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Background. Transducin-like enhancer of split 3 (TLE3), a member of the TLE gene family, is related to tumor genesis and
progression. However, whether TLE3 played a crucial role in the whole pan-cancer remained unknown.Methods. Comprehensive
analysis of TCGA, GEO, and GTEx data with an online tool, and R language was performed to explore the relationship of TLE3
expression between prognosis, genemutation, protein phosphorylation, DNAmethylation, tumormicroenvironment, and related
pathways in 33 tumors. Results. TLE3 was high-expressed in most tumors, and TLE3 expression and the prognosis of some tumor
types were signifcantly correlated. Te level of TLE3 expression in 33 cancer types was closely associated with DNAmethylation.
High-level phosphorylation sites of Tle3, such as S267 and S217, may promote cancers. In terms of the tumor microenvironment,
TLE3 afected a wide variety of cancers, especially PRAD and LIHC, and TLE3 may act on them via immune-related pathways.
Conclusions. Te current work provided the frst comprehensive investigation of TLE3 in a pan-cancer study, highlighting the role
of TLE3 in the tumor immune microenvironment, and also determined the potential of TLE3 as a prognostic, immunotherapy
response, and diagnostic biomarker in many cancers. However, the present results were preliminary and required further
validation as this study was based on bioinformatics analyses.

1. Introduction

Cancer is one of the most challenging diseases in clinical
treatment, and its threat to human health is becoming in-
creasingly serious [1]. Many oncogenic and tumor sup-
pressor genes are implicated in cancer initiation and
progression. Constantly developing techniques and bio-
informatics databases would allow us to analyze more genes
of interest in pan-cancer.

As a conserved family of corepressor proteins, the
transducin-like enhancer of split (TLE) is present in multiple
animals, including mice and humans. Te TLE protein
family plays a key role in the entire life cycle of animals,
including lateral inhibition, segmentation, sex de-
termination, and eye and pancreatic development, and

regulates basic processes such as metabolism through
interacting with multiple pathways [2].

TLE3 as one of the TLE family proteins is a transcrip-
tional inhibitory homolog of the Groucho protein [3], which
is a part of the Drosophila Notch signaling cascade and may
be expressed periodically during theM phase of the cell cycle
[4]. It cooperates with the transcription factor HHEX to
promote memory B cell development [5]. TLE3 has been
shown to have inhibitory or promoting efects on diferent
tumors [6, 7]and is a predictive marker for response to
taxane-containing regiments in breast and nonserious
ovarian cancer [8, 9]. However, TLE3 has previously been
studied in only a few cancer types, its role in other types of
cancer remains unclear, and the pathogenesis or impact on
the survival of diferent cancers has not been elucidated.
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2. Materials and Methods

2.1. Gene Ontology Analysis. Genomic localization in-
formation for the TLE3 gene was obtained from the
UCSC genome browser on humans (GRCh37/hg19)
(https://genome.ucsc.edu/) [10]. Te analysis of TLE3
protein conserved functional domain in multiple species
was analyzed by clicking the “HomoloGene” button of
the NCBI(https://www.ncbi.nlm.nih.gov/) and then the
“constraint-based multiple sequence alignment online
tool.” Te phylogenetic tree of TLE3 in various species
was mapped by the “constraint-based multiple sequence
alignment online tool.” In addition, we accessed the data
of the TLE3 mRNA expression in various cells and tissues
under physiological conditions using an online HPA
database (https://www.proteinatlas.org/
humanproteome/pathology).

2.2. mRNA and Protein Expression Analysis. Te diferen-
tially expressed TLE3 between various tumors and cor-
responding normal tissues were determined by clicking
on the “Gene_de” button on TIMER2 web (https://timer.
cistrome.org/). For some cancers without normal tissues
information (e.g., LGG), the GEPIA2 web server (https://
gepia2.cancer-pku.cn/#analysis) [11] was applied, and
we clicked the “Match TCGA normal and GTEx data” to
acquire a chart of TLE3 expression contrast between
these tumor tissues and the corresponding normal tis-
sues using the GTEx database. Te TLE3 protein ex-
pression was obtained from the UALCAN portal (https://
ualcan.path.uab.edu/analysis-prot.html) using the
“CPTAC” dataset [12]. Ten, we determined the levels of
TLE3 protein expression between primary tumors and
corresponding normal tissues. With the HPA database
(HumanProteinAtlas), we acquired IHC (immunohis-
tochemical) images to show the protein expression of
TLE3 in tumors and corresponding normal tissues. Next,
by the “Pathological Staging” module in GEPIA2, the
diferent pathological (stages I, II, and III) stages of the
tumor were obtained.

