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Background. One of the most common malignant tumors of the urinary system is muscle-invasive bladder cancer (MIBC). With
the increased use of immunotherapy, its importance in the field of cancer is becoming abundantly evident. This study classifies
MIBC according to GSVA score from the perspective of the GSEA immune gene set. Methods. This study integrated the
sequencing and clinical data of MIBC patients in TCGA and GEO databases, then scored the data using the GSVA algorithm,
the CNMF algorithm was implemented to divide the subtypes of GEO and TCGA datasets, respectively, and finally screened
and determined the key pathways in combination with clinical data. Simultaneously, LASSO Cox regression model was
constructed based on key pathway genes to assess the model’s predictive ability (ROC) and describe the immune landscape
differences between high- and low-risk groups; key genes were further analyzed and verified in patient tissues. Results. 404
TCGA and 297 GEO datasets were divided into C1-3 groups (TCGA-C1:120/C2:152/C3:132; GEO- C1:112/C2:101/C3:84), of
which TCGA-C2 (n = 152) subtype and GEO-C1 (n = 112) subtype had the worst prognosis. LASSO Cox regression model
with ROC (train set = 0:718, test set = 0:667) could be constructed. When combined with the Cancer Immunome Atlas
database, it was found that patients with high-risk scores were more sensitive to PD-1 inhibitor and PD-1 inhibitor combined
with CTLA-4. NXPH4, as a key gene, plays a role in MIBC with tissue validation results show that nxph4 is highly expressed
in tumor. Conclusion. The immune gene score of MIBC data in TCGA and GEO databases was successfully evaluated using
GSVA in this research. The lasso Cox expression model was successfully constructed by screening immune genes, the high-risk
group had a worse prognosis and higher sensitivity to immunotherapy, PD-1 inhibitors or PD-1 combined with CTLA-4
inhibitors can be preferentially used in high-risk patients who are sensitive to immunotherapy, and NXPH4 may be a
molecular target to adjust the effect of immunotherapy.

1. Introduction

According to the American Cancer Association, the United
States is predicted to have 1898160 new cancer cases and
608570 death cancer cases in 2021, with the bladder cancer
(BC) incidence and mortality rates expected to be 7%
and4%, respectively [1]. In patients with BC, accounts for
approximately 25% of all cases were MIBC [2]. The disease
is characterized by the onset of concealment and always has
been progressed to muscle-invasive bladder cancer (MIBC)
at the time of clinical discovery with a poor prognosis [3]. It
is crucial to predict the survival rate early, further refine the

classification of MIBC patients, and provide the basis for indi-
vidualized treatment. At present, researchers have already
tried to build prediction models from different levels, includ-
ing DNA, RNA (mRNA, miRNA, lncRNA...), protein, gene
mutation (TP53), andmodification omics (DNAmethylation)
[4–9]; the prognosis prediction of MIBC patients still needs a
more comprehensive and unique method.

GSVA is a nonparametric and unsupervised analysis
method that assesses potential pathway activity variation in
each sample by inputting the preselected gene set [10]. At
present, several studies have shown that the tumor malignant
phenotype is related to tumor immune microenvironment

Hindawi
Journal of Oncology
Volume 2022, Article ID 4271409, 21 pages
https://doi.org/10.1155/2022/4271409

https://orcid.org/0000-0003-4320-7805
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4271409


[11]. As an immune-sensitive malignant tumor, a variety of
invasive immune cells are also related to MIBC, such as regu-
latory natural killer (NK) cells, T cells (Treg), CD8+ T cells,
CD4+ T cells, and macrophages [12]. However, the current
research is mostly based on some special immune genes to
analyze their mediated downstream pathways, while it is more
direct to integrate immune gene sets into the overall analysis
based on GSVA algorithm to obtain key immune-related
pathways, and it is no longer necessary to speculate on
immune pathways through some genes. Recently, research
employing GSVA based on mRNA and miRNA sets estab-
lished and validated the pathway prognosis characteristics of
pancreatic cancer [13], respectively. This method performs
well in identifying prognostic factors of multiple cancers
[14–16]. Therefore, the application of the GSVA algorithm
to evaluate the expression score of the GSEA immune gene
set in MIBC patients may have incredible potential for typing
and risk model construction.

