corresponding microenvironmental component. The
information of the tumor-infiltrated immune cells propor-
tions of TCGA samples was stored from the online database,
the proportions of immune cells were figured out via several
algorithms inclusive of XCELL, MCP-counter, quanTIseq,
and EPIC, and all the calculation process got done by TIMER
2.0 [16] and R-software tool (version 4.0.5). According to
results obtained by the algorithms mentioned above, we made
an analysis on the differential expression of immune cells
between different risk-degree clusters, those with a significant
difference were displayed altogether by package “pheatmap”
in the R tool. The same analysis was made on common
immune checkpoint (ICP) expression. All the analyses above
suggested that, in general, the low-risk group tended to enjoy
a relatively more active immune microenvironment. Packages
“limma,” “ggplot2,” and “ggplot” [17] were adopted when
visualizing all the different distributions.

When it came to the calculation result of the differential
analysis based on the CIBERSORT scoring system [18], there
was a noticeable fact that macrophage M1 presented a signifi-
cantly higher expression level in the low-risk cluster while M2
expressed similarly between the two groups.We supposed that
the expressing pattern of genes involved inmodel construction
exerts a certain influence on macrophage polarization. In
order to further explore the possible correlation between
model genes’ expression pattern and the ferroptosis of CC cells
and the macrophage polarization and target a key gene with
the most contribution for further discussion, we designed
and conducted the following experiments.

2.6. Nonnegative Matrix Factorization (NMF) Clustering.
The 281 ferroptosis-related genes expression matrix was
made into 3 partitions according to gene function called
driver-group, marker-group, and suppressor-group, respec-
tively. These function-based cohorts subsequently under-
went NMF clustering one by one with the R package NMF,
and comprehensive correlation coefficient was calculated to
decide k-value as the optimal one. Samples in the matrix will
be set into clusters, and the quantity of the subgroups will be
the best k. The consensus matrix was displayed in the heat-
map to see whether the boundary between subgroups was
clear and sharp. If so, we would compare the survival
between the subgroups and select those with significant
between-subgroup differences for further analysis.

2.7. Cell Culture, RNA Extracting, and RT-qPCR. The emp-
tions of CC human cell lines SiHa, as well as leukemic cell
line of human, THP-1 cells, were from the ATCC agent
(Manassas, VA, USA). Afterward, SiHa cells were conserved
in DMEM/High Glucose culture medium (Servicebio,
China) supplied by 10% fetal bovine serum (FBS, Biological
Industries, Israel), humid incubator containing with 37°C
temperature control and 5% CO2 available, having 1% pen-
icillin/streptomycin (New Cell & Molecular Biotech Co,
China) served, and THP-1 cells were kept in RPMI 1640
medium. The THP-1 cells (5 × 104 cells/100μl) were sprin-
kled in a 6-well plate (Corning, USA), which was observed
to diverge into macrophages, after adding 100 ng/ml PMA
(MCE, China) and keep it for 48 hours. After differentiation
towards M0 macrophages accomplishing, 100 ng/ml lipo-
polysaccharide (LPS) (Peprotech, USA) was added, with
which macrophages were cultured for 48 hours, then suc-
cessfully differentiated to M1. A transwell device (Corning,
USA) with a 0.4μm porous membrane got applied for the
coculture operations. Before coculture, the SiHa cells were
treated with different concentrations of erastin (10μM and
20μM, HY-15763, MCE) for 24h. Then, SiHa cells were
planted on the upper chamber of the Transwell device, when
M1 were planted with a density as 2 × 105 per well. When
the 24-hour-coculture is finished, SiHa cells and the M1
got harvested for the next step, and the culture supernatants
were also stored for detecting the secretion level of TNF-α.

Besides, we extracted the total RNAs from SiHa cells
with TRIzol (Invitrogen, USA); followingly, we evaluated
the purity quotient as well as concentration and then
launched a reverse transcription towards cDNA, via 5X

Table 1: Cervical cancer patients’ clinical characteristics
distributions.

Characteristic Levels Overall

n 209

Pathologic stage, n (%)
Stage I 149 (71.3%)

Stage II 60 (28.7%)

Grade, n (%)

G1 14 (7.4%)

G2 95 (50.3%)

G3 79 (41.8%)

G4 1 (0.5%)

M stage, n (%)
M0 86 (96.6%)

M1 3 (3.4%)

N stage, n (%)
N0 114 (77%)

N1 34 (23%)

T stage, n (%)

T1 118 (67.4%)

T2 55 (31.4%)

T3 2 (1.1%)

Human papillomavirus type, n (%)
HPV sample 20 (9.7%)

Normal 187 (90.3%)

Age, median (IQR) 45 (37, 54)
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ALL–IN-One RT Master Mix kit (Applied Biological Mate-
rials Inc, Canada). Real-time PCR was also performed using
TB Green Premix Ex Taq kit (Takara, Japan), with house-
keeping GAPDH considered as the internal control. The
primers used in this study were completely listed in Table 2.

A PPI (protein-protein interaction) analysis was con-
ducted via Cytoscape software (V3.8.2), showing the relation
network among the products of model genes [19]. The key
candidates were screened out with criteria as degree > 5.
“Cytohubba” tool in Cytoscape produced a marked effect.

2.8. Quantification of TNF-α by ELISA. A commercially
available ELISA kit (Mlbio, China) was used to determine
TNF-α secretion levels from the culture supernatants of
macrophage M1 after coculturing with SiHa cells under dif-
ferent erastin concentrations. Samples were measured in 3
biological replicates. All experimental steps were performed
according to the manufacturer’s instructions, and the optical
density (OD) was measured at 450nm. All of the statistical
analyses and graphs were performed by GraphPad Prism 8.

2.9. Mutation Related Analyses. Somatic mutation data of
CESC cases got gained from TCGA in MAF. The mutation
scores of samples computed from the following algorithm
were taken as Tumor Mutation Burden (TMB): ðtotal
mutation/total covered basesÞ × 106. Gene mutation spec-
trum and the comutation distribution of CC samples were
depicted in oncoplot, forest plot, and heat map via the
MAFTOOLS package [20]. Web tools provided by the
CAMOIP website (https://www.camoip.net) were applied
for immunogenicity, immune checkpoints, and drug sensi-
tivity analyses.

3. Results

3.1. The Workflow. We constructed a prognostic model con-
taining 25 FRGs. The model was established on the integra-
tion of the expression data of 306 CC samples from the
TCGA-CESC cohort and the comprehensive FRG list from
the FerrDb and GeneCards databases. The univariate Cox
regression combined with the LASSO penalty analysis was
for modeling, and the outcome formula got validated in
array dataset GSE44001. Information about FRGs partici-
pated in the study is listed in Table 3. We score the risk of
CC samples, early-stage CC patients got partitioned into
two cohorts, with the median of the risk scores
(value = 5:586) as the demarcation point to further explore
how FRG expression patterns affect tumor- immunization
and TME infiltration. After performing NMF clustering on
the expression submatrix divided by the role of genes in
ferroptosis, we found that “marker” genes matter most to
the prognosis of CC patients. As the most significantly
increased marker gene in the model characteristics after
ferroptosis induction, analyses were carried out around the
key-gene PTGS2.

3.2. The Enriched Functional Pathways of FRGs Contributed
to Prognosis. As mentioned above, a univariate Cox regres-
sion analysis was made; thus, the 40 FRGs showed their
significant correlation with prognosis with a limited range

of p value < 0.05.20 of them represented a better survival
according to this result, while the expression data of another
half had the potential of being high-risk indicators.
(Figure 2(a)). According to the results for the GO enrichment
analysis, genes’ functions about the biological process (BP)
were closely related to the biochemical processes contributed
to ferroptosis, and those about molecular function (MF) were
tightly centered around amino acid transportation and oxido-
reductase activity. The result above suggested that most of the
gene-enriched functions served the occurrence of ferroptosis
(Figure 2(b)). Simultaneously, the gene-enriched signaling
pathways revealed by KEGG analysis got displayed in
descending order of the gene ratios, and besides ferroptosis,
it is also inclusive of NOD-like receptor signaling pathway,
TNF signaling pathway, autophagy, etc. (Figure 2(c)).