2.3. Survival Analysis. OS (overall survival) and DFS (dis-
ease-free survival) data of the TLE3 gene were acquired in
the “Survival Map” option of GEPIA2 [1], and the survival
graphs were then produced in the “Survival Analysis”
module. We then performed analysis and visualization using
the uniformly standardized pan-cancer dataset according to
the TCGA database in the R environment of survival and
survminer package. We used multivariate Cox regression
analysis to study the relationship between TLE3 expression
and OS, DSS (disease-specifc survival), and PFI (pro-
gression-free interval). Results may vary due to diferent
algorithms. To further validate the association between TLE3
expression and cancer survival, the Kaplan–Meier plotter
(https://kmplot.com/analysis/) was used to analyze the OS,
DMFS (distant metastasis-free survival), RFS (relapse-free
survival), PPS (postprogression survival), FP (frst pro-
gression), DSS, and PFS (progression-free survival).

2.4. Genetic Alteration Analysis. We obtained the mutations
in the TLE3 gene using the cBioPortal web(https://www.
cbioportal.org/) [13, 14], including the frequency of muta-
tions, mutation types, CNA (copy number alteration),
mutation site information, and 3D protein structure maps of
the TCGA tumors. Ten, patients with and without TLE3
gene mutations were compared for diferences in terms of
overall, disease-free, progression-free, and disease-free
survivals and Kaplan–Meier plots. Te results were shown
by log-rank P-value.

2.5. DNA Methylation Analysis. Based on the TCGA data-
base, the UALCAN online tool was used to evaluate TLE3
gene promoter methylation levels between the primary
tumors and corresponding normal tissues [15].TLE3 DNA
methylation levels were determined through theMEXPRESS
website. Based on the TGGA data, we used the R package to
plot the association between TLE3 levels and DNA
methyltransferases.

2.6. Protein Phosphorylation Analysis and Immunothera-
peutic Response of TLE3. Expression information of TLE3
protein phosphorylation was obtained from the UALCAN
portal. We obtained the relationships between TLE3 mRNA
expression and TMB, MSI analysis data from SangerBox
(https://sangerbox.com/Tool). We integrated the data and
log-transformed each expression value, which was then
modifed using Microsoft PowerPoint software to generate
images. We also used ggplot2 [version 3.3.3] to visualize the
mismatch repair gene proteins (MLH1, MSH2, MSH6,
PMS2, and EPCAM) based on the TGCA database.

2.7. Immunocorrelation Analysis of TLE3.
Immunocorrelation analysis of TLE3 was downloaded from
TISIDB (https://cis.hku.hk/TISIDB/), a storage website in-
tegrating rich human cancer datasets in the TCGA database
[16]. In addition, we also obtained the immune cell in-
fltration of TLE3 in the MCPcounte algorithm from
SangerBox.

2.8. TLE3-Related Gene Enrichment Analysis. Te experi-
mentally identifed TLE3 and binding proteins were avail-
able from the STRING website [17] (https://string-db.org/),
and a protein-protein interaction (PPI) network map was
generated.We exported short tabular text in TSV format and
substituted it into Cytoscape 3.9.1 software to obtain the
visual network diagram.Te frst 100 target genes associated
with tle3 were obtained by selecting “TCGA+GTEx” in the
“similar gene detection” function of GEPIA2. A scatter plot
of the association between TLE3 and the frst 5 related genes
was then generated, and a heat map of the correlation be-
tween these 5 genes and each tumor in diferent algorithms
was obtained on the TIMER2 website. With jvenn (in-
teractive Venn diagram viewer) [18], we compared TLE3
binding genes and interacting genes by cross-tabulation
analysis to obtain the intersection. Analysis of functional
enrichment for genes interacting with TLE3, including BP
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(biological process), CC (cellular component), and MF
(molecular function), were performed using the “clus-
terProfler” R package, and KEGG pathway (https://
www.kegg.jp/kegg/kegg1.html) was obtained from the
DAVID database (https://david.ncifcrf.gov) [19]. After
downloading the enrichment pathway analysis data from
the DAVID database, the Cytoscape 3.9.1 software was
inserted to obtain a visual network map using the en-
richment map plugin. GSEA analysis of TLE3 data on
BRCA and LIHC was obtained from LinkedOmics
(http://linkedomics.org/) [20].