In this study, the GSVA algorithm was used to evalu-
ate the pathway activity variation score of the GSEA
immune gene set in each MIBC patient for the first time,
and then, the MIBC patients from TCGA and GEO were
typed, and the key pathways were obtained. More impor-
tantly, we successfully constructed a risk regression model
based on the genes of essential pathways, and MIBC
patients who were more sensitive to PD-1 inhibitor and
CTLA-4 were distinguished using a cancer immunohisto-
chemical database. Our results not only provide a selection
basis for clinical personalized therapy, especially immuno-
therapy, but also provide a new molecular target for
molecular therapy and further analyzed and verified the
gene NXPH4 that may play a role in tumor immune pro-
gression. Neurexophilin 4 (NXPH4) is a secreted protein
of synapses, belonging to the neurexophilin (NXPH) fam-
ily. Its family of proteins was first thought to be a kind of
neuroglycoprotein, and its mature peptide molecular
weight is 29KD, because it is related to neurexin I of neu-
ronal membrane proteins α. It is named after its close
combination and is widely expressed in the nervous sys-
tem. At present, nxph4 is found to be highly expressed
in liver cancer, non-small-cell lung cancer, and many
other cancer cells [17]. The roadmap of the whole article
is described in Figure S1.

2. Materials and Methods

2.1. Dataset Acquisition and Preparation. In this study,
RNA sequencing data (HTSeq-Counts) of 297 MIBC tissue
samples with prognosis were included in three datasets
GSE13507 (n = 62), GSE31684 (n = 74), and GSE32894
(n = 161) in the GEO, and TCGA website was used to
download the bladder cancer (BC) (n = 414) and para-
cancerous tissue (n = 19) and was screened in combination
with their corresponding clinical data. A total of 404 MIBC
tissue samples with prognostic information (T ≥ T2) were
obtained; through this method, the sequencing data of
MIBC patients were obtained from TCGA database. The
original count of RNA sequencing data was transformed
into one-millionth transcript (TPM) value, and further

log2 transformation (log2(TPM+1)) for subsequent analy-
sis, the infiltration estimation for TCGA was downloaded
from the TIMER2.0 database (http://timer.comp-genomics
.org/); the Copy Number Variation (CNV) of MIBC also
came from TCGA.

2.2. Gene Set Variation Analysis (GSVA). The GSVA tech-
nique is a nonparametric estimation method that is often
used to investigate the variation of biological pathways
among different molecular clusters. In this study, the
“c7.immunesigdb_HALLMARK.gmt” gene set was used as
the reference gene set for performing GSVA to identify the
differences of immune-related pathways between different
clusters, and the default parameters were selected to refer
to the “GSVA” R package. FDR < 0:05 and t value > 2 are
set as the cut-off standard.

2.3. Unsupervised Clustering Analysis. Based on the GSVA
result, the “CancerSubtypes” R package [19] was used to per-
form the consistent nonnegative matrix decomposition
(CNMF) algorithm, selected the default parameters, and
constructed the molecular classification in TCGA queue
and GEO queue datasets, respectively. Silhouette coefficients
are used to estimate clustering results, ranging from -1 to 1.
Silhouette coefficients close to 1 show that samples are dif-
ferent from adjacent clusters.

2.4. Screening of Differential Pathways among Molecular
Typing. After the molecular typing of TCGA queue and
GEO queue was obtained based on the CNMF algorithm,
the differential expression pathway between each molecular
subtype was calculated by the “Limma” algorithm [20], and
the coincidence analysis was carried out to obtain the com-
mon differential expression pathway between each subtype
in TCGA queue and geo queue.

2.5. Prognosis Analysis of the Differential Expression
Pathway. The “survival” R package was used to select path-
ways with P < 0:05 for analysis using Kaplan-Meier analysis.

