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Anlotinib is a small-molecule RTK inhibitor that has achieved certain results in further-line treatment, but many patients do not
respond to this drug and lack efective methods for identifcation. Although radiomics has been widely used in lung cancer, very
few studies have been conducted in the feld of antiangiogenic drugs.Tis study aims to develop a newmodel to predict the efcacy
of patients receiving anlotinib by combining pretreatment computed tomography (CT) radiomic characters with clinical
characters, in order to assist precision medicine of pulmonary cancer. 254 patients from seven institutions were involved in the
study. Lesions were selected according to the RECIST 1.1 criteria, and the corresponding radiomic features were obtained. We
constructed prediction models based on clinical, NCE-CT, and CE-CT radiomic features, respectively, and evaluated the
prediction performance of the models for training sets, internal validation sets, and external validation sets. In the RAD score only
model, the area under curve(AUC) of the NCE-CT cohort was 0.740 (95% CI: 0.622, 0.857) for the training set, 0.711 (95% CI:
0.480, 0.942) for the internal validation set, and 0.633(95% CI: 0.479, 0.787) for the external validation set, while that of the CE-CT
cohort was 0.815 (95% CI: 0.705, 0.926) for the training set, 0.771 (95% CI: 0.539, 1.000) for the internal validation set, and 0.701
(95% CI: 0.489, 0.913) for the external validation set. In the RAD score-combined model, the AUC of the NCE-CT cohort was
0.796 (95% CI: 0.691, 0.901) for the training set, 0.579 (95% CI: 0.309, 0.848) for the internal validation set, and 0.590 (95% CI:
0.427, 0.753) for the external validation set, while that of the CE-CT cohort was 0.902 (95% CI: 0.828, 0.977) for the training set,
0.865 (95% CI: 0.696, 1.000) for the internal validation set, and 0.837 (95% CI: 0.682, 0.992) for the external validation set. In
conclusion, radiomics has accurate predictions for the efcacy of anlotinib. CE-CT-based radiomic models have the best
predictive potential in predicting the efcacy of anlotinib, and model predictions become better when they are combined with
clinical characteristics.

1. Introduction

Lung cancer is the malignant tumor with the highest
mortality rate in the world. In 2020, the incidence rate of
lung carcinoma was 11.4% and the mortality rate was as
high as 18% [1]. With the advent of targeted therapy and
immunotherapy, treatment options for lung cancer pa-
tients have become more diverse, and the overall survival

also continues to prolong. Te 3-year survival rate rose
from 19% in 2001 to 31% in 2015 through 2017, and the
median survival increased from 8 to 13 months, with the
fve-year survival rate for non-small-cell lung cancer
(NSCLC) being higher than that for small cell lung
cancer [2, 3]. As treatment options become more
available, how to make a patient’s treatment decision
remains controversial.
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Receptor tyrosine kinases (RTKs) are single-pass
membrane proteins closely related to cell growth, motil-
ity, diferentiation, and survival. Tey are grouped into
subfamilies based on the similarity of their extracellular
domains, including vascular endothelial growth factor
(VEGF) or fbroblast growth factor receptor (FGFR) families
[4]. Types of tyrosine kinase inhibitors (TKIs) demonstrate
efects on inhibition of angiogenesis; however, only a few
TKIs, including nintedanib and anlotinib, have shown
positive anticancer efects [5]. Anlotinib is a small-molecule
RTK inhibitor that targets VEGFR1, VEGFR2/KDR,
VEGFR3, and Raf serine/threonine kinases, platelet-derived
growth factor receptor PDGFR-α, and FGFR1, FGFR2, and
FGFR3 [6, 7]. Terefore, anlotinib can inhibit angiogenesis
in tumors and limit tumor growth. ALTER-0303 was
a randomized, double-blind, placebo-controlled, multicen-
ter, phase III trial that compared the efcacy and safety of
anlotinib with that of the placebo in patients with advanced
NSCLC who progressed after at least two lines of prior
treatments. Te results showed that anlotinib was more
efective than the placebo in third-line treatment in patients
with advanced NSCLC [8]. Tough anlotinib has achieved
certain results in further-line treatment, there are still many
patients who do not respond to this drug. How to fltrate
patients efectively for anlotinib remains unclear.