2.9. Statistic Analysis. We used Pearson’s or Spearman’s
coefcient analysis to investigate the correlations between
the variables. Continuous variables ftting a normal distri-
bution between binary groups were compared using a t-test.
Otherwise, the Mann–Whitney U test was used. Categorical
variables were compared by the chi-squared test or Fisher’s
exact test. All the statistical data analyses were implemented
using R software, version 3.6.3. Two-tailed P< 0.05 was
considered statistically signifcant.

3. Results

3.1. Gene Ontology Analysis. Firstly, we discussed the basic
information of TLE3 (NM_001105192.3 for mRNA or
NP_001098662.1 for protein, Figure 1(a)) in humans. TLE3 is
located at locus 70047790–70098176 on chromosome 15.
Among animals including H. sapiens, P. troglodytes, and
M. mulatta, the TLE3 protein structure is conserved and
commonly made up of the TLE_N (pfam03920) and WD40
(cd00200) domains. Te data of the phylogenetic tree
(Figure 1(b)) shows the evolution relationship relation of the
TLE3 protein in multiple species.

We then explored the TLE3 expression in normal human
tissues. According to the HPA, GTEx, and FANTOM5 con-
sensus dataset, the top three TLE3 expressions were bone
marrow, esophagus, and skin (Figure 1(c)). TLE3 is expressed in
all tissues, regions, and cell types, showing an enhanced RNA
tissue specifcity. Analysis of TLE3 expression in various im-
mune cells from the combination of HPA, Monaco, and
Schmiedel datasets also showed enriched RNA blood cell type
specifcity (Figure 1(d)). However, there was no information on
blood protein concentration in plasma about TLE3.

Immune cell type specifcity: Immune cell enriched (neutrophil)
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Figure 1: Te structural characteristics of TLE3 in diferent species and its expression in diferent cells, tissues under normal physiological
states. (a) Genomic positioning of the human Tle3 gene and conserved domains of the TLE3 protein among diferent species, (b)
phylogenetic tree of TLE3 in diferent species, and (c) expression levels of TLE3 in diferent tissues and cells.
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3.2. mRNA and Protein Expression Analysis. We applied
TIMER2 to explore the TLE3 mRNA expression across 33
cancers. As Figure 2(a) shows, the level of TLE3 mRNA
expression in the 16 types of tumor tissues was higher than the
corresponding control tissues. Normal tissue data from the
GTEx dataset were used as a control, we further evaluated the
diference in TLE3 mRNA expression between LGG control
tissues and tumor tissues (Figure 2(b), P< 0.05). However, no
signifcant diferences were shown in other cancers
(Figure S1(a)). Proteins are the macromolecules that ulti-
mately perform biological functions in the human body, and
have expression closer to phenotypes, allowing for more real-
time monitoring of disease progression. Terefore, based on

the CPTAC dataset, we determined the TLE3 protein ex-
pression levels in 33 cancers. Te results showed that total
protein expression of TLE3was elevated in the primary tissues
of breast cancer, clear cell RCC, lung adenocarcinoma,
pancreatic adenocarcinoma, glioblastoma multiforme, he-
patocellular carcinoma, ovarian cancer, and UCEC than in
normal tissues. As shown in Figure 1(c), RNA levels (tran-
scription levels) and protein levels (translation levels) of TLE3
were consistent in part, and the results of the two databases
validated each other. In addition, to further verify the protein
level of TLE3 expression, we compared the IHC results from
theHPA database, which was also in line with gene expression
data from the TCGA (Figure 2(d)). Normal breast, colon,
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Figure 2: mRNA expression states and protein level of TLE3 in human tumors. (a) mRNA expression level of TLE3 in tumor and normal
tissues as visualized by TIMER2. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001, (b) TLE3 mRNA expression level comparison in LGG (TCGA project)
relative to the corresponding normal tissues (GTEx database). ∗P< 0.05, (c) the total protein level of TLE3 in normal and tumor tissue
visualized by CPTAC. ∗∗∗P< 0.001, (d) comparison of TLE3 gene expression between normal and tumor tissues shown by immuno-
histochemistry images, and (e) the stage-dependent expression level of TLE3.Te main pathological stages (stage I, stage II, and stage III) of
OV were assessed and compared by TCGA data.
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Figure 3: Association between Tle3 mRNA expression and survival of cancer in TCGA. (a) Overall survival and disease-free survival were
shown by the GEPIA2 tool, (b) the multivariate Cox regression analysis of TLE3 mRNA expression levels in cancers was performed, and (c)
the relationship between the TLE3mRNA expression level and the tumor patients’ survival, is shown by the Kaplan Meier plotter.
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Figure 4: Genetic alteration analysis of TLE3 using the cBioPortal tool.
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lung, and prostate TLE3 IHC staining of tissues were negative
or moderate, while that of tumor tissues were moderate or
strong (Figure 2(e)). We also analyzed the relation between
the mRNA expression of TLE3 and the pathological stages of
cancer, OV showed signifcant diferences (Figure 2(e)
P< 0.05), while others did not (Figures S1(b)–S1(g)).