2.6. Establishment and Validation of the Risk Signature.
After acquiring the key pathway, the pathway gene was
obtained and extracted from TCGA and Geodata queues.
Then, Kaplan Meier analysis and univariate Cox regression
analysis were carried out through the “survival” R package
to select the gene with P < 0:01 for the construction of the
lasso Cox expression model. The entire dataset, a total of
701 samples, was randomly divided into training and test
sets, and the baseline and clinical features were consistent
between the two groups. The test set was used to verify
the established model construct by training set. Based on
the 29 previously obtained genes with prognostic value,
the R software package “Glmnet” was used to carry out
LASSO Cox regression analysis. The ROC analyses in the
high- and low-risk groups were compared by calculating
the area under the curve (AUC). The risk score was calcu-
lated using the following formula: risk score = coef ðRNA1
Þ x expr ðRNA1Þ⋯ :: + coef ðRNA12Þ × expr ðRNA12Þ; coef
(RNA) represents the coefficient of RNA correlated with

2 Journal of Oncology

http://timer.comp-genomics.org/
http://timer.comp-genomics.org/


survival, and expr (RNA) represents the expression of
RNA [21].

2.7. Acquisition of Immunogenomic Signatures. First, the
infiltration estimation for TCGA was downloaded from the
TIMER2.0 database, and the differences in immune-related
function then of two groups used the R packages “GSEA-
BASE” and “GSVA” combined with the immune gene set’s
annotation file “immune.gmt” [22] (http://www.gsea-
msigdb.org/gsea/index.jsp). The treatment response data of
MIBC patients to PD-1 inhibitors and CTLA-4 inhibitors
were downloaded from the cancer-immune atlas database
(TCIA) (https://tcia.at/). Then, analyze whether there are
differences in immunosuppressive therapy between high-
risk and low-risk groups.

2.8. Immunohistochemical (IHC) Analysis. The expression
level of the key gene NXPH4 was detected in paraffin sec-
tions of MIBC patients by immunohistochemistry; the histo-
logical section’ antigen retrieval was conducted with antigen
unmasking solution at high pressure with pressure cooker
for 20min after sections were deparaffinized and rehydrated;
then, the tumor sections were incubated with specific anti-
bodies (ab74999; suitable for: WB, IHC-P, reacts with: human;
diluted 1 : 200) overnight at 4°C after blocked with 10% nor-
mal goat serum for 1h, and horseradish peroxidase-
conjugated antibodies were used at room temperature for
1h; DAB basic kit (Ventana Medical Systems) was used to
checked the antigen-antibody reaction sites. And images were
acquired with a PathScope™ 4S scanner (DigiPath, USA) by
experienced laboratory technicians independently without
any information concerning the group in a blinded fashion.

2.9. Statistical Analyses. All analyses used R software v4.2.0,
SPSS v13.0, and GraphPad Prism 8 to carry out. Bilateral P
values < 0.05 were considered statistically significant.

3. Results

3.1. Identification of Three MIBC Molecular Subtypes Based
on CNMF. Firstly, a total of 404 TCGA MIBC cohorts and
297 GEO cohorts were analyzed for GSVA based on the
“c7.immunesigdb_HALLMARK.gmt” gene set, and 4922
immune-related pathways were obtained (Figures 2A);
then, molecular classification was performed by CNMF
algorithm to characterize three distinct MIBC molecular
clusters based on these pathways. The results showed that
it is most appropriate for the two groups of data to be
divided into three subtypes (Figure 1(a)), TCGA-C1 cluster
ðN = 120Þ, C2 cluster ðN = 152Þ, and C3 cluster ðN = 132Þ.
And the C1 cluster also showed a better OS than C3 and C2
clusters (log-rank P < 0:001). Combined with clinical data,
there were significant differences in clinical characteristics
such as N, M, T, tumor grade, and stage, including age
among the three groups (Figure 2(a), supplement table 1, P
< 0:05), GEO-C1 cluster ðN = 112Þ, C2 cluster ðN = 101Þ,
and C3 cluster ðN = 84Þ. C3 cluster showed a better OS than
C1 and C2 cluster (log-rank P < 0:001, Figure 1(b),
supplement table 2). Overall, molecular classification had an
excellent performance to predict the OS of MIBC.