Diferent from traditional needle biopsy methods to
obtain local tissue samples, radiographic images can fully
display the overall characteristics of tumors to analyze the
heterogeneity of tumors. Based on machine learning,
radiomics has been widely used in the diagnosis and
treatment of oncology. At present, many studies have used
radiomics to detect the pathological type, gene mutation,
programmed death ligand 1 (PD-L1) expression level, or
tumor-infltrating lymphocyte (TILs) levels in patients and
even predict the efcacy of types of treatment [9–15]. A
meta-analysis showed that the pooled diagnostic odds ratio
for predicting immunotherapy response in NSCLC using
radiomics was 14.99 (95% CI: 8.66–25.95) [16]. Tese re-
search studies demonstrate the potential of radiomics for
solving clinical problems.

Although radiomics has been widely used in lung cancer,
very few studies have been conducted in the feld of anti-
angiogenic drugs.Tis study aims to develop a new model to
predict the efcacy of patients receiving anlotinib by
combining pretreatment computed tomography (CT)
radiomic characters with clinical characters, in order to
assist precision medicine of pulmonary cancer. In this study,
patients who underwent noncontrast-enhanced CT (NCE-
CT) and CE-CT were divided into two groups for feature
extraction and training separately [17].

2. Materials and Methods

2.1. Patient Population. Te data on the training set and the
internal validation set was retrieved from a clinical trial: “A
Real-world Study: Efcacy and Safety of Anlotinib for
Advanced Non-small Cell Lung Cancer (NSCLC)”
(NCT04871997). Te data on the external set was obtained

from the medical record system of Tongji Hospital, Tongji
Medical College, Huazhong University of Science and
Technology, and these patients did not participate in the
clinical trial. In this retrospective study, all the patients had
been getting recruited since July 2019, ending in September
2022. Data had been getting analyzed since October 2022.
Tis study was approved by the Institutional Ethics Com-
mittee of Tongji Medical College, Huazhong University of
Science and Technology (approval number S1040). In-
formed consent was obtained from all patients.

Inclusion criteria were as follows: (1) age: ≥18 years old,
no gender limit; (2) diagnosed as advanced non-
small-cell lung cancer; (3) at least one tumor lesion in
the lung was not subjected to local treatment such as
irradiation in the past and could be accurately mea-
sured, and the longest diameter was ≥10mm; (4) the
patient received two cycles of medication and at least
had efcacy assessment performed once. (5) Patients
included in the training set needed to achieve the
median progression-free survival (PFS). If any of the
above items was “no,” the patient was not suitable for
this study.
Exclusion criteria were as follows: (1) those who were
confrmed to be allergic to anlotinib and/or its excip-
ients; (2) patients with anlotinib contraindications.
Finally, 254 patients were retrospectively involved in
this study.

2.2. CT Imaging Protocol. As shown in Table S1, all CT
images were acquired by using a multislice CT system, with
a tube voltage of 120 kVp and automatic tube current
modulation. Each CT image was reconstructed with an
image matrix of 512× 512 pixels, while the slice thickness of
CT scans was 1.0 to 2.0mm with coverage from the apex to
the bottom of the lungs. Images were saved in the DICOM
format.

2.3. Region-of-Interest Segmentation and Feature Extraction.
Tumor lessons were segmented by a chest radiology spe-
cialist with 1 year of experience using open-source software,
3D-slicer (version 4.11, http://www.slicer.org). A senior
imaging physician (LJL with 7 years of experience) per-
formed the identifcation of region-of-interest (ROI) re-
gions. Intrapulmonary lesions were selected as per the
RECIST version 1.1 criteria [18], and for patients pos-
sessing multiple evaluable lesions in the lungs, the fve
lesions with the largest diameter were selected for out-
lining. Using the “threshold” semiautomatic segmenta-
tion tool in the range of WW −500∼−100 HU and WL
200–400 HU to segment the lesions in the lungs confrmed
the extent of the tumor and excluded vascular and gas
shadows within the tumor. Te average radiomic features
of all target lesions were used as global radiomic features
to predict treatment response.

A total of 851 original radiomic features were extracted
using a PyRadiomics (version 3.0.1: Computational Imaging
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and Bioinformatics Lab, HarvardMedical School) module in
3D-slicer from these ROIs, consisting of frst-order features
(N� 18), shape features (N� 14), and texture features
(N� 75) extracted from preprocessed original images, and
wavelet features (N� 744) were extracted from processed
images with wavelet flters. Te category of features is dis-
played in Table S2.