3.3. Survival Analysis. As TLE3 was overexpressed in pan-
cancer, we further explored its prognostic profle. Low
expression of TLE3 was connected to the poor OS of
KIRC, whereas high TLE3 expression was associated with

poor OS of MESO and poor DFS of ACC, according to the
GEPIA2 database (Figure 3(a)). We then studied the
relationship between TLE3 mRNA expression and sur-
vival of ACC, BLCA, BRCA, KIRC, KIRP, and UCS
through multivariate Cox regression analysis (Figure
3(b)). Moreover, survival data were analyzed using the
Kaplan–Meier mapping tool, and a correlation was found
between low TLE3 expression and poor prognosis of
breast cancer in RFS, OS, and DMFS (Figure 3(c)).
Additionally, low expression of TLE3 was associated with
poor prognosis of FP and OS in lung cancer. By contrast,
the high-expressed mRNA level of TLE3 was connected
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with poor PFS (progress-free survival) of ovarian cancer,
poor OS, FP, and PPS of gastric cancer, and poor RFS,
PFS, and DSS of liver cancer. Tese data suggested that
the expression of TLE3 had diferent prognostic efects in
diferent tumors.

3.4. Genetic Alteration Analysis. Genetic mutations have an
important infuence on cancer development, and these
mutated genes may also be used as efective therapeutic
targets.Terefore, we also observed the state of TLE3 genetic
alteration in diferent tumor samples. Te frequency of al-
teration in TLE3 was the highest (>4%) in patients with
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Figure 6: Protein phosphorylation analysis of Tle3 in diferent tumors.Te expression of the Tle3 phosphorylation (NP_001098662.1, S267,
S201S203, S203, S203S205, S203S207, S205, S207, S217, Y220, S311T312, S267, S286, S201, and S263S267) between primary tissue of selected
tumors and normal tissue. (a) Schematic representation of the phosphoprotein sites of TLE3 detected based on the CPTAC dataset (b)–(h)
box plot representing TLE3 phosphoprotein levels in intermediate and normal tissues of breast cancer, clear cell RCC, LUAD, HNSC,
PAAD, GBM, and HCC.
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Figure 7: (a) Te latent correlation between TLE3 mRNA expression and TMB, (b) the latent correlation between TLE3 mRNA expression
and MSI, and (c) the latent correlation between TLE3 mRNA expression and MMR.
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a “mutation” primary type of uterine tumor. It should be
noted that all cases of genetically altered mesothelioma
(more than 3% frequency) had amplifcation of TLE3
(Figure 4(a)). More information is shown in Figure 3(b),
including the types, sites, and caseload of the mutant TLE3
gene. Te data demonstrated that the main type of TLE3
genetic alteration was missense mutation, and A477T al-
teration was detected in LGG, UCEC, STAD, and COAD,
respectively, (Figure 4(b)), which had the capacity for in-
ducing a frameshift mutation of the TLE3 gene, translating
from A (Alanine) to T (Treonine) at the 477 sites of TLE3
protein. A477Tsite is shown in the 3D structure of the TLE3
protein (Figure 4(c)). Furthermore, the impact of TLE3 gene
mutations on survival in pan-cancer was also studied. As
indicated in Figure 4(d) fromUCEC cases, we were unable to
detect the association between alterations of TLE3 and OS,
DSS, DFS, and PFS, compared with cases without
altered TLE3.

3.5. DNA Methylation Analysis. DNA methylation of TLE3
was investigated using the UALCAN database. Te TLE3
expression of BLCA, BRCA, THCA, UCEC, and TGCTwere
signifcantly downregulated compared to normal tissues.
Te TLE3 methylation level in LUAD, KIRC, KIRP, LUSC,
PRAD, and CHOL were greatly increased (Figure 5(a)).
However, no diferences were observed in other cancer
tissues and matched normal tissues (Figure S2). We then
explored the association between TLE3 DNA methylation
sites and its mRNA expression based on MEXPRES and
found an inverse relationship between TLE3 DNA meth-
ylation and mRNA expression of many probes in the KIRC
nonpromoter region (Figure 5(b)). We next analyzed the
correlations between TLE3 mRNA expression and DNA
methyltransferases(DNMT1, DNMT2, DNMT3A, and
DNMT3B, Figure 5(c)), and found that TLE3 expression was
strongly correlated with DNA methylation in diferent
cancers, particularly in LAML, KICH, LGG, COAD, LIHC,
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Figure 9: According to the tumor-immune system interactions and drug bank (TISIDB) database, the Spearman correlations between TLE3
mRNA expression and tumor-infltrating lymphocytes (a) immunostimulatory, (b) MHC molecules, (c) chemokines, and (d) receptors.
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Figure 10: mRNA expression relationship between TLE3 and 60 immune checkpoints.