3.2. Identification of Differential Pathways among Molecular
Typing: GSE21670_STAT3_KO_VS_WT_CD4_TCELL_
TGFB_IL6_TREATED_DN. To begin, the data from three
TCGA and GEO queues’ molecular subtypes were read,
and then, the differential enrichment pathways were filtered
and overlapped using the “Limma” R package to obtain the
pathways with different expressions in the three subtypes.
Among them, the molecular subtypes of TCGA queue
obtained 65 differential pathways (Figures 2B, supplement
table 3, P < 0:05), the correlation between them and clinical
data was analyzed (Figure 2(b)), while the molecular
subtypes of the GEO queue obtained 463 differential
pathways (Figures 2C, P < 0:05). Finally, six pathways were
obtained (Figures 2D, supplement table 4) and then screened
in combination with their prognostic information. Among
them, there was a prognostic value (P < 0:05) with the same
prognostic trend which was only one: “GSE21670_STAT3_
KO_VS_WT_CD4_TCELL_TGFB_IL6_TREATED_DN,”
the high expression of this pathway means a worse prognosis
in MIBC patients included in TCGA database or GEO
database (Figure 3, supplement Table 5).

3.3. Construction and Evaluation of a Risk Model Based on
Pathway Genes. Firstly, this study obtained 200 genes of the
“GSE21670_STAT3_KO_VS_WT_CD4_TCELL_TGFB_
IL6_TREATED_DN” pathway based on the “c7.immune-
sigdb_HALLMARK.gmt” gene set. Finally, in the 701 cohorts
of TCGA and GEO datasets, the expression matrix of 128
genes was obtained. Then, based on univariate Cox regression
analysis, 28 genes with prognostic value were selected from
128 genes (Figures 3A), and 12 genes were screened for later
multivariate analysis (Figures 3B, C). We randomly
separated 701 MIBC datasets into a training set and a test
set. The operation is to randomly allocate them by using R
software. There are 351 samples in the training set and 350
samples in the test set. Then, based on 12 genes
independently related to OS, a risk model was constructed to
evaluate the prognostic risk of MIBC patients in the training
set, verified it in the test set, and divided the set into high-
and low-risk groups according to the median prognostic risk
value. The survival and prognosis of patients in the high-risk
group were worse (Figures 4(a) and 4(b)). Figures 4(c) and
4(d), respectively, demonstrate the risk level distribution,
survival time, survival status, and expression criteria of 12
genes in the training and test sets for the high-risk and low-
risk groups. From them, it can be found that except SLC7A2
and MST1R are protective genes (low expression in the
high-risk group), the other 10 genes such as CDK6, NXPH4,
GRIK2, TRIB3, PBK, ABCA4, FBN2, SCG2 AND ELN, and
INCENP were pathogenic gene genes. Time-dependent ROC
analysis showed that in the training cohort, the AUC of OS
predicted by risk score was 0.718 at 1 year, 0.716 at 2 years,
and 0.733 at 3 years (Figure 4(e)), and the AUC of the test
cohort was 0.667 at 1 year, 0.642 at 2 years, 0.636 at 3 years,
and 0.660 (Figure 4(f)). This finding suggests that the model
may be more useful in determining the one-year survival
rate of MIBC patients. Simultaneously, we calculated each
patient’s risk score to further verify the model’s prognostic
ability based on the unified formula (supplement table 6).
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3.4. Landscape of Genetic Variation of Risk Factors. A total of
12 genes were identified, and a risk regression model was
successfully built. The copy number variation of the risk fac-
tors, as well as the incidence of somatic mutations in BC, was
then summarized. Among 412 samples, 88 genes had gene