3.3. A Prognostic Model Established on LASSO-Penalized
Analysis. We sent the 40 prognostic FRGs for shrinkage by
LASSO-penalized analysis to concentrate on those risk char-
acteristics that contributed the most to the prognosis of CC
patients. The independent variables (candidate signatures)

Table 2: Primer nucleotide sequence of this study.

Gene Primer nucleotide sequence

GAPDH
Forward: 5′-CTGGGCTACACTGAGCACC-3′

Reverse: 5′-AAGTGGTCGTTGAGGGCAATG-3′

PTGS2
Forward: 5′-CTGGCGCTCAGCCATACAG-3′

Reverse: 5′CGCACTTATACTGGTCAAATCCC-3′

VEGFA
Forward: 5′-AGGGCAGAATCATCACGAAGT-3′
Reverse: 5′-AGGGTCTCGATTGGATGGCA-3′

CXCL2
Forward: 5′-TGCAGACCGTGCAAGGAATT-3′

Reverse: 5′-TGACCATTCTTGAGAGTGGCTATGA-3′

TNF-α
Forward: 5′-GAGGCCAAGCCCTGGTATG-3′
Reverse: 5′-CGGGCCGATTGATCTCAGC-3′

Table 3: Information about FRGs from FerrDb of this study.

Characteristic Driver Marker Suppressor

n 141 97 94

Reliability confidence, n (%)

Deduced 10 (3%) 56 (16.9%) 3 (0.9%)

Predicted 4 (1.2%) 1 (0.3%) 1 (0.3%)

Screened 14 (4.2%) 30 (9%) 1 (0.3%)

Validated 113 (34%) 10 (3%) 89 (26.8%)

Test subject, n (%)

Human 61 (18.4%) 77 (23.2%) 49 (14.8%)

Human, mice 29 (8.7%) 1 (0.3%) 33 (9.9%)

Human, mice, rat 0 (0%) 0 (0%) 1 (0.3%)

Human, rat 2 (0.6%) 0 (0%) 1 (0.3%)

Mice 42 (12.7%) 18 (5.4%) 9 (2.7%)

Rat 7 (2.1%) 1 (0.3%) 1 (0.3%)
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TF
TFRC
SLC1A5
GLS2
GOT1
KEAP1
ATG5
ATG3
ATG4D
WIPI2
PRKAA2
TNFAIP3
TAZ
PANX1
PTGS2
TSC22D3
JDP2
SLC1A4
SLC7A5
VEGFA
CXCL2
SLC2A8
STMN1
HSPA5
HELLS
ISCU
JUN
CA9
TMBIM4
GCH1
MDM2
YAP1
CTSB
PIR
IDH2
SLC11A2
CCL5
DECR1
TNF
EGLN1

0.013
0.017
0.035
0.003
0.011
0.013
0.027
0.012
0.004
0.003
0.037
0.036
0.025
0.031
0.020
0.046
0.015
0.034
0.034
0.041

< 0.001
0.037
0.013
0.004
0.002

< 0.001
0.045
0.012
0.031
0.017
0.006
0.005
0.030
0.037
0.019
0.001
0.039
0.002
0.038

< 0.001

p value

0.786(0.651-0.950)
1.343(1.053-1.713)
0.622(0.400-0.967)
0.687(0.537-0.879)
0.478(0.270-0.847)
0.503(0.292-0.866)
2.214(1.094-4.480)
0.502(0.292-0.861)
0.516(0.329-0.808)

4.072(1.615-10.267)
1.177(1.010-1.371)
1.453(1.025-2.061)
0.526(0.299-0.923)
1.591(1.044-2.425)
1.237(1.035-1.479)
0.715(0.514-0.995)
1.806(1.120-2.914)
0.761(0.592-0.979)
1.275(1.018-1.597)
1.410(1.014-1.962)
1.353 (1.142-1.604)
0.534 (0.296-0.963)
0.549 (0.342-0.882)
2.932 (1.400-6.142)
0.433 (0.255-0.736)
0.284 (0.135-0.596)
1.577 (1.010-2.463)
1.202 (1.042-1.386)
1.656 (1.046-2.622)
0.586 (0.378-0.909)
0.470 (0.274-0.808)
1.370 (1.099-1.707)
1.678 (1.051-2.676)
0.763 (0.592-0.984)
0.606 (0.399-0.922)
2.185 (1.370-3.487)
0.817 (0.675-0.990)
0.409 (0.229-0.730)
1.297 (1.014-1.659)
2.281 (1.613-3.226)

Hazard ratio

Hazard ratio

0.1 1 10

(a)

Figure 2: Continued.
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Figure 2: Continued.
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can be screened, and a better fit was explored with a con-
straint condition which was to the sum of the absolute values
of the coefficients, to achieve the purpose of data dimension-
ality reduction. After the analysis with ten-folded cross-val-
idation, a 25-gene prediction model having its candidate
gene-set will function on the sum of the products of their
expression values and corresponding regression coefficients,
respectively (Figures 2(d) and 2(e)), as shown in Materials
and Methods Section. The expression data of genes survived
the LASSO analysis were then put into risk calculation: TF
(transferrin), TFRC (transferrin receptor), SLC1A5 (solute car-
rier family 1 member 5), ATG5 (autophagy related 5), WIPI2
(WD repeat domain, phosphoinositide interacting 2),
PRKAA2 (protein kinase AMP-activated catalytic subunit
alpha 2), TNFAIP3 (TNF alpha-induced protein 3), TAZ
(tafazzin), PTGS2 (prostaglandin-endoperoxide synthase 2),
JDP2 (Jun dimerization protein 2), VEGFA (vascular endothe-
lial growth factor A), CXCL2 (C-X-C motif chemokine ligand
2), SLC2A8 (solute carrier family 2 member 8), STMN1 (stath-
min 1), ISCU (iron-sulfur cluster assembly enzyme), JUN (Jun
protooncogene), TMBIM4 (transmembrane BAX inhibitor
motif containing 4), MDM2 (MDM2 protooncogene), IDH2
(isocitrate dehydrogenase (NADP(+)) 2), SLC11A2 (solute
carrier family 11 member 2), DECR1 (2,4-dienoyl-CoA
reductase 1), TNF (tumor necrosis factor), EGLN1 (Egl-9 fam-
ily hypoxia inducible factor 1), ATG3 (autophagy related 3),
and SLC1A4 (solute carrier family 1 member 4).

The result figured out by formula below will be
called risk score, which is proportional to the after risk
of a CC patient: risk score = ðCXCL2 expression × 0:01757Þ +
ðTFRC expression × 0:02259Þ + ðPTGS2 expression ×
0:03608Þ + ðTNF expression × 0:05541Þ + ðPRKAA2
expression × 0:08078Þ + ðATG5 expression × 0:13071Þ +
ðTNFAIP3 expression × 0:19564Þ + ðJDP2 expression ×
0:28366Þ + ðTMBIM4 expression × 0:40741Þ + ðEGLN1
expression × 0:42211Þ + ðJUN expression × 0:45560Þ + ðSLC
11A2 expression × 0:60653Þ + ðWIPI2 expression × 1:14623Þ
− ðTF expression × 0:06828Þ − ðISCU expression × 0:63842Þ
− ðIDH2 expression × 0:45592Þ − ðATG3 expression ×
0:30001Þ − ðTAZ expression × −0:23449Þ − ðDECR1
expression × 0:20942Þ − ðSTMN1 expression × 0:18136Þ −
ðSLC1A4 expression × 0:17422Þ − ðSLC2A8 expression ×
0:15226Þ − ðSLC1A5 expression × 0:11532Þ − ðMDM2
expression × 0:09991Þ − ðVEGFA expression × −0:08179Þ.