Journal of Oncology 13



STRING

(a)
P=0
R=0.59

0
2

4
6

lo
g2

 (T
H

RA
P3

TP
M

)

0 2
log2 (TLE3TPM)

4 6

lo
g2

 (S
IN

3A
TP

M
)

P=0
R=0.58

0
2

4
6

8

log2 (TLE3TPM)
0 2 4 6

0
1

2
3

4
5

6
lo

g2
 (R

BM
12

TP
M

)

log2 (TLE3TPM)
0 2 4 6

P=0
R=0.56 0

2
4

6
8

lo
g2

 (A
RI

D
1A

TP
M

)
0 2 4 6

log2 (TLE3TPM)

P=0
R=0.56

0
2

4
6

lo
g2

 (A
D

N
PT

PM
)

log2 (TLE3TPM)
0 2 4 6

P=0
R=0.55

(b)

U
V

M
 (n=80)

U
CS (n=57)

U
CEC (n=545)

TH
YM

 (n=120)

TH
CA

 (n=509)
TG

CT (n=150)
STA

D
 (n=415)

SKCM
-Prim

ary (n=130)
SKCM

-M
etastas is (n=368)

SKCM
 (n=471)

SA
RC (n=260)

PRA
D

 (n=498)
PCPG

 (n=181)
PA

A
D

 (n=179)

O
V

 (n=303)
M

ESO
 (n=87)

LU
SC (n=501)

LUA
D

 (n=515)
LIH

C (n=371)
LG

G
 (n=516)

KIRP (n=290)
KIRC (n=533)
KICH

 (n=66)
H

N
SC-H

PV
+ (n=98)

H
N

SC-H
PV- (n=422)

H
N

SC (n=522)
G

BM
 (n=153)

ESCA
 (n=185)

D
LBC (n=48)

CO
A

D
 (n=458)

CH
O

L (n=36)
CESC (n=306)

BRCA-Lum
B (n=219)

BRCA-Lum
A

 (n=568)
BRCA-H

er2 (n=82)
BRCA-Basal (n=191)

BRCA
 (n=1100)

BLCA
 (n=408)

ACC (n=79)

ADNP

1
corp>0.05

p<0.05 0
-1

ARID1A
RBM12
SIN3A
THRAP3

REA
D

 (n=166)
(c)

Correlated

49199

interacted

(d)
HNRNPK

RUNX2
GSCHDAC2

TLE1

TLE2

TLE4

SF1

HDAC1

repressing transcription factor binding

SIN3A

SP1

SIX2 VENTX

NR3C1

FOXA1

SIX1

TARDBP

SIX3

11

13

15

17

LEF1

EP300

CTNNB1

TCF7L2

NSD1

LATS1
BAZ2A

ARID1A
RNF6

TRIP12

GO

molecular function (MF)

TAF1 nuclear hormone receptor binding

HNRNPU

RCOR3

CREBBP

HIPK2
KDM5B

transcription corepressor activity

RNA polymerase II transcription factor binding

CTCF

TBX20

RUNX1

NR2E1 GMEB1

DNA-binding transsctiption activator activity, RNA polymerase II-specifc

(e)

Fold enrichment

-log10 (P.value)

6

4

2

Gene number

Wnt signaling pathway

Viral carcinogenesis

Tyroid cancer

Notch signaling pathway

Melanogenesis

Lysine degradation

Kaposi sarcoma-associated herpesvirus infection

Huntington disease

Human papillomavirus infection

Hippo signaling pathway

Hepatocellular carcinoma

Gastric cancer

Cushing syndrome

Colorectal cancer

Basal cell carcinoma

Arrhythmogenic right ventricular cardiomyopathy

Alcoholic liver disease

Adherens junction

Acute myeloid leukemia

KEGG 5 10 15 20

4

6
8

10

12

(f )

14 Journal of Oncology



CESC, GBM, KIRP, LUAD, READ, KIRC, UVM, LUSC,
ESCA, STAD, THCA, MESO, HNSC, and OV.