mutations, with a frequency of 21.33%. The investigation
of CNV alternation frequency shows that CNV changes are
common in 12 genes, most of which focus on the deletion
of copy number, while INCENP, NXPH4, CDK6, and
SLC27A2 all have a wide range of CNV amplification
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Figure 1: Unsupervised cluster analysis of the muscle invasive bladder cancer (MIBC) GSVA data in TCGA and GEO databases. (a) TCGA:
the optimal cluster number was 3; 3 clusters plot of the model; overall survival for the 3 subtypes, the best number of clusters was C1; the C3
cluster also showed a better OS than C2 clusters (log-rank P < 0:001); clustering display of the model; silhouette plot of the 3 clusters
(C1:120/0.95; C2:152/0.87; C3:132/0.90), average silhouette width = 0:9; (b) GEO: the optimal cluster number was 3; 3 clusters plot of the
model; overall survival for the 3 subtypes, the best number of clusters was C3; the C2 cluster also showed a better OS than C1 clusters
(log-rank P < 0:001); clustering display of the model; silhouette plot of the 3 clusters (C1:112/0.91; C2:101/0.83; C3:84/0.92), average
silhouette width = 0:89.
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Figure 2: (a) Analysis heatmap of 3 molecular subtypes with clinical data (TCGA). (b) Analysis heatmap of 65 common difference pathways
with clinical data and molecular subtypes (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001).
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frequencies (Figure 4(g)). The location of CNV changes in
the 12 genes on the chromosome is depicted in Figure 4(h).

3.5. Evaluation of MIBC Immune Microenvironment
Distribution and Immunotherapy Response Based on the
Risk Model. Firstly, the infection of 404 TCGA queues was

estimated in the TIMER2.0 database. The evaluation was
based on the use of seven different software programs
(CIBERSORT, CIBERSORT-ABS, TIMER, MCPCOUN-
TER, QUANTISEQ, EPIC, and XCELL). Further investiga-
tion was conducted to determine the variations in immune
characteristics between the two groups. Compared with the
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Figure 3: The survival of 6 pathways obtained by coincidence of (a) TCGA and (b) GEO database.
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low-risk group, the scores of macrophage (M0, M1, M2)
Treg, tumor-associated fibroblasts, immunity, matrix, and
microenvironment in the high-risk group were significantly
higher, while in the low-risk group, neutrophils, memory
CD4 + T cells, and T cell follicular helper cells were the main
immune cell types (Figure 5(a)). Then, the immune function
distribution (701-GEO-TCGA) of 701 MIBC patients was

further analyzed and summarized by GEO and TCHA. The
results showed that the immune activity was significantly
higher in high-risk groups (Figure 5(b), supplementary
table 7). Based on the results of this study, the further
analysis combined with the TCIA database revealed that
the negative rate of PD-1 inhibitor or PD-1 combined with
CTLA-4 inhibitors was low in a high-risk population of
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Figure 4: Prognostic value of the risk model based on the 12 prognostic genes in TCGA and GEO database. (a, b) Kaplan-Meier survival
analysis of muscle invasive bladder cancer (MIBC) in the high- and low-risk groups for the training set and test set. (c, d) Clustering analysis
heatmap shows the levels of the 12 genes for each patient in the training set and test set; distribution of the m6a-related lncRNA model-
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the training set and test set; (e, f) receiver-operating characteristic (ROC) curves of the risk score in the training set and test set. (g) The
CNV variation frequency of 12 genes in TCGA cohort. The height of the column represented the alteration frequency. The deletion
frequency, blue dot; the amplification frequency, red dot. (h) The location of CNV alteration of 12 genes on 23 chromosomes using
TCGA cohort.
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invasive bladder cancer, which provided a theoretical basis
for clinical drug selection (Figure 5(c), supplementary
table 8).