2.4. Radiomic Feature Selection and Radiomic Signature
Development. Tis study complied with the IBSI guidelines
in general. To avoid the information loss of processing, we
did not perform any special pretreatment for radiographic
imaging considering that the diference in CTparameters in
this study were not particularly large [19]. After obtaining
image omics parameters, the t-test was conducted for each
omics parameter based on the corresponding prognosis.
Parameters with P< 0.1 were screened for subsequent
LASSO logistic modeling. LASSO logistic regression was
used for dimension reduction and identifying the most PFS-
related features from repeatable and nonredundant features
in the training set. Patients of NCE-CT and CE-CT were
randomly divided into training and validation sets at the
ratio of 3 :1. Te radiomic score (RAD score) was calculated
through a linear combination of selected features weighted
by their respective coefcients.

2.5. Outcome Measures

2.5.1. Primary Outcome Measures

(1) Progression-Free Survival (PFS). It is the length of time
during and after the treatment of a disease, such as cancer,
that a patient lives with the disease, but it does not get worse.

2.5.2. Secondary Outcome Measures

(1) Overall Survival (OS). It is the length of time from either
the date of diagnosis or the start of treatment for a disease,
such as cancer, that patients diagnosed with the disease are
still alive.

(2) Objective Response Rate (ORR). It is the percentage of
patients on whom a therapy has some defned efect; for
example, cancer shrinks or disappears after treatment.

(3) Disease Control Rate (DCR). It is the percentage of
patients with advanced or metastatic cancer who have
achieved complete response, partial response, and stable
disease with a therapeutic intervention in clinical trials of
anticancer agents.

2.6. Statistical Analysis. Statistical analyses were performed
using IBM SPSS Statistics (version 25.0, https://www.ibm.
com), GraphPad Prism (version 9.3.1, https://www.
graphpad.com), R software (version 4.0.5, https://www.r-
project.org), and Python (version 3.9, https://www.python.
org). Kaplan–Meier analysis and Cox proportional hazard

regression were performed using GraphPad Prism. Te χ2
test and hazard regression were performed using IBM SPSS
Statistics. Te glmnet R package was used for the LASSO
regression method. Te rms, pROC, lattice, ggplot2, Hmisc,
and rmda R packages were used to plot the nomogram,
receiver operating characteristic (ROC) curves, and decision
curve analysis (DCA) wherever appropriate. Te calibration
curves were plotted by using Python packages named
Matplotlib.

3. Results

3.1. Patient Population. In this study, complete treatment
history and follow-up data were collected from 362 patients,
and after censoring 38 patients who were unable to obtain
baseline CT, 28 patients who lacked intrapulmonary lesions,
and 14 patients who did not obtain imaging efcacy as-
sessment, 282 patients were included in the study. CT was
performed within 14 days prior to drug administration.
Patients included in the model training set were required to
achieve the median PFS or disease progression, so 28 pa-
tients were excluded. Finally, 254 patients were included in
the study. Te participants’ fowchart is displayed in
Figure 1.

Baseline patient characteristics are summarized in Ta-
ble 1. Tere was no signifcant diference in the training set,
the internal validation set, and the external validation set in
terms of sex, age, smoking, Eastern Cooperative Oncology
Group Performance Status (ECOG PS) score, metastasis
lessons, pathological type, treatment line, and best response.

For the training set and internal validation set, the
overall ORR and DCR were 21.2% and 85.9%, respectively.
Te median PFS was 6.4 (95% CI: 5.7, 7.1) months, and the
median OS was 12.9 (95% CI: 5.8, 20.0) months. For the
external validation set, the ORR and DCR were 18.8% and
87.1%, respectively. Te median PFS was 5.1 95% CI: 3.2, 7.1
months, and the median OS was 14.4 (95% CI: 8.2, 20.6)
months.

3.2. Acquisition of Radiomic Features and Construction of
Models. A total of 851 radiomic features were extracted
from CT images for each patient. Tese extracted features
were preprocessed using t-tests to remove redundant and
irrelevant features. Ten, LASSO regression modifed 7
features for the NCE-CTcohort and 5 features for the CE-CT
cohort, which were mostly associated with PFS in the
training set. Te RAD score was calculated through a linear
combination of selected features weighted by their respective
coefcients (Appendix S1). Te training process is shown in
Figure 2.