3.6. Protein Phosphorylation Analysis. Next, we compared
the diferences in TLE3 protein phosphorylation levels be-
tween the seven primary tumor tissues and the corre-
sponding normal tissues from the CPTAC dataset and
developed a schematic representation of the TLE3 phos-
phorylation sites in Figure 5(a). Phosphorylation levels of
S267 were higher in most primary tumor tissues than in
normal tissues, including HCC, LUAD, GBM, and HNSC.
Moreover, the S217 phosphorylation level was increased in
four cancers (Figures 6(a)–6(g)). Te implication of these
results was that high-level phosphorylation sites of Tle3,
such as S267 and S217, may promote cancers and it should
be further explored.

3.7. Immunotherapeutic Response of TLE3. According to
Figure 1, we observed high expression of TLE3 in bone
marrow and neutrophils, indicating that it may play an
antitumor role in immunity. Terefore, we explored the
relationship between TLE3 mRNA expression and the
biomarkers TMB, MSI, and MMR that refect the immune
response. TLE3 was signifcantly associated with TMB in
COAD, BRCA, STAD, THCA, PAAD, and ACC
(Figure 7(a)). Te high TLE3 mRNA expression was cor-
related with higher TMB in COAD, PAAD, and ACC, in-
dicating a better immunotherapy potential. Tere was
a signifcant relation between TLE3 mRNA expression levels
and MSI, CESC, LUAD, COAD, BRCA, SARC, UCEC,
LUSC, THCA, ACC, and DLBC (Figure 7(b)). We also
studied the efect of TLE3mRNA expression onMMR genes,
including MLH1, MSH2, MSH6, PMS2, and EPCAM. TLE3

was signifcantly related to all MMR genes in nine cancers,
including LGG, SKCM, LUAD, OV, LIHC, KIRP, PAAD,
PRAD, and THCA (Figure 7(c)).Tese results suggested that
TLE3 could infuence the immunotherapy response of dif-
ferent types of cancers.

3.8. Immunocorrelation Analysis of TLE3.
Tumor-infltrating immune cells not only disrupt cytokine
signaling pathways in the tumor microenvironment, but also
play an important part in cancer initiation, progression, or
metastasis [21, 22]. Te top three tumors the most signif-
cantly positively associated with TLE3 expression were
TGCT, LUSC, and BRCA (StromalScore), LUSC, UCEC and
SKCM (ImmuneScore), LUSC, UCEC and SKCM (ESTI-
MATEScore), respectively (Figure 8).

To further study the TLE3 efect on immunological
status in pan-cancers, we analyzed the association between
its mRNA expression and the immunomodulators in 33
cancer types using the TISIDB database. As illustrated in
Figure 9, our fndings revealed that TLE3 was negatively
correlated with most of the immunomodulators in BRCA
but positively correlated with LIHC. In addition, the
MCPcounter algorithm was used to evaluate the immune
infltration of TLE3 in diferent cancers to verify the above
results. Te current results consistently showed that TLE3
was positively correlated with the immune infltration of
LIHC (Figure S5).

We also used the data from the TCGA database to
evaluate the relationship between the TLE3 expression and
60 checkpoint genes (Figure 10). Analysis of TLE3 corre-
lation with checkpoint gene expression in pan cancers
showed that Tle3 was closely linked to CD276.Moreover, the
TLE3 expression was positively related to a large number of
immune checkpoint genes in many cancers, especially KIRC,
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Figure 11: (a) Available experimentally determined tle3-binding proteins obtained using the String tool. Based on the STRING tool, we
obtained the available experimentally determined Tle3-binding proteins, (b) the top 100 genes associated with Tle3 in the TCGA project
were obtained by the GEPIA2 method, and the expression correlation between Tle3 and the selected targeted genes, including THRAP3,
SIN3A, RBM12, ARID1A, and ADNP, were analyzed, (c) the heatmap shows the detailed cancer types, (d) an intersection analysis between
the Tle3-binding and correlated genes, (e) KEGG analysis based on the Tle3-binding and interacted genes, (f ) GO term enrichment analysis
of Tle3-binding and interacted genes in molecular function, and (g) GSEA analysis of TLE3 showing in BRCA, LIHC using
LinkedOmics data.
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BRCA, and LAML, suggesting that TLE3 participated in the
tumor immune response regulation through modulating
immune checkpoint activity.

