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Background. Pancreatic adenocarcinoma (PAAD) shows signi�cantly high mortality. Transforming growth factor-beta (TGF-β)
signaling plays an important role in tumorigenesis and development. A prognostic model was conducted using transforming
growth factor-beta (TGF-β) signaling for predicting PAAD prognosis and guiding personalized therapies.Methods. Datasets were
grouped into test and training sets. Univariate Cox regression analysis and least absolute shrinkage and selection operator
(LASSO) were applied and introduced for identifying prognostic genes associated with TGF-β. Risk score of each sample was
calculated by the prognostic model. e di�erence in survival, clinical information, mutations, pathways, and chemotherapy and
immunotherapy sensitivities between high-risk and low-risk groups was analyzed. Results. Based on TGF-β signaling, this work
built a 7-gene prognostic model showing robustness in sample classi�cation into low-risk and high-risk groups with di�erential
prognoses. Oncogenic pathways like glycolysis, Notch signaling, and hypoxia were noticeably enriched in the group with high risk.
Interferon and STAT1 were positively associated with risk score. Importantly, the low-risk group may develop a more favorable
response to both chemotherapy and immunotherapy.e current work highlighted the signi�cant function of TGF-β signaling in
PAAD development and described the potential cross-links with other oncogenic pathways. Conclusion. Notably, the prognostic
signature can act as a predictor of prognosis, but as a biomarker for optimizing personalized therapies in clinical practice.

1. Introduction

In 2020, an estimated number of 495,773 new cases of
pancreatic adenocarcinoma (PAAD) were diagnosed
according to global cancer statistics [1]. Compared to other
cancer types, PAAD-a�ected patients consist of a relatively
small percentage (2.6% in all cancers); however, the number
of new deaths in 2020 is almost near its new a�ected in-
dividuals (466,003 deaths and 4.7% in all deaths). PAAD has
extremely high mortality and is a very challenging cancer
type in clinical treatment. A guideline proposed by National
Comprehensive Cancer Network (NCCN) suggests various
strategies for treating PAAD with di�erent stages and
conditions [2]. Curative resection is a major treatment for
PAAD without distant metastasis, and its 5-year survival is
estimated to be 27% [3]. However, still, a high rate of deaths

is presented every year. Over the past two decades, the 5-year
survival of metastatic PAAD is only improved from 1% to
2% [3]. Although chemotherapy such as §uorouracil, iri-
notecan, and oxaliplatin is a common strategy for treating
metastatic patients, still a high recurrence causes high
mortality.

Immunotherapy is a hopeful way for personalized
treatment in di¨cult-to-treat cancers and has been steadily
developing in recent years. Particularly, immune checkpoint
blockade, for instance, cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) and programmed cell death protein 1
(PD-1) inhibitors achieve positive progress in treating some
metastatic cancer types, although many are still under
clinical trials [4]. In the exploration of immunotherapy,
tumor microenvironment (TME) will in§uence the design
or e¨ciency of immunotherapy. From pan-cancer research,
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based on five aspects including wound healing, in-
flammatory, lymphocyte infiltration, macrophages, and
TGF-β response, IFN-c response, cancers were classified
into six immune subtypes (C6 to C1) [5]. PAAD is classified
into four major immune subtypes, C6 (TGF-β Dominant),
C3 (Inflammatory), C2 (IFN-c Dominant), and C1 (Wound
Healing) [5]. )ese immune subtypes provide guidance for
facilitating the development of personalized therapy.

Previous studies have demonstrated that the TGF-β
signaling pathway plays a central role in cancer progression
and metastasis [6, 7]. TGF-β is a cytokine critical for
modulating fibrotic response, extracellular matrix,
epithelial-mesenchymal transition (EMT), and TME in
cancer [6, 8]. In pancreatic cancer, TGF-β is obviously
overexpressed, and the TGF-β signaling pathway is one of
the critical oncogenic pathways involved in cancer pro-
gression. Most PAAD patients occur mutations in TGF-β
signaling-related genes [9]. TGF-β signaling pathway has
dual functions with cancer suppression in the early stage and
cancer promotion in the late stage [10]. )is characteristic
makes it a challenging task to target the TGF-β signaling
pathway for developing targeted drugs of PAAD.

Up to now, various biomarkers for predicting PAAD
prognosis and TGF-β inhibitors for suppressing PAAD have
been explored under preclinical studies [10]. To further
understand the interaction among TME, cancer develop-
ment, and TGF-β, we considered to construct a prognostic
model based on the TGF-β signaling pathway for guiding the
targeted therapy. Here, TGF-β-associated genes were in-
cluded for identifying prognostic genes and characterizing
the relation between TGF-β and immune response. )e
prognostic signature developed here in this work was pre-
dictive of PAAD prognosis and provided a direction for
chemotherapy and immunotherapy.