It can be observed that NCE-CTcontains one parameter
related to tumor size and that all other parameters are
texture features, while the CE-CT parameters are all texture
features. CE-CT is able to better visualize microvascular
changes within the tumor due to the presence of contrast
agents, thus enabling a better characterization of tumor
heterogeneity, which in turn has better potential for pre-
dicting the efcacy of anlotinib.
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3.3. Predictive Validity of the Model. After performing lo-
gistic regression for the NCE-CT cohort and the CE-CT
cohort separately, the RAD score was used to set up a model
in conjunction with the logistic regression results, and we
also performed modeling using the RAD score alone to
obtain a total of four ROC charts and two nomogram plots
(Figure 3). In the RAD score only model, the area under
curve(AUC) of the NCE-CT cohort was 0.740 (95% CI:
0.622, 0.857) for the training set, 0.711 (95% CI: 0.480, 0.942)
for the internal validation set, and 0.633(95% CI: 0.479,
0.787) for the external validation set, while that of the CE-CT
cohort was 0.815 (95% CI: 0.705, 0.926) for the training set,
0.771 (95% CI: 0.539, 1.000) for the internal validation set,
and 0.701 (95% CI: 0.489, 0.913) for the external validation
set. In the RAD score-combined model, the AUC of the
NCE-CT cohort was 0.796 (95% CI: 0.691, 0.901) for the
training set, 0.579 (95% CI: 0.309, 0.848) for the internal
validation set, and 0.590 (95% CI: 0.427, 0.753) for the
external validation set, while that of the CE-CT cohort was
0.902 (95% CI: 0.828, 0.977) for the training set, 0.865 (95%
CI: 0.696, 1.000) for the internal validation set, and 0.837
(95% CI: 0.682, 0.992) for the external validation set. It can
be clearly seen that for the model with the RAD score alone,
the NCE cohort exhibited less than optimal predictive
validity, while the CE cohort showed some predictive power.
After adding clinical factors to the model, the predictive
power of the NCE cohort decreased, while the predictive
power of the CE cohort signifcantly improved.

DCA was performed for the above two radiomic only
models as well as the model built based on radiomics and
clinical features. As shown in Figure 4, the training sets of all
four models have good DCA fts, while the validation sets of
the combination of the radiomic and clinical feature model

and the CE-CT radiomic only model have better DCA
performance. Te NCE-CT radiomic only model has rela-
tively poor results, which also coincide with the results of the
ROC curve.

3.4. Verifcation of the Predictive Power of the Model in the
External Validation Set. Te Youden index in the ROC
curve was used as our threshold for diferentiating patients
into high-risk and low-risk populations (Figures 3(b) and
3(e)) represent the radiomic only models, and Figures 3(c)
and 3(f) represent the radiomic-combined models). Patients
with logistic scores below this threshold were in the high-risk
group, and vice versa in the low-risk group, and the PFS
showed a signifcant diference in the internal and external
validation set. As shown in Figure 5, both the radiomic only
model and the combination model have excellent PFS
prediction ability for patients in the enhanced CT cohort,
both in the internal validation set (Figures 5(a) and 5(c),
P � 0.0343; P � 0.3177) and the external validation set
(Figures 5(b) and 5(d), P � 0.0003; P � 0.0027).

In terms of OS, low-risk patients were signifcantly
higher than high-risk patients in the internal validation set of
the radiomic only model (Figure 6(a), P � 0.0008). For the
external validation set, the radiomic only model and in both
sets of the radiomic-combined model, the diference in OS
was not signifcant between the high-risk and low-risk
populations, but we can still see certain trends through
the KM curves (Figures 6(b)–6(d)), P � 0.1209; P � 0.1650;
P � 0.1924). Despite the excellent predictive validity of the
prediction model built on CE-CT, the predictive capability
of the NCE-CT-based prediction model was not satisfactory
for the prognosis of this cohort of patients. Te NCE-CT-
based model was unable to distinguish between the

Advanced NSCLC patients
treated with Anlotinib

(N=362)

Eligible patients
(N=296)

Final patients
(N=254)

Patients from clinical trial
(N=169)

Training cohort
(N=127)

NCE:68 & CE:59

Internal Validation cohort
(N=42)

NCE:22 & CE:20

External Validation cohort
(N=85)

NCE:55 & CE:30

Patients from medical record system
(N=85)

1)Unable to get baseline CT (N=38)
2)Lack of lung lesions (N=28)

1)No response assessment (N=14)
2)Don’t reach mPFS (N=28)

Figure 1: Te participants’ fow-chart of this study.
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prognosis of the high-risk and low-risk cohorts for either
PFS or OS (Figures S1 and S2).

4. Discussion

Radiomics has been widely used in the whole process of
cancer treatment, among which the clinical application of
tumor antiangiogenic drugs and imaging in lung cancer
has been very extensive. Most of the studies on antitumor
angiogenic drugs are focused on bevacizumab, and most
of the tumor types are recurrent glioma and gastroin-
testinal tumors. Several studies have used MRI-based

radiomics to predict the efcacy of bevacizumab in pa-
tients with recurrent glioma, and excellent predictive
validity has been observed for PFS and OS [20, 21]. In
gastrointestinal tumors, CE-CT radiomic studies of pa-
tients with colon and liver cancers were successful in
predicting the efcacy of bevacizumab in patients re-
ceiving bevacizumab [22, 23].