3.4. Validation. The outcomes of the univariate (p < 0:001,
hazard ratio = 3:962, 95% confidence-interval: 2.808–5.589)
(Figure 2(f)) and multivariate (p < 0:001, hazard ratio =
4:148, 95% confidence-interval: 2.906–5.921) (Figure 2(g))
Cox regression analyses proved that the risk score calculated
from FRG-based model works as an independent prognostic
indicator for early-stage CC patients. The DCA curve is
shown in Figure 2(h), and it turned out that risk score func-
tioned as the only reliable clinical characteristic to be a
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Figure 2: (a) Forest plot depicts 40 prognostic FRGs and the hazard ratios inferred from the outcome of univariate Cox regression analysis,
20 risk factors are marked in yellow, 20 protective factors in blue. (b) and (c) The top 10 pathways among biological process, cellular
component, and molecular function in GO analysis (b), and top 30 in KEGG analysis (c) were shown in bubble plot, respectively, the
bubble with gene-ratio > 0.2 is triangle shaped. (d) and (e) The least absolute shrinkage with 10-folded cross-validation, conducting
candidate shrinkage to build the model. (f) and (g) The univariate and multivariate connections of risk score and other common clinical
factors with OS. (h) DCA curves show that the risk score has the longest distance to the basic line. (i) Time-dependent ROC curves
show the efficacy on prediction of the new model with AUC = 0:791 > 0:640.
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prognostic signature for our test group. Meanwhile, we also
collected a model with similar function of predicting CC
patients’ prognosis from other research [21], with its pre-
dicting formula: (0:195 × TFRC expression values + 0:104 ×
ACACA expression values + 0:097 × SQLE expression values
– 0:512 × PHKG2 expression values), and scored the sam-
ples we used to model; then, ROC curves were put to com-
parison to show the superiority of our new-built model
(Figure 2(i)).

209 CC patients from TCGA were sorted by their risk
score and displayed with corresponding survival status in
the heatmap, so did 300 samples from the GEO validation
dataset, after being scored by FRG-based model and com-
partmentalized into different risk-degree cohorts with the
median value of risk scores (value = 5:235) as a cut-off. The
expression distributions of the model genes were also shown
in the heatmap; thus, the difference in the distribution
between two different risk clusters of every single gene can
be clearly seen (Figures 3(a) and (b)). Time-dependent
ROC curves were depicted to show the predictive efficacy
of the model in both datasets, and the areas under the curve
of TCGA data of time nodes are 0.898 (the 1st year), 0.890
(till 3 years), and 0.908 (till 5 years) (Figure 3(c)). For the
GEO cohort, the prognostic efficacy got validated by the
AUC of 0.789 (the 1st year), 0.804 (till 3 years), and 0.645
(till 5 years) (Figure 3(d)). Besides, the low-risk cluster
enjoyed significantly better survival than the high-risk score
one according to the outcome of Kaplan–Meier survival
analyses to TCGA as well as GEO sets [p < 0:001
(Figure 3(e)); p = 0:021 (Figure 3(f))]. The outcome attested
that when put to be applied in an external dataset, the new-
built prognostic model still worked.

3.5. Contrast between High- and Low-Risk Score
Clusters about Immune-Related Features

3.5.1. Immune-Related Checkpoints. Figure 4(a) shows us the
expression distribution of every immune checkpoint (ICP)
among the common ones we choose to analyze with signifi-
cant correlation with the level of risk scores, including
BTLA, TNFRSF 14, 18, and 25, CD48, CD276, CD27, and
LAG3. Corresponding p values were also shown in the pic-
ture. In a high-risk cohort, a new-found checkpoint NRP1
(neuropilin-1) was reported as an immune response sup-
pressor to cancer gathered higher expression [22], as well
as CD276 [23], which was proven to participate in tumor
immune evasion in HNSCC. The ICPs in addition to the above
two points expressed more actively in the low-risk cohort.
Whether the immunotherapy received by each patient effec-
tively inhibited the checkpoints that contributed to the occur-
rence and development of tumors may affect the prognosis.

3.5.2. Immune Cell Infiltration Analysis. TIC proportion cal-
culated via different algorithms got simultaneously obtained
from the TIMER2.0 website and the outcome of analysis
made by R packages CIBERSORT and ssGSEA. A notewor-
thy fact existing in the outcome of CIBERSORT is that mac-
rophage M1 expressed more actively in the low-risk cohort
while macrophage M2 showed no significant discrepancy

between the two clusters. Reasonable speculation got made
that the macrophage polarization developed differently in
low- and high-risk clusters. According to the information
above, we made a comparison between two risk-cohorts to
see how immune-related components distribution varied.
The interesting part of the result was selectively exhibited
(Figures 4(c)–4(d)). After the multialgorithm comprehen-
sive analyses, types of immune cells enriched in low-risk
group are inclusive of B cell according to TIMER, macro-
phage M2 in QUANTISEQ, CD4+ memory T cell, CD8+
T cell, and myeloid dendritic cell in MCPCOUNTER, mye-
loid dendritic cell activated, B cell, T cell CD4+ memory, T
cell CD8+, class−switched memory B cell, myeloid dendritic
cell, cancer-associated fibroblast, hematopoietic stem cell, B
cell memory, T cell NK, and T cell CD4+ Th1 for XCELL,
as well as macrophage to EPIC. Obviously, no matter via
which method, the low-risk cluster generally presented a
higher level of immune activity, such as T and B cells, mye-
loid dendritic cells, macrophage cells according to TIMER
data (Figure 4(e)), as well as immune-related pathways
(APC coinhibition, APC costimulation, checkpoint, HLA,
T cell coinhibition, as well as costimulation) to the result
of ssGSEA analysis (Figure 4(f)). By any method, the result
stated that neutrophils were intended to become enriched
in the high-risk cohort.

ESTIMATE algorithm was put into use to assess the TME
of CC patients. The distribution of immune, stromal, and
ESTIMATE score was shown by the top bar of Figure 4(e), also
taken as an immune feature and compared between the two
risk groups. The correlation analysis between TICs and risk
score was made to enhance the conclusion that the risk degree
is connected with thrivingM1, as well as CD8+ T cell, the com-
monly considered contributing ones to immune activity
(Figure 5(a)). The result suggested that among all three
indicators assessed with the Weltch T-test, immune score
showed significant difference with p value 0.028 (Figure 5(b)),
Stromal-Score with p value = 0.106 (Figure 5(c)),
ESTIMATE-Score with p value = 0.028 (Figure 5(d)), and
tumor purity with p value = 0.032 (Figure 5(e)).

3.6. Ferroptosis Could Facilitate the Polarization of M1
Macrophages in Cervical Cancer. From the bioinformatical
analyses of the correlation of ferroptosis with tumor-
infiltrating immune cells, it could be clearly seen that the
proportion of M1 macrophages became obviously higher in
the low-risk group. In order to further verify the relevant
results, we excogitated the influence of ferroptosis on M1
macrophage polarization using real-time-qPCR. The out-
comes illustrated that the expression amount of TNF-α,
which is the marker towards M1 macrophages, got signifi-
cantly elevated in M1 macrophages, as a consequence of
coculturing M1 with SiHa cells (treated with erastin the
day before) (Figure 5(f)). To further verify the conclusion,
we conducted ELISA test with the supernatant extracted
from coculture dishes, indicating that TNF-α secretion level
increased gradually with the increasing amount of ferropto-
sis inductor (Figure 5(g)). From the above analyses and
experimental verification, it could be clearly demonstrated
that ferroptosis could promote the polarization of M1,
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Figure 3: The risk-score distribution, expression heatmaps (a, b), time-dependent ROC curves on 1, 3, 5 year (c, d), as well as Kaplan-Meier
curves (e, f) of USCS cohort and external validation GSE44001 dataset are exhibited.