3.9. Enrichment Analysis of TLE3. To elucidate the TLE3
gene molecular mechanism in tumorigenesis, a pathway
enrichment analysis was performed after screening proteins
bound to TLE3 targeting and those associated with
expressed TLE3. Using the STRING tool, we detected
50 TLE3-binding proteins, all of which were experimentally
validated. Te network map of proteins interacting with
TLE3 is shown in Figure 11(a). We also performed a data
visualization analysis, as shown in Figure S3, TLE1, TLE4,
TLE2, and TLE3 in the TLE family were the most closely
related. Te relationship between diferent genotypes and
diferent subtypes, and genes was explored, and an in-
teraction network was obtained (Figure S6). Te top 100
genes associated with TLE3 expression were obtained from
all tumor expression data from TCGA using the GEPIA2
tool. As shown in Figure 11(b), the expression level of TLE3
was positively correlated with that of THRAP3, SIN3A,
RBM12, ARID1A, and ADNP genes (all P� 0). Figure 11(c)
showed a positive relationship of TLE3 with the above fve
genes in 33 cancers. Te intersection of the two groups was
PAXIP1 (Figure 11(d)).

We performed KEGG and GO enrichment analyses
combining the two datasets. Figure 11(e) suggested KEGG
data that the “Wnt signaling pathway,”” Notch signaling
pathway,” and “Human papillomavirus infection” might be
related to the efect of TLE3 on tumor pathogenesis. Te GO
data suggested that most of these genes were related to
transcription factor binding (Figure 11(f )). Te enrichment
map obtained by Cytoscape Software also showed 23
enriched pathways, the top three with the highest enrich-
ment were “Pathways in cancer,” “Human papillomavirus
infection,” and “Wnt signaling pathway,” “Pathways in
cancer” was associated with 17 of these pathways (Figure S4).
In addition, we also studied BRCA and LIHC, respectively,
two cancers with a strong correlation with TLE3. Further-
more, we also studied BRCA and LIHC, two cancers with
a strong correlation with TLE3, separately, using the GSEA
methods. We found that TLE3 was involved in immune-
related pathways (Figure 11(g)).

4. Discussion

TLE3 properties in tumorigenesis have been found in ad-
dition to its dynamic functions in diferentiation and cell
metabolism [23–26]. To elucidate the molecular mechanism
of TLE3 in cancers, we comprehensively analyzed the mo-
lecular characteristics of its mRNA and protein expression,
gene mutation, DNA methylation, protein phosphorylation,
and the immune microenvironment in 33 cancers based on
available data from TCGA, GEO, and GTEx. According to
our results, the TLE3 protein had a conserved structure in
various species, indicating that efects of TLE3 may exist
with similar mechanisms between these species, hence, it
could be viable to use mice for studying TLE3-related cancer

in humans. TLE3 is wildly distributed in many tissue types
and immune cells, especially in bone marrow and neutro-
phils, which may be associated with immunity, and this
further encouraged us to study its immunoprognostic value
in tumors.

Numerous researches have reported that TLE3 expres-
sion is upregulated in multiple cancers, including cervical
cancer [27] and malignant meningiomas [28]. TLE3 alter-
natively spliced isoforms have been detected to be upre-
gulated in prostate tumors [7, 29], suggesting that the
abnormal expression of TLE3 is strongly connected with
cancer invasiveness. According to our results, TLE3 ex-
pression was high in most tumors with consistent results.
Te data for genetic alterations from TCGA and protein
alterations from CPTAC were not entirely consistent, which
may be resulted from the fact that diferent acquisition and
calculation of the data in the database would be afected by
gene mutations, promoter methylation, and protein phos-
phorylation to some extent. TLE3 was high-expressed in the
pathological stage I gene of OV and OV patients with high
expression of TLE3 had a poor prognosis, suggesting that the
gene played a role as an oncogene in OV, and the OV
patients can be treated in the early stage or separately
according to their pathological stage.

GEPIA2, Cox regression, and Kaplan–Meier analysis
indicated that the prognosis of ACC with high TLE3 ex-
pression was poor. Besides, high concentrations of GRO
homologous to the human gene TLE3 was found in ACC cells
[30]. Cox regression and Kaplan–Meier analysis suggested
that TLE3 was a protective factor for breast cancer. A recent
study has shown that miR-3677 can accelerate cell pro-
liferation, migration, and invasion by targeting TLE3 in
human breast cancer [31]. Another study found that TLE3,
a transcription corepressor recruited by FOXA2 to the ZEB2
promoter, inhibits the expression of the EMT-related tran-
scription factor ZEB2, thereby suppressing the EMTof breast
cancer cells [32]. Te results of diferent studies were con-
sistent with our survival data. Tese fndings strongly sup-
ported that TLE3 may be a potential prognostic indicator and
molecular therapeutic target in ACC and BRCA.