Compared to the above studies, radiomic studies
targeting small-molecule antitumor angiogenic agents
are very rare. PET, CT, and MRI-based radiomics in
kidney cancer can efectively predict early response
and survival with sunitinib but mostly in small sample
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Figure 2: LASSO regression process of the NCE-CT cohort (a, b) and the CE-CT cohort (c, d).
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Figure 3: Nomogram plot and the ROC curve of the NCE-CTcohort and the CE-CTcohort. (a, d)Te nomogram plot for the NCE-CTand
CE-CTcohort; (b, e) the ROC curve of the model based on the RAD score only of the NCE-CTand CE-CTcohort; (c, f ) the ROC curve of the
model based on the RAD score combined with clinical characteristics of the NCE-CT and CE-CT cohort.
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Figure 4: DCA of the training set and the internal and external validation set of fourmodels based on the RAD score only and a combination
of radiomics and clinical features, respectively. (a) NCE radiomic only model; (b) CE radiomic only model; (c) NCE radiomic-combined
model; (d) CE radiomic-combined model.
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Figure 5: Kaplan–Meier survival analyses of PFS between the low- and high-risk groups in the CE-CTcohort based on the RAD score only
and a combination of radiomics and clinical features, respectively. (a) Te CE radiomic only model in the internal validation set; (b) the CE
radiomic only model in the external validation set; (c) the CE radiomics-combined model in the internal validation set; (d) the CE radiomic-
combined model in the external validation set.
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Figure 6: Kaplan–Meier survival analyses of OS between the low- and high-risk groups in the CE-CT cohort. (a) Te CE radiomic only
model in the internal validation set; (b) the CE radiomic only model in the external validation set; (c) the CE radiomic-combined model in
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studies [24–26]. Another small sample study explored
the efcacy of combined CT and methotrexate-based
prediction of apatinib for advanced hepatocellular car-
cinoma with favorable results [27]. Despite the scarcity of
such studies, they show us the good potential of radiomics
for the prediction of efcacy of antitumor
angiogenic drugs.

Te study of predicting the efcacy of antitumor an-
giogenic drugs in lung cancer by radiomics is scarce. In our
study, we built models to predict the efcacy of anti-
angiogenic drugs based on NCE-CT and CE-CT, re-
spectively. Te radiomic features incorporated into the
modeling are predominantly second-order features, im-
plying that texture features act as primary predictive
correlates, and we found that the models constructed using
CE-CT images had good predictive validity and were more
efective when clinical factors were added. Te NCE-CT-
based model did not have such good predictive efcacy.
Tere was one study using both CE-CT and NCE-CT
images to model the predicted prognosis of immuno-
therapy, but there was no signifcant diference in the
predictive performance of the two models [28]. In another
study, using CE-CT and NCE-CT to predict EGFR muta-
tion status in NSCLC patients, the predictive performance
of the two methods also did not difer signifcantly [29].
Anlotinib acts as an antiangiogenic agent, which primarily
afects the tumor microvasculature that has an efect on the
tumor. Due to the presence of contrast agents, CE-CT is
able to better visualize microvascular changes within the
tumor. Tis may be the reason why the model based on
CE-CT in our article was able to better predict the efcacy
of anlotinib.

Tis article, as the frst article exploring NCE-CT
versus CE-CT in the prediction of anlotinib and with
patients derived from clinical studies, has high credibility
of information and bright results but still leaves some
questions. (1) Heterogeneity of imaging parameters
resulting from multicenter studies may afect study results
because no resampling was performed. However, there is
not much diference in parameters between individual CT
instruments. We also performed an external validation
and confrmed that our model has good stability and
accuracy. (2) Heterogeneity between the training and
validation sets might exist after grouping due to in-
sufcient number of patients. (3) Anlotinib, as a drug
developed in China, data are only available for the Chinese
population. (4) Tis is a real-world study, and patients
may be combined with other treatment options during the
course of their treatment, which may afect the accuracy of
the results.

5. Conclusions

Anlotinib has good efcacy in the treatment of advanced
non-small-cell lung cancer. Radiomics has accurate pre-
dictions in the efcacy of anlotinib. CE-CT-based
radiomic models have the best predictive potential in

predicting the efcacy of anlotinib, and model predictions
become better when they are combined with clinical
characteristics.
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