15Journal of Oncology



⁎⁎⁎ ⁎ ⁎⁎ ⁎ ⁎⁎ ⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎ ⁎⁎ ⁎⁎ ⁎

–4

0

4

8

BTLA
TNFR

SF
14

NRP1

LAG3

CD48
HAVCR2

CD27
6

LGALS9

ID
O2

IC
OSL

G
VTCN1

CD27
TNFR

SF
25

TNFR
SF

18

G
en

e e
xp

re
ss

io
n

Risk
Lowrisk

Highrisk

(a)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

p = 0.518

p = 0.008

p = 0.034

p = 0.285

p = 0.301
p = 0.036

p = 0.712

p = 0.053

p = 0.014

p = 0.943 p = 0.249

p = 0.745

p = 0.074

p = 0.595
p < 0.001

p = 0.243

p < 0.001

p = 0.026

p = 0.037

p < 0.001

p = 0.117

p = 0.022

B ce
lls 

naiv
e

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 naiv
e

T ce
lls 

CD4 m
em

ory res
tin

g

T ce
lls 

CD4 m
em

ory ac
tiv

ate
d

T ce
lls 

follic
ular

 help
er

T ce
lls 

reg
ulato

ry (T
reg

s)

T ce
lls 

gam
ma d

elta

NK ce
lls 

res
tin

g

NK ce
lls 

act
ivate

d

Monocytes

Macr
ophages M

0

Macr
ophages M

1

Macr
ophages M

2

Dendriti
c c

ells
 res

tin
g

Dendriti
c c

ells
 ac

tiv
ate

d

Mast
 ce

lls 
res

tin
g

Mast
 ce

lls 
act

ivate
d

Eosin
ophils

Neutro
phils

Risk

Lowrisk

highrisk

(b)

Figure 4: Continued.

16 Journal of Oncology



Re
la

tiv
e p

er
ce

nt

0%

20%

40%

60%

80%

100% B cells naive
B cells memory
Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta
NK cells resting
NK cells activated
Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

(c)

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

oy r
est

ing

T ce
lls 

CD4 m
em

oy a
cti

vat
ed

T ce
lls 

follic
ular

 help
er

T ce
lls 

reg
ulat

ory 
(tr

egs
)

T ce
lls 

gam
ma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

act
iva

ted

Monocyt
es

Macr
ophage

s M
0

Macr
ophage

s M
1

Macr
ophage

s M
2

Den
driti

c c
ells

 re
stin

g

Den
driti

c c
ells

 ac
tiv

ate
d

Mast
 ce

lls 
res

tin
g

Mast
 ce

lls 
act

iva
ted

Eosin
ophils

Neutro
phils

B ce
lls 

naiv
e

B cells memory
Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memoy resting

T cells CD4 memoy activated
T cells follicular helper

P value

Correlation

1.00

0.75

0.50

0.25

0.00

1.0

0.5

0.0

–0.5

–1.0

T cells regulatory (tregs)
T cells gamma delta

NK cells resting
NK cells activated

Monocytes
Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting
Dendritic cells activated

Mast cells resting
Mast cells activated

Eosinophils
Neutrophils

B cells naive

(d)

Figure 4: Continued.

17Journal of Oncology



TumorPurity
0.9

0.4

ESTIMATEscore
3000

–3000

Immunescore
3000

–1000

Stromalscore
500

–2000

RiskScore
8

0

Risk
Lowrisk

Highrisk

Methods
TIMER

QUANTISEQ

MCPCOUNTER

XCELL

EPIC

−10

−5

0

5

10

B cell_TIMER
Macrophage M1_QUANTISEQ
Macrophage M2_QUANTISEQ
T cell_MCPCOUNTER
T cell CD8+_MCPCOUNTER
Myeloid dendritic cell_MCPCOUNTER
Neutrophil_MCPCOUNTER
Myeloid dendritic cell activated_XCELL
B cell_XCELL
T cell CD4+ memory_XCELL
T cell CD8+_XCELL
Class−switched memory B cell_XCELL
Myeloid dendritic cell_XCELL
Cancer associated fibroblast_XCELL
Hematopoietic stem cell_XCELL
Macrophage M2_XCELL
B cell memory_XCELL
Neutrophil_XCELL
T cell NK_XCELL
T cell CD4+ �1_XCELL
Immune score_XCELL
Microenvironment score_XCELL
T cell CD4+_EPIC
Macrophage_EPIC

Risk
Riskscore
Stromalscore
Immunescore
ESTIMATEscore
TumorPurity

Methods

(e)

⁎⁎ ns ns ⁎ ns ⁎ ns ns ns ⁎ ⁎⁎ ns ns

0.00

0.25

0.50

0.75

1.00

APC_co_inhibitio
n

APC_co_stim
ulatio

n
CCR

Check
−point

Cytolytic_
activ

ity HLA

Inflammatio
n−promotin

g

MHC_cla
ss_

I

Parainflammatio
n

T_cel
l_co−inhibitio

n

T_cel
l_co−stim

ulatio
n

Type_I_IFN_Reponse

Type_II_
IFN_Reponse

Sc
or

e

Risk
Lowrisk

Highrisk

(f)

Figure 4: (a) Discrepantly distributed ICPs between clusters with different risk degree, ∗∗∗p < 0:001, ∗∗p < 0:01, ∗p < 0:05. (b) 22 TIC expressions
were taken into a comparison between groups of different risk degree viaWilcoxon rank-sum, the outcome was shown in violin graph. (c) The bar
plot presents the proportion of TICs of 22 kinds by showingmulticolored stripes with different proportions of colored lengths. Sample IDs were set
as stripes’ names. (d) Heatmap shows the correlation (blue to yellow from low to high) and corresponding significance (presented by the depth of
red color at the top left corner) between 22 types of TICs in each box. (e) Multialgorithm immune comprehensive analysis results, inclusive of
existing data from platform TIMER, XCELL, MCP-counter, quanTIseq, and EPIC. The top bars show the TME-score distribution
corresponding to risk score from low to high. (f) The calculation result of ssGSEA pictured by box plot, ∗∗p < 0:01, ∗p < 0:05.
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Figure 5: (a) Correlation analyses were made between the risk score and the infiltration of immune cells. The hill-shaped symbols on the top
and right imply the density of the corresponding risk score or immune scoring. (b)–(e) The distributions of ESTIMATE-related scores and
tumor purity were shown in box plots, low-group with 104 samples while high-group with 105, calculated by Weltch T-test. (F) The M1
biomarker TNFα increases after ferroptosis-induction (p < 0:001). (g) The result of ELISA test, SiHa-NC group with no addition of
erastin, SiHa-Fe-Low group added with 10μM erastin, SiHa-Fe-High group added with 20 μM erastin. TNFα secretion level was
promoted by the increase of erastin concentration significantly (∗∗p < 0:01, ∗p < 0:05).
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therefore creating a better immune microenvironment for
cervical cancer patients.

3.7. CC Patients Can Be Divided into Subgroups with
Different Survival Level Based on Ferroptosis Marker
Expression Pattern by NMF. NMF clustering was conducted
on the submatrix of expression partitioned according to the
function of genes for ferroptosis. Every time we divided the
samples into optimal numbers, the survival rate will be com-
pared between all the subgroups. It turned out to be a
“marker” function-set that showed significant survival dif-
ferences (Figures 6(a)–6(f)). In protein-protein interaction
analysis on model genes done via Cytoscape software, the
PTGS2, CXCL2, and VEGFA ranked relatively high in the
topological method DEGREE with their scores > 5 (Supple-
mentary Figure 1, Table 1). Therefore, we narrowed down the
range of survival-affecting key genes to which are considered
to function as ferroptosis marker among model genes.