3.6. NXPH4 Is a Key Gene in MIBC Occurrence and Immune
Regulation. Based on the risk regression coefficient, we fur-
ther screened out the genes NXPH4 (coef = 0:1597) and

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎

0.00

0.25

0.50

0.75

1.00

AP
C_

co
_i

nh
ib

iti
on

AP
C_

co
_s

tim
ul

ati
on

CC
R

Ch
ec

k−
po

in
t

Cy
to

lyt
ic_

ac
tiv

ity H
LA

In
fla

m
m

ati
on

−p
ro

m
ot

in
g

M
H

C_
cla

ss_
I

Pa
ra

in
fla

m
m

ati
on

T_
ce

ll_
co

−i
nh

ib
iti

on

T_
ce

ll_
co

−s
tim

ul
ati

on
Ty

pe
_I

_I
FN

_r
ep

on
se

Ty
pe

_I
I_

IF
N_r

ep
on

se

G
en

e e
xp

re
ss

io
n

Type

High

Low

(b)

1.5e−05

5

6

7

8

9

10

11

High

ip
s_

ct
la

4_
ne

g_
pd

1_
ne

g

Score
Low
High

Low

0.056

2.5

5.0

7.5

10.0

Low High

ip
s_

ct
la

4_
ne

g_
pd

1_
po

s

0.00022

4

6

8

10

Low High

ip
s_

ct
la

4_
po

s_
pd

1_
ne

g 0.21

3

6

9

Low High

ip
s_

ct
la

4_
po

s_
pd

1_
po

s

(c)

Figure 5: Immune landscape between the high- and low-risk patients with muscle invasive bladder cancer (MIBC). (a) Correlation between
immune cells predicted using seven software programs and risk scores (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC). (b) Analysis of immune function between the high- and low-risk groups. (c) Evaluation of
immune response to CTLA4 and PD1 immunosuppressants in MIBC patients in high-risk group and low-risk group.
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ABCA4 (coef = 0:1943) (Figure 6(a)), which were highly
expressed in the high-risk group (Figure 6(b)). The survival
analysis showed that the high expression of both revealed a
poor prognosis (P < 0:001, Figure 6(c)). At the same time,
NXPH4 increased more significantly in cancer compared
to adjacent tissues (P < 0:05, Figure 6(d)); NXPH4 was fur-
ther verified in human paraffin sections with results showing
that its expression was significantly increased in tumor tis-
sues (Figure 6(e)).

4. Discussion

MIBC is an immunosuppressive urinary malignancy that
develops rapidly, has a high metastatic potential, and has a
poor prognosis [23]. Numerous research has now thor-
oughly examined its occurrence, development, and treat-

ment response based on gene, protein, or modification
omics [24–26]. The results show that different MIBC molec-
ular subtypes often have different clinical characteristics and
prognoses, especially the immune characteristics are often
directly related to the treatment or prognosis of patients
[27]. Few studies have further identified the molecular sub-
types of MIBC patients according to the characteristics of
TME, immune checkpoints, and some specific protein mol-
ecules or specific modifications, which provide a certain ref-
erence for clinical treatment [28–30]. However, most
research at the present is focused on the expression of single
or multiple genes and proteins to build models and, ulti-
mately, identify molecular subtypes. The level of expression
of each gene has a significant impact on the models, and
the resulting errors are often larger. Therefore, it may be
more accurate to use new algorithms to reduce these errors
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Figure 6: (a) Regression coefficient of 12 genes in risk regression model. (b) NXPH4 and ABCA4 were highly expressed in high-risk groups.
(c) NXPH4 and ABCA4 were highly expressed with the worse prognosis. (d) NXPH4 was highly expressed in the MIBC tumor tissues. (e, f)
Immunohistochemical results showed that NXPH4 was highly expressed in tumor tissues.
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and establish models from the perspective of overall pathway
correlation [31, 32]; however, this study has some limita-
tions, such as the number of randomly assigned patients,
and the mechanism of the selected immune pathway in the
prognosis and treatment of MIBC is still unclear. However,
exploring the role of immune-related pathways in the identifi-
cation ofMIBCmolecular subtypes has important guiding sig-
nificance for follow-up research and the development of
MIBC treatment.