We explored the immune characteristics of TLE3 in the
tumor microenvironment (TME), including tumor-
infltrating lymphocytes, immunostimulatory factors,
MHC molecules, chemokines, receptors, and immune
checkpoints. Additionally, three immunotherapeutic bio-
markers (TMB, MSI, and MMR) were found to be signif-
cantly associated with TLE3 in some cancers. Our results
showed that the poor prognosis of ACC with high TLE3
expression was positively related to TMB and MSI. Immune
checkpoint therapy (ICT) to enhance the antitumor immune
response of Tcells is a novel treatment for malignant tumor.
CD276 is an immune checkpoint molecule in the epithelial-
mesenchymal transformation (EMT) pathway, which plays
a crucial part in the cell proliferation, invasion, and mi-
gration of malignant tumors, and is a promising thera-
peutic target for tumors [33]. Here in this study, we also
found that TLE3 was positively associated with many
immune checkpoint molecules, indicating that it had the
potential to become a novel immunotherapy target. It is
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worth noting that TLE3 was high-expressed in BRCA and
negatively related with TMB, MSI, as well as most of the
immune regulatory factors in BRCA. Terefore, we hy-
pothesized that TLE3 played an immunosuppressive role
in BRCA and may be an additional diagnostic marker and
therapeutic target. TLE3 was positively associated with
most of the immunomodulators of LIHC, indicating that
LIHC was a candidate cancer type suitable for TLE3
immunotherapy. In conclusion, TLE3 played an im-
portant and dual role (both inhibition and promotion) in
pan-cancer immune infltration.

Furthermore, the PPI map obtained by Cytoscape
software suggested that TLE3 may play a role together with
the TLE family in tumors. We performed a functional en-
richment analysis of TLE3, and confrmed the potential
efects of the “Wnt signaling pathway” and “Notch signaling
pathway.” It has been found that Wnt signaling plays a role
in multiple immune cells, including in DCS, NK cells, Tcells,
B cells, and also macrophages [34], and the Wnt/beta-
catenin pathway can regulate the immune response against
cancer [35]. Notch signaling also has critical functions in
cancer, including the generation of blood vessels, the
maintenance of cancer stem-cell-like cells, and tumor im-
munity [36]. Moreover, Enriched Map by Cytoscape Soft-
ware also showed “Pathway in cancer,” pointing to the close
potential relationship between TLE3 and cancers. KEGG
and GO enrichment and GSEA analysis of BRCA and LIHC
also confrmed the correlation between TLE3 and the im-
mune microenvironment, suggesting the signifcance of
TLE3 in the immunity of a variety of cancers.

In brief, our study showed that TLE3 was high-expressed
in the majority of cancers, had diferent prognostic efects in
various tumor cases, and was associated with the progression
of OV. Te TLE3 expression was also associated with TME.
Te above data suggested that TLE3 was a valuable novel
biomarker for prognostic and immunotherapy response
assessment in several cancers.

However, our study has certain limitations. First of all,
some of our results were obtained from the bioinformatics
website as we did not have a complete grasp of the R lan-
guage. Secondly, this manuscript was based on bio-
informatics research, the results were inconsistent
sometimes due to diferences in algorithms and databases.
Terefore, the current fndings should be verifed experi-
mentally, especially the role of TLE3 in BRCA and LIHC.
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Supplementary Materials

Figure S1 mRNA expression states and protein level of TLE3
in human tumors. (a) TLE3 mRNA expression level com-
parison in 7 cancers (TCGA project) relative to the corre-
sponding normal tissues (GTEx database), all P> 0.05. (b)
Te stage-dependent expression level of TLE3. Te main
pathological stages (stage I, stage II, and stage III) of 23
cancers were assessed and compared by TCGA data, all
P> 0.05. Figure S2 comparison of DNAmethylation of TLE3
in normal and tumor tissues (all p> 0.05). Figure S3 PPI map
obtained by Cytoscape software. Te nodes in the fgure
represent the experimentally verifed proteins binding to
TLE3, and the node color represents the degree of nodes
interacting with the node. Te darker color of the node, the
more pathways that depend on the node, and the more
important the node is. Edges represent interactions between
nodes. Figure S4 enrichment map obtained by Cytoscape
Software. A node represents the gene set, the edge represents
the overlap of gene members, and the darker the node color,
the higher the enrichment degree. Figure S5 the immune
infltration of TLE3 in diferent cancers based on the
MCPCOUNTER algorithm. Figure S6 the relationship be-
tween diferent tle genotypes and diferent subtypes
and genes. (Supplementary Materials)
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