2. Materials and Methods

2.1. Data Information. TCGA-PAAD dataset including
RNA-seq data and clinical information was acquired from the
TCGA database on June 30, 2021. From ICGC, the PACA-AU
dataset (described as ICGC in the following text) including
expression profiles and survival data was downloaded on June
30, 2021. GSE cohorts (GSE57495, GSE21501, GSE28735,
GSE62452, GSE85916, and GSE71729) containing survival
data and expression profiles were downloaded from GEO on
June 30, 2021. From Molecular Signature Database (MSigDB,
v7.4, the TGF-β pathway was obtained and 54 genes in total
associated with TGF-β were included. )e workflow o was
shown in Figure 1.

2.2. Data Preprocessing. In the TCGA-PAAD dataset, sam-
ples without survival time and status or follow-up in-
formation were eliminated. Ensembl ID was transformed into
a gene symbol. When multiple gene symbols to one gene,
median expression was selected. In GSE cohorts, samples
without time and status were eliminated. )e probes were
transformed into gene symbols. If a probe corresponded to
multiple genes, it was then eliminated.Median expression was

selected if one gene with multiple gene symbols. After data
preprocessing, the information of samples in eight datasets
was displayed (Supplementary Table S1).

2.3. Univariate and Multivariate Cox Regression Analysis.
Univariate and multivariate Cox regression analyses are
common methods for identifying risk factors for survival.
Here, univariate Cox regression analysis screened 27 TGF-
β-associated genes with P< 0.05 and hazard ratio (HR)> 1.
)rough univariate and multivariate Cox regression anal-
ysis, clinical features such as ages, genders, and stages were
included to evaluate the independence of risk score as a risk
factor for PAAD.

2.4. Least Absolute Shrinkage and SelectionOperator (LASSO)
Analysis. LASSO is a method to simplify variable numbers
by using a penalty function for constructing an optimal
model. Glmnet R package was used to conduct LASSO
regression [11]. Lambda value is introduced in the progress
of optimizing a model. )e coefficients close to zero showed
an increased lambda value. To assess models in different
lambda values, 10-fold cross-validation was used. Optimal
lambda was chosen under the glmnet algorithms for de-
termining the variables. )e prognostic model was de-
termined with the formula

risk score � coefficient1∗ gene expression1

+coefficient2∗ gene expression2

+ · · · + coefficientn∗ gene expressionn.

(1)

2.5. Definition of Low-Risk and High-Risk Groups. Sample
risk score was determined in one dataset by the prognostic
signature. For determining the optimal cut-off of the risk
score in sample classification into two risk groups (high and
low), the survminer R package was performed. Kaplan-
Meier survival was introduced in the survival probability.
AUC and ROC curves were used to evaluate the prediction
efficiency of 5-year, 3-year, and 1-year survival for the
prognostic model through the timeROC package [12].

2.6.MutationAnalysis. Tumor mutation burden (TMB) and
mutation patterns of high-risk and low-risk groups were
assessed. )e mutation data of the TCGA-PAAD dataset
downloaded from TCGA was already processed by the
Mutect2 tool. Mutect2 is a popular method by using
a Bayesian classifier for filtering mutations with high
specificity and sensitivity and is commonly used for pan-
cancer research [13].

2.7. SsGSEA and GSVA. GSVA R package was employed to
conduct ssGSEA in assessing enrichment pathways [14].
GSEA allows to define sample enrichment scores in a gene
set, which can indicate absolute enrichment of a gene set
[15]. In analyzing enriched pathways of low-risk and high-
risk groups, hallmark pathways include a series of gene sets
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(h.all.v7.4.symbols.gmt) from MSigDB. Expression data of
TCGA-PAAD was used as input to calculate the enrichment
score of pathways for each sample. P< 0.05 was the
threshold to output significantly enriched pathways. GSVA
is an unsupervised and nonparametric method to calculate
enrichment scores inside and outside a gene set [14]. GSVA
was performed to analyze the enrichment of 7 inflammatory
metagenes (HCK, LCK, MHC I, MHC II, IgG, and STAT1)
in high-risk and low-risk groups.

2.8. FunctionalAnalysis. WebGestaltR (version 0.4.4) package
[16] was applied to assess GO and KEGG pathways in
TCGA-PAAD dataset. Cellular components, molecular func-
tions, and biological processes are included in GO.WebGestalt
is a popular tool for the annotation of interested genes based on
a list of functional categories. P< 0.05 filtered significantly
enriched terms, and we visualized the top 10 enriched terms.

2.9. Assessment of Immune Microenvironment.
ESTIMATE R package was used to calculate the stromal
score and immune score [17], and the ESTIMATE score is
generated from the combined stromal and immune score.
ESTIMATE is convenient to describe immune infiltration of
tumor tissue through expression profiles.

CIBERSORT is also a measurement for characterizing
tumor immune infiltration based on expression data [18]. It
calculates the enrichment score of immune cells within 