In this study, GSVA was performed on the screened
MIBC patient dataset based on the immune gene set (GSEA)
and obtained the immune-related pathway matrix of 701
MIBC patients, then successfully constructed molecular sub-
types based on the matrix by using the CNMF algorithm,
and then, analyzed the differential expression pathways
among molecular subtypes, screened the key pathways in
combination with clinical information, and then, analyzed
the pathway genes. A risk regression model was constructed
to analyze the differences in immune landscape and immune
treatment response between high- and low-risk groups. This
study obtained the key pathway: “GSE21670_STAT3_KO_
VS_WT_CD4_TCELL_TGFB_IL6_TREATED_DN,” the
activation of this pathway means that MIBC patients have
a worse prognosis. This pathway comprises 200 genes, 28
of which are prognostic. We successfully built a risk regres-
sion model to predict patient survival based on 12 genes.
The AUC of OS predicted by the training set risk score is
0.718 at 1 year and that of the test cohort is 0.667 at 1 year,
which is higher than other model prediction abilities. Based
on this model, it was found that a large number of immune
cells are distributed in patients in the high-risk group, and
they may be more sensitive to the treatment of PD-1 or
CTLA4 immunosuppressants. However, the potential mech-
anism of action is unclear and will need to be investigated
further more in subsequent experiments. Simultaneously,
based on this model, we effectively obtained some high-
risk genes that may contribute to the progression of MIBC
for additional research. Some molecular targets have been
discovered. At present, oncology research is not limited to
the division between cancer and adjacent cancer [33]. With
the continuous progress of sequencing technology, the iden-
tification of new and more accurate molecular subtypes by
using technologies such as RNA sequencing, protein mass
spectrometry, DNA sequencing, single-cell sequencing, and
modified omics sequencing is developing rapidly [34, 35].
In MIBC, there are a large number of studies on the division
of subtypes based on different levels. Gordon Robertson
used the nonnegative matrix factorization approach to clus-
ter somatic mutations and site copy number changes in 125
MIBC samples [36]. The results showed that there were
three different subtypes of high-grade myometrial invasive
bladder tumors: subtype A was “centralized amplification,”
subtype B was “mastoid CDKN2A deletion FGFR3 muta-
tion,” and subtype C was “TP53/cell cycle mutant.” Wu
et al. went on to identify 99 DEIGs based on TP53 mutation
status, design and validate TIPS such as ORM1, PTHLH,
and CTSE, and effectively construct prediction models in
TCGA and GEO databases to identify poor high-risk prog-
nosis groups [37]. However, the identification of MIBC sub-

types is still based on RNA sequencing data. Among them,
Eur Urol magazine published a large-scale META analysis
of the National University of Singapore research team,
which included 2411 specific tumors, including nonmuscle
invasive (NMIBC) and myometrial invasive bladder cancer
(MIBC); six molecular subtypes with different overall sur-
vival (OS) and molecular characteristics were determined
in this study: subtype neural-like (median OS, 87 Mo),
HER2-like (107.7 Mo), papillary-like (>135 Mo), lunar-like
(91.7 Mo), mesenchymal-like (MES; 86.6 Mo), and squa-
mous cell carcinoma-like (SCC; 20.6 Mo). It is also suggested
that NMIBC with a high risk of progression can show the
molecular characteristics of MIBC, which provides an
important reference for the subtype analysis of MIBC [38].
Kamoun et al. published an article in the European Urology
magazine that study according to the sequencing data of
1750 MIBC transcripts from 16 published datasets and two
other queues; six molecular subtypes can be identified: lumi-
nal papillary (24%), luminal nonspecific (8%), luminal
unstable (15%), stroma rich (15%), basic/square (35%), and
neuroendocrine like (3%). Simultaneously, the study discov-
ered that these consensus categories varied in terms of
potential carcinogenic mechanism, immune and stromal cell
infiltration, and histological and clinical features, which has
made great progress compared with the previous simple
classification of lumen type of basal type [39]. With the
deepening of the research on various pathways, their impor-
tant functions in the process of tumorigenesis and develop-
ment are increasingly reflected. Therefore, several studies
on distinguishing tumor subtypes based on classical path-
ways have begun to emerge. Studies based on autophagy,
apoptosis, ferroptosis, necrosis, and even m6A methylation
modification have been reported [40–44], which are of certain
research significance. It is also common to classify based on
immune genes, but these studies are based on single or multi-
ple genes [45], which are very dependent on the expression of
a gene, and there are some limitations. Under such conditions,
our study used GSVA to assess the immune pathway score in
the entire dataset and then identified the subtype based on the
pathway score, reducing the effect of a single gene on the typ-
ing results and obtaining the key pathways and key genes.
Although the potential mechanism cannot be further analyzed
in this study, this method is still used in the identification of
MIBC subtypes for the first time, and this method can be used
to further analyze the potential functions of other pathways in
the identification of MIBC subtypes, it is considered that
establishing the model from the perspective of the overall
pathway has a strong research prospect.