3.8. Ferroptosis Increased the Expression of PTGS2, VEGFA,
and CXCL2 in Cervical Cancer Cells. All the three candidates,
PTGS2, VEGFA, and CXCL2, have been proved to correlate
with ferroptosis in varying degree. However, the confidence
levels of these correlations depend on the methods used to
prove them, which differ among these three genes. CXCL2
was noted as “deduced,” while VEGFA “screened,” and
PTGS2 “validated.” That is why we need to validate their effec-
tiveness as ferroptosis biomarkers. After treating the SiHa cells
with erastin for 24h, we further detected the expression of
PTGS2, VEGFA, and CXCL2. The results showed that ferrop-
tosis could significantly increase the expressing amounts of
PTGS2 (p value < 0.0001), VEGFA (p value < 0.001), and
CXCL2 (p value < 0.01) in CC cells (Figures 6(g)–6(i)).

3.9. Ferroptosis-Marker PTGS2 Affect the Prognosis of Early-
Stage CC Patients from Many Aspects. It is aforementioned
that among the three markers PTGS2 had the strongest ability
to report ferroptosis. Besides, the PTGS2 product tends to be
one of the key proteins affecting the model function, which
was also verified in GSE44001 by Kaplan-Meier survival analy-
sis (Supplementary Figure 2). Patients got sorted as cohorts
with the different expressing amounts, with the median value
of expression level of PTGS2 as the cut-off, immune-, and
mutation-correlated, and functional enrichment analysis was
carried out between those high and low expression clusters.

Generally, the low-PTGS2 group carried a greater tumor
mutation burden (Figures 7(a) and 7(b)). Somatic mutation
data was processed and demonstrated, respectively, in onco-
plots and correlation heatmaps. (Figures 7(c)–7(f)). We also
filtered out DMGs between two PTGS2-expressed-different
cohorts. Ranked in the order of p value, the mutations with
high significance are overwhelmingly clustered in the low-
PTGS2 group (Figure 7(g)). TENM2 and NUP155 rank first
in parallel by significance, according to analyses made on
drug sensitivity and neoantigens calculated by the CAMOIP
website, and the mutant type (MT) of TENM2 is with PD-L1
high-expression, as well as high neoantigens and TMB loads.
Features above equipped by TENM2 MT promote the effec-
tiveness of immunotherapy for CC patients, which may con-

tribute to the relatively better survival of the low-PTGS2
group. Genes with the largest quantity of mutations were
exhibited in Figure 7(h). Therefore, we carried out a series
of analyses to explore if the survival discrepancy can be
related to the mutated genes. Inferred from the database
from the CAMOIP website, the TENM2 mutant population
generally enjoys a higher level of immunotherapy-
contributed factors, PD-1 (PDCD1), neoantigens, and tumor
mutation burden, for example (Figures 8(a)–8(c)).

ICPs concerning PTGS2 expression were displayed in
Figure 8(d). In general, the immune checkpoints seem to
express with more activeness in the low-PTGS2 group,
except for CD276, whose expression is always found upreg-
ulated in malignant tumors and accompanied with a poorer
prognosis for cancer patients. Inferred from CIBERSORT
scoring, taken p value ≤ 0.01 as criteria for significance, mac-
rophages M1, resting and activated dendritic cells, and acti-
vated mast cells presented to have a difference on
distribution corresponding to PTGS2 expression spectrum
(Figure 8(e)). The tendency of macrophage polarization
tended to be consistent with that of high and low risk-
score clusters, which may account for the result that PTGS2
becomes a determinator to risk degree.

4. Discussion

As reported, CC always develops with strong concealment
and high mortality. Though researches on the prediction
and detection against early cervical cancer had been covered
by studies [24–26], few of them were established on the
genetic molecular level or concentrated on specific FRGs
affecting prognosis in the field of CC. We cut in the theme
in the light of the expression information of early CC patients
and a prognostic model designed via Cox-LASSO combined
methods and based on the gene-expression was constructed.

Ferroptosis, a newfound type of regulated cell death pro-
cess, has been linked up with cancer treatment from the very
beginning of its discovery. In the initial expectation, ferrop-
tosis would be applied as a novel way against the death eva-
sion of cancer cells; however, its effect on tumors presented
to be contrary. As an iron-dependent physiological process
driven by excessive lipid peroxidation, ferroptosis can be
induced by experimental reagents (erastin, etc.), ionization-
producing radiation, and cytokines (IFN-γ, etc.), concur-
rently suppressing tumor growth. Yet ferroptosis-resulted
damage can also turn on inflammation-associated immuno-
suppression of TME, favoring tumor growth. The duality
also exists in the interaction between the effectiveness of
immunotherapy and ferroptosis. cytotoxic-T-cell-driven
immunity promotes ferroptotic cell death in cancer cells,
which is observed in T cell-driven antitumor immune
response launched by immunotherapy with ICIs, mechanis-
tically because of IFN-γ launching the JAK-STAT1 pathway
and reducing SLC3A2, SLC7A11. PD-L1-targeted antibodies
enhance ferroptotic cell death depending on lipid peroxida-
tion, synergistically inhibit tumor growth with ferroptosis
activators. Of note, whether there are other cytokines play-
ing the same role as IFN-γ and what effect ferroptosis exerts
on TME remains unclear, for STAT1 is available for
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sensitization to a great many ligands. Meanwhile, some
kinds of DAMPs (damage-associated molecular patterns)
promote tumor growth by accelerating an inflammatory
response, which means ferroptosis also contributes to tumor
development under specific conditions. HMGB1 released
from cancer cells killed by ferroptosis can stimulate inflam-
matory responses of macrophages when connecting with
AGER. According to research about pancreatic cancer,
KRAS-G12D emitted inside exosomes by ferroptotic cancer
cells can be swallowed by macrophages. Mediated by AGER,
this uptake ultimately resulted in an increase of macro-
phages of M2 phenotype, accelerating tumor growth [27].
So it would seem ferroptosis exerts a long-term effect to do
with tumor immunity which depends on immune cell envi-
ronment, currently discovered inclusive of macrophage
polarization and immunoresponse launched by cytotoxic T
cell. The comprehensive impact of ferroptosis on tumors
can differ under different conditions, and how influential
ferroptosis is towards tumor biology remains unknown.
Present studies revealed that mutations in specific genes
are involved in the response to treatments that activate
ferroptosis.

According to bioinformatics analysis carried out to the
TME of cohorts with different risk degree divided on model
scoring, a significantly different distribution was discovered
in macrophage polarization. M1 macrophages enjoyed a
larger quantity in samples with better risk degree. Existing
researches suggested that M1 is a proinflammatory and
antitumor phenotype [28], with the immunophenotype of

major histocompatibility complex-(MHC-) II positiveness
[29], which means high potential for accelerating inflamma-
tory responses and stimulating the immune system [28]. M1
cells can directly suppress the migration and growth of the
tumor as well [30], and these antitumoral effects are also
applied in targeted therapies for cancer. Paracrine signals
inclusive of TNF-α [28], monoacylglycerol lipase [30], TLR
[31], NF-Κb [28], and others contribute to the M1 multipli-
cation and antitumor effect [32], so do the cross talks
between it and other immune cells; for example, Th1 inducts
macrophages towards M1 [30, 33] and the inducible effect of
M1 enrichment to the recruitment of CD8+ CTLs [31]. It is
reasonable to assume the better prognosis in the low-risk
group is related to the difference in macrophage polariza-
tion. What is more, M1 macrophages are one of the pro-
ducers of ferroptosis-inducing cytokines IFN-γ, which also
participates in the induction of M1 polarity in paracrine
and autocrine ways simultaneously [30, 34]. IFN-γ signaling
mediated by M1 also helped to increase tumor immunogeni-
city and the presentation of MHC-I on the cancer cell sur-
face, making it more sensitive to cytolysis [35, 36]. Inferred
from the above, the regulation of macrophage polarization
can be assumed as an unrevealed key clue to the exploration
about the effect of ferroptosis on the immune microenviron-
ment of CC patients, and the relatively low mortality of low-
risk population may be related to the activation of M1 cells.
The prognostic effect of the comprehensive model con-
structed on FRGs may result from the interaction between
ferroptosis and macrophage polarization. It was verified by
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Figure 6: (a)–(c) The consensus maps depicting the outcomes of NMF clustering on the gene expression matrix, in the order of ferroptosis
driver, marker, and suppressor, respectively, sharing the same optimal k − value = 3. For all the 3 figures, patches from left to right
represented groups 1-3. (d)–(f) Kaplan-Meier survival curves of subgroups created by NMF-clustering. From (d) to (f), they are
corresponding to driver, marker, suppressor matrix. Considering p < 0:05 as significance, Marker gene is the only gene group that
matters to OS. (g)–(i) The significance of mRNA expression after erastin induction was PTGS2, VEGFA, and CXCL2 from high to low.
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the result of the following experiment, illustrating that the
M1 marker, TNF-α, expressed more actively in M1 macro-
phages, after coculturing SiHa cells treated with erastin and
M1 macrophages. It stated with sufficient reasons that fer-
roptosis affects the polarization of M1 macrophages indeed.

The twenty-five genes constituting the prognostic model
were obtained by searching the keyword “ferroptosis” on the
GeneCards website and FerrDb database. According to the
records in the database, they have different actions in the
process of ferroptosis including “driver,” “suppressor,” and
“marker,” and the reliability of their association with ferrop-
tosis is also of different levels. Some have been clearly veri-
fied by complete experiments, and others come from the
conjecture made by researchers with their own knowledge.
Among them, there must be core genes of the strongest
effects on prognostic prediction. In order to figure out and
focus on the key gene, NMF clustering was run three times,
respectively, on driver-, suppressor- and marker-gene-
expression matrix. It turned out to be the marker group that
presented a significant difference in survival rate between its
differed gene expression pattern subgroups. PTGS2, CXCL2,
and VEGFA are noted as “marker” among the twenty-five,
and PTGS2 is the only one with the reliability of “validated”
level in accordance with the FerrDb database. Afterward, we

treated a group of CC cells with erastin and measured the
expression of the candidate genes. All of them showed an
increase, and PTGS2 presented to be the most significant
(p < 0:0001). We thereupon conducted an in-depth analysis
around PTGS2.

PTGS2 (prostaglandin-endoperoxide synthase 2) is a gene
encoding cyclooxygenase-2 (COX-2). Previous researches
show that PTGS2 upregulation is known as a simply down-
stream marker for ferroptosis and, whether it promotes or
suppresses the process of ferroptosis, is still worth searching
for the time being. Among 83 oxidative-stress-perturbing
genes whose expression levels were surveyed in the experi-
ment, PTGS2 served as the most upregulated candidate that
received operation with ferroptosis-induced reagents as era-
stin or (1S, 3R)-RSL3, and ferroptotic cell death by ferroptosis
inductors was not influenced by PTGS-2 suppressor treat-
ment. What is more, PTGS2 upregulation is a consequence
of GPX4 loss, also an appropriate biomarker of lipid peroxida-
tion occurring along with ferroptosis [37]. In addition, it is not
only an indicator for the result of ferroptosis induction but
also with its expression product leading to poor prognosis in
CC. In cervical carcinoma, COX-2 and its following product
have been found highly expressed [38, 39] and many studies
done before showed COX-2 is contributed to carcinogenesis
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Figure 7: (a) and (b) The TMB distribution differentiates between the clusters with different PTGS2 expression levels, shown in box plot and
correlation analysis. (c) and (d) Oncoplots show the mutation spectrums of the top 30 genes with the most quantity of mutation,
respectively, in high- (c) and low-PTGS2 (d) groups. The central panels noted the mutated type for each sample. The colored top bar
cluster tells the mutation frequency of each sample by providing colored stripes with different lengths. The bottom symptom is noting
for mutation types. (e) and (f) The heatmaps demonstrate mutations with the mutual coexistence and exclusion of the top 20 most
mutated genes of high- (e) and low-PTGS2 (f) clusters. The color depth of each cell implies the significance of the cooccurring relation.
(g) and (h) The forest plot and cooncoplot display the most significantly discrepantly mutated genes. ∗∗p < 0:01, ∗p < 0:05, TENM2 and
NUP155 rank first in parallel.

28 Journal of Oncology



ns ns ns ns ns ns

0.0

2.5

5.0

7.5

10.0

PD−L1 (CD274)

HAVCR2
LAG3

B7−H3 (CD276)
IDO1

CTLA4
TIGIT

PD−1 (PDCD1)

PDCD1LG2

Ex
pr

es
sio

n:
 lo

g2
 (F

PK
M

+1
)

TENM2
MT (15)
WT (265)

TCGA−CESC
⁎ ⁎ ⁎⁎

(a)

1

2

3

4

MT WT

lo
g1

0 
(N

eo
an

tig
en

s+
1)

TENM2
MT (14)
WT (262)

⁎⁎⁎⁎

(b)

0

1

2

3

MT WT

lo
g1

0 
(T

M
B+

1)
 (M

ut
/M

b)
⁎⁎⁎⁎

TENM2
MT (15)
WT (268)

(c)

−4

0

4

8

BTLA
TNFRSF

14
LAIR

1
CD24

4
CD48

HAVCR2
CD27

6
IC

OSL
G

CD27
TNFRSF

25
TNFSF

15

G
en

e e
xp

re
ss

io
n

Expression
Low
High

⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎

(d)

Figure 8: Continued.

29Journal of Oncology



as well as the progression of CC [40]. HPV infection promotes
the proliferation of CC cells by mediating the EGFR signal
transduction, which was proved to bear upon the acceleration
of COX-2 in SCC cell lines [41], and transcription was also
affected by oncoproteins E6 and E7 from HPV 16 via EGFR
signaling to be concrete [42]. Besides, COX-2 transforms ara-
chidonic acid into prostaglandins in the cytoplasmic mem-
brane [43], with various functions of cell proliferation
promotion, E-cadherin running off, loss of cell contact
restrain. Such as PGE-2, the major procarcinogenic mediator
in the inflammatory environment, acting on surrounding cells
by autocrine and paracrine secretion [44]. Thus, there is suffi-
cient theoretical basis for us to determine PTGS2 as hub
prognostic-gene and have its expression as an independent
risk factor of CC.

Previously, we regarded macrophage polarization as a
potential element of how the twenty-five feature model
judged the risk of CC patients, with which PTGS2 has also
been proved to be in relevance. Previous reports stated that
PTGS2 makes the differentiation of macrophages tilt
towards M2. In research about diabetic cardiomyopathy
(DCM), mesenchymal stem cell (MSC) infusion in rats was
prove to induce macrophages towards the M2 phenotype
significantly; however, after being pretreated with a COX-2
inhibitor, it failed with this function interestingly, and such

consequence could be reversed by prostaglandin E2
(PGE2) adding [45]. Another round goes like, M2-like polar-
ized macrophages turned from human monocytes showed an
upregulation of PTGS2, and the coexpression of M2 markers
and PTGS2 was found in a specific part of human thyroid
tumors. The induction towards M2 by senescent thyrocytes
and thyroid tumor cells can be attenuated by COX-2
inhibitors. In thyroid tumors, the relation between COX-2
inhibition and M2 biomarkers downregulation occurred at
both early and late tumor stages [46]. It provides a possible
explanation for the relative decrease of M1 macrophages in
early-stage CC patients when PTGS2 is highly expressed.

It was clearly perceived that TMB and pairs of comutant
genes are quantitively much more in the low-PTGS2 group as
discussed in Result Section. It might have a bearing on the better
efficacy when receiving immunotherapy with high-TMB peo-
ple. In some other cancer types, high TMB in concert with the
expression of PD-L1 was considered as an effective biomarker
for ICB therapy, and TMB can be associated with the efficacy
of ICB of the combination with ipilimumab and nivolumab
alone, where high-TMB tumors are with potential immunoge-
nicity; however, the infiltration and/or activation of T cell is
CTLA-4 dependently controlled [47]. Although the conclusion
still needs further verification and optimization before being
popularly applied according to relative review, the potential
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Figure 8: The difference between TENM2 mutant- and wild-type was analyzed via the CAMOIP website. According to checkpoints (a),
neoantigens (b), and TMB (c) related analyses, the TENM2 mutated group enjoys a higher expression of PD-1 (PDCD1), neoantigens, and
tumor mutation burden, which are all immunotherapy-contributed factors. (d) The ICPs are generally more active in the low-PTGS2 group.
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possibility for it to affect the survival difference between high-
and low-PTGS2 clusters is still worth considering.

5. Conclusion

The twenty-five-FRG model can effectively predict the prog-
nosis of CC patients, the inner mechanism of which may be
the facilitation from the ferroptosis to M1 macrophage polar-
ization. Among the model genes, PTGS2 turned out to be the
hub-gene with its function as a risk factor in cervical cancer.
From perspectives of the immune microenvironment and
genomic instability, PTGS2 showed its potential on foresha-
dowing risk, and patients with low-PTGS2 expression will
hopefully present a better response to immunotherapy. What
is more, the model was designed for patients with early-stage
CC, the risk scoring can be referred to by the design of the
therapeutic schedule, and may contribute to the early detec-
tion of CC, thus promoting prognosis.

Data Availability

The data in support of all the arguments raised in the study
have been mentioned in this paper.

Conflicts of Interest

The authors state that the study was conducted in the
absence of any commercial or financial relationships that
may be interpreted as a potential conflict of interest.

Authors’ Contributions

All authors knew about the content and approved of the
final version of the manuscript. Chang Zou and Fangfang
Xu coparticipated in the conception and manuscript writing
of the article. Chang Zou is responsible for data preparation
and analyses and chart drawing. Jiacheng Shen gave some
ideas on the conception and experiment design. Shaohua
Xu helped with the design of the follow-up experiment and
the manuscript. Chang Zou and Fangfang Xu contributed
equally to this work.

Acknowledgments

This research got supported by the Shanghai Science and Tech-
nology Planning Project (Grant No. 21Y11907000), the Natural
Science Foundation of Shanghai (Grant no. 21ZR1450900), the
National Natural Science Foundation of China (Grant No.
81772762), the Clinical Science and Technology Innovation
Project of Shanghai Shenkang Hospital Development Center
(Grant No. SHDC12019X34), and the National Key R&D Pro-
gram of China (Grant No. 2017YFA0104603).

Supplementary Materials

Supplementary Figure 1: network shows protein-protein
interactions (PPI) among model genes, calculated by
DEGREE algorithm. Correlation between genes is repre-
sented by straight line, the cycle color represents DEGREE
score level, yellow to red from low to high, see Supplemen-

tary Table 1 for details of PPI result. In Supplementary
Figure 2: seeing from Kaplan-Meier survival analysis
between groups with different PTGS2 expression level,
divided on the median of PTGS2 expression amounts, low-
PTGS2 population enjoy better survivals than high-PTGS2
ones with p value =0.032, and samples were collected from
GSE44001. (Supplementary Materials)

References

[1] Erratum: Global cancer statistics 2018, “GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: A Cancer Journal for Clinicians, vol. 70,
no. 4, p. 313, 2020.

[2] M. Arbyn, E. Weiderpass, L. Bruni et al., “Estimates of inci-
dence and mortality of cervical cancer in 2018: a worldwide
analysis,” The Lancet Global Health, vol. 8, no. 2, pp. e191–
e203, 2020.

[3] L. Kumar, P. Harish, P. S. Malik, and S. Khurana, “Chemother-
apy and targeted therapy in the management of cervical can-
cer,” Current Problems in Cancer, vol. 42, no. 2, pp. 120–128,
2018.

[4] S. J. Dixon, K. M. Lemberg, M. R. Lamprecht et al., “Ferropto-
sis: an iron-dependent form of nonapoptotic cell death,” Cell,
vol. 149, no. 5, pp. 1060–1072, 2012.

[5] W. S. Yang and B. R. Stockwell, “Ferroptosis: death by lipid
peroxidation,” Trends in Cell Biology, vol. 26, no. 3, pp. 165–
176, 2016.

[6] H. Yu, P. Guo, X. Xie, Y. Wang, and G. Chen, “Ferroptosis, a
new form of cell death, and its relationships with tumourous
diseases,” Journal of Cellular and Molecular Medicine,
vol. 21, no. 4, pp. 648–657, 2017.

[7] B. Hassannia, P. Vandenabeele, and B. T. Vanden, “Targeting
ferroptosis to iron out cancer,” Cancer Cell, vol. 35, no. 6,
pp. 830–849, 2019.

[8] G. Marquina, A. Manzano, and A. Casado, “Targeted agents in
cervical cancer: beyond bevacizumab,” Current Oncology
Reports, vol. 20, no. 5, p. 40, 2018.

[9] N. Zhou and J. Bao, “FerrDb: a manually curated resource for
regulators and markers of ferroptosis and ferroptosis-disease
associations,” Database: The Journal of Biological Databases
and Curation, vol. 2020, 2020.

[10] T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: min-
ing tens of millions of expression profiles–database and tools
update,”Nucleic Acids Research, vol. 35, pp. D760–D765, 2007.

[11] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[12] Z. R. Zhou, W. W.Wang, Y. Li et al., “In-depth mining of clin-
ical data: the construction of clinical prediction model with R,”
Annals of Translational Medicine, vol. 7, no. 23, p. 796, 2019.

[13] M. E. Gregg, S. Datta, and D. Lorenz, “A log rank test for clus-
tered data with informative within-cluster group size,” Statis-
tics in Medicine, vol. 37, no. 27, pp. 4071–4082, 2018.

[14] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[15] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

31Journal of Oncology

https://downloads.hindawi.com/journals/jo/2022/3997562.f1.docx


[16] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for compre-
hensive analysis of tumor-infiltrating immune cells,” Cancer
Research, vol. 77, no. 21, pp. e108–e110, 2017.

[17] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, p. e47, 2015.

[18] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[19] J. H. Konieczka, K. Drew, A. Pine et al., “Bio NetBuilder2.0:
bringing systems biology to chicken and other model organ-
isms,” BMC Genomics, vol. 10, Supplement 2, 2009.

[20] A.Mayakonda, D. C. Lin, Y. Assenov, C. Plass, andH. P. Koeffler,
“Maftools: efficient and comprehensive analysis of somatic
variants in cancer,” Genome Research, vol. 28, no. 11,
pp. 1747–1756, 2018.

[21] X. Qi, Y. Fu, J. Sheng et al., “A novel ferroptosis-related gene
signature for predicting outcomes in cervical cancer,” Bioengi-
neered, vol. 12, no. 1, pp. 1813–1825, 2021.

[22] C. Liu, A. Somasundaram, S. Manne et al., “Neuropilin-1 is a T
cell memory checkpoint limiting long-term antitumor immu-
nity,” Nature Immunology, vol. 21, no. 9, pp. 1010–1021, 2020.

[23] C. Wang, Y. Li, L. Jia et al., “CD276 expression enables squa-
mous cell carcinoma stem cells to evade immune surveillance,”
Cell Stem Cell, vol. 28, no. 9, pp. 1597–1613.e7, 2021.

[24] P. J. Maver and M. Poljak, “Primary HPV-based cervical can-
cer screening in Europe: implementation status, challenges,
and future plans,” Clinical Microbiology and Infection: The
Official Publication of the European Society of Clinical Microbi-
ology and Infectious Diseases, vol. 26, no. 5, pp. 579–583, 2020.

[25] A. Shiraz, R. Crawford, N. Egawa, H. Griffin, and J. Doorbar,
“The early detection of cervical cancer. the current and chang-
ing landscape of cervical disease detection,” Cytopathology,
vol. 31, no. 4, pp. 258–270, 2020.

[26] A. Gates, J. Pillay, D. Reynolds et al., “Screening for the preven-
tion and early detection of cervical cancer: protocol for system-
atic reviews to inform Canadian recommendations,”
Systematic Reviews, vol. 10, no. 1, p. 2, 2021.

[27] X. Chen, R. Kang, G. Kroemer, and D. Tang, “Broadening
horizons: the role of ferroptosis in cancer,” Nature Reviews.
Clinical Oncology, vol. 18, no. 5, pp. 280–296, 2021.

[28] G. Genard, A. C. Wera, C. Huart et al., “Proton irradiation
orchestrates macrophage reprogramming through NFκB sig-
naling,” Cell Death & Disease, vol. 9, no. 7, p. 728, 2018.

[29] B. Tan, X. Shi, J. Zhang et al., “Inhibition of Rspo-Lgr4 facili-
tates checkpoint blockade therapy by switching macrophage
polarization,” Cancer Research, vol. 78, no. 17, pp. 4929–
4942, 2018.

[30] W. Xiang, R. Shi, X. Kang et al., “Monoacylglycerol lipase
regulates cannabinoid receptor 2-dependent macrophage
activation and cancer progression,” Nature Communications,
vol. 9, no. 1, p. 2574, 2018.

[31] M. Cully, “Re-educating tumour-associated macrophages with
nanoparticles,” Nanomedicine, vol. 16, pp. 369-370, 2017.

[32] M. Najafi, N. Hashemi Goradel, B. Farhood et al., “Macro-
phage polarity in cancer: a review,” Journal of Cellular Bio-
chemistry, vol. 120, no. 3, pp. 2756–2765, 2019.

[33] D. Chen, J. Xie, R. Fiskesund et al., “Chloroquine modulates
antitumor immune response by resetting tumor- associated
macrophages toward M1 phenotype,” Nature Communica-
tions, vol. 9, no. 1, p. 873, 2018.

[34] A. Albini, A. Bruno, D. M. Noonan, and L. Mortara, “Contri-
bution to tumor angiogenesis from innate immune cells within
the tumor microenvironment: implications for immunother-
apy,” Frontiers in Immunology, vol. 9, p. 527, 2018.

[35] A. Chen, J. Sceneay, N. Gödde et al., “Intermittent hypoxia
induces a metastatic phenotype in breast cancer,” Oncogene,
vol. 37, no. 31, pp. 4214–4225, 2018.

[36] Q. Huang, J. Xia, L. Wang et al., “mi R-153 suppresses IDO1
expression and enhances CAR T cell immunotherapy,” Journal
of Hematology & Oncology, vol. 11, no. 1, p. 58, 2018.

[37] W. S. Yang, R. SriRamaratnam, M. E. Welsch et al., “Regula-
tion of ferroptotic cancer cell death by GPX4,” Cell, vol. 156,
no. 1-2, pp. 317–331, 2014.

[38] K. J. Sales, A. A. Katz, M. Davis et al., “Cyclooxygenase-2
expression and prostaglandin E(2) synthesis are up-regulated
in carcinomas of the cervix: a possible autocrine/paracrine reg-
ulation of neoplastic cell function via EP2/EP4 receptors,” The
Journal of Clinical Endocrinology and Metabolism, vol. 86,
no. 5, pp. 2243–2249, 2001.

[39] K. J. Sales, A. A. Katz, R. P. Millar, and H. N. Jabbour, “Seminal
plasma activates cyclooxygenase-2 and prostaglandin E2
receptor expression and signalling in cervical adenocarcinoma
cells,” Molecular Human Reproduction, vol. 8, no. 12,
pp. 1065–1070, 2002.

[40] H. S. Kim, T. Kim, M. K. Kim, D. H. Suh, H. H. Chung, and
Y. S. Song, “Cyclooxygenase-1 and -2: molecular targets for
cervical neoplasia,” Journal of Cancer Prevention, vol. 18,
no. 2, pp. 123–134, 2013.

[41] A. J. Dannenberg, S. M. Lippman, J. R. Mann,
K. Subbaramaiah, and R. N. DuBois, “Cyclooxygenase-2 and
epidermal growth factor receptor: pharmacologic targets for
chemoprevention,” Journal of Clinical Oncology, vol. 23,
no. 2, pp. 254–266, 2005.

[42] K. Subbaramaiah and A. J. Dannenberg, “Cyclooxygenase-2
transcription is regulated by human papillomavirus 16 E6
and E7 oncoproteins: evidence of a corepressor/coactivator
exchange,” Cancer Research, vol. 67, no. 8, pp. 3976–3985,
2007.

[43] Y. I. Cha and R. N. DuBois, “NSAIDs and cancer prevention:
targets downstream of COX-2,” Annual Review of Medicine,
vol. 58, no. 1, pp. 239–252, 2007.

[44] R. A. Weinberg, The biology of cancer, Garland Science, New
York, NY, 2007.

[45] L. Jin, Z. Deng, J. Zhang et al., “Mesenchymal stem cells
promote type 2 macrophage polarization to ameliorate the
myocardial injury caused by diabetic cardiomyopathy,”
Journal of Translational Medicine, vol. 17, no. 1, p. 251,
2019.

[46] M. Mazzoni, G. Mauro, M. Erreni et al., “Senescent thyrocytes
and thyroid tumor cells induce M2-like macrophage polariza-
tion of human monocytes via a PGE2-dependent mechanism,”
Journal of Experimental & Clinical Cancer Research: CR,
vol. 38, no. 1, p. 208, 2019.

[47] T. A. Chan, M. Yarchoan, E. Jaffee et al., “Development of
tumor mutation burden as an immunotherapy biomarker:
utility for the oncology clinic,” Annals of Oncology: Official
Journal of the European Society for Medical Oncology, vol. 30,
no. 1, pp. 44–56, 2019.

32 Journal of Oncology


	Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Resources
	2.2. Construction of Prognostic Signature for Early-Stage CC Patients according to FRGs
	2.2.1. The Model Construction
	2.2.2. Validations on the Accuracy of the Prediction

	2.3. GO and KEGG Enrichment Analysis
	2.4. Survival Analysis
	2.5. Analyses about Immune Features on Groups Divided according to Risk Scores
	2.6. Nonnegative Matrix Factorization (NMF) Clustering
	2.7. Cell Culture, RNA Extracting, and RT-qPCR
	2.8. Quantification of TNF-α by ELISA
	2.9. Mutation Related Analyses

	3. Results
	3.1. The Workflow
	3.2. The Enriched Functional Pathways of FRGs Contributed to Prognosis
	3.3. A Prognostic Model Established on LASSO-Penalized Analysis
	3.4. Validation
	3.5. Contrast between High- and Low-Risk Score Clusters about Immune-Related Features
	3.5.1. Immune-Related Checkpoints
	3.5.2. Immune Cell Infiltration Analysis

	3.6. Ferroptosis Could Facilitate the Polarization of M1 Macrophages in Cervical Cancer
	3.7. CC Patients Can Be Divided into Subgroups with Different Survival Level Based on Ferroptosis Marker Expression Pattern by NMF
	3.8. Ferroptosis Increased the Expression of PTGS2, VEGFA, and CXCL2 in Cervical Cancer Cells
	3.9. Ferroptosis-Marker PTGS2 Affect the Prognosis of Early-Stage CC Patients from Many Aspects

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