In addition, based on the risk regression model, this
study obtained 10 high-risk genes that may cause disease,
CDK6, NXPH4, GRIK2, TRIB3, PBK, ABCA4, FBN2,
SCG2, ELN, and INCENP (highly expressed in the high-
risk group). CDK6 and PBK were reported in the literature,
which was associated with the progress of MIBC. Steele
et al.’s study showed obatoclax (BH3 simulant) can reduce
the expression levels of cyclin D1 and CDK4/6, inhibit cell
proliferation, and promote apoptosis, and may significantly
enhance the therapeutic efficacy of cisplatin in MIBC cells
through this mechanism [46]. According to Singh et al.’s
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study, immunohistochemical (IHC) expression of PBK/
TOPK (P < 0:001) is significantly related to MIBC grade,
and the protein is specific for human BC, suggesting that it
might be used as a potential target for the development of
cancer immunotherapy and diagnostic biomarkers [47].
The genes GRIK2 and ELN have been linked to BLCA.
Inoue et al. studies have shown that overexpression of
GRIK2 can increase the ability of urothelial carcinogenesis,
invasion, and tumorigenicity and play a role in the mainte-
nance of CSCs/CICS; immunohistochemical staining further
showed that higher levels of GRIK2 and ALDH1 expression
were associated with poor prognosis of urinary tract cancer
cases [48]. Jiang et al.’s results showed that SATB1, TTLL7,
SREBF1, ELN, DSC2, DIP2C, hsa-mir-29c-3p, and hsa-
mir-20A-5P were identified as independent prognostic fac-
tors of BLCA [49]. The remaining genes have been identified
in other tumors and are critical in tumor progression. By
suppressing FOXO1 degradation and increasing SOX2 tran-
scription, TRIB3 can help breast cancer [50]. FBN2 exposure
in tumor endothelium can affect TGF-β by affecting micro-
fibril isolation which directly stimulates tumor angiogenesis,
resulting in higher local activity of TGF in the tumor micro-
environment concentration [51]. Few other genes have also
been reported to varying degrees, fully reflecting their poten-
tial as a new molecular target in MIBC screening or molec-
ular therapy. Among them, NXPH4 and ABCA4, as the
genes with the heaviest regression coefficient, both suggest
a worse prognosis, and NXPH4 is also significantly increased
in MIBC tumor tissues. NXPH4 (neurexophilin 4) is a pro-
tein coding gene, which may be a signal molecule similar
to binding to alpha-neurexins and possibly other receptors
[52]. Current studies show that EZH2/NXPH4/CDKN2A
axis can participate in regulating the proliferation and
migration of non-small-cell lung cancer cells [18] revealing
a poor prognosis in the prognosis model of breast cancer
[53]. It is consistent with the results of this study, and this
study shows that NXPH4 not only has the ability to promote
tumorigenesis but also may have certain value in tumor
immune regulation. However, this study does not deeply
reveal the mechanism, but only preliminarily proves the
expression level of this gene in MIBC, which still needs fur-
ther exploration at the cellular and animal levels.

5. Conclusion

This study used the GSVA algorithm to evaluate the MIBC
sequencing matrix in GEO and TCGA databases for the first
time, successfully constructed a new molecular subtype and
risk regression model, and obtained key pathways and
potential molecular therapeutic targets. This can provide a
selection basis for clinical treatment, especially PD-1 and
CTLA4 immunosuppressant treatment, and might aid in
the subsequent establishment of the model from the per-
spective of overall pathways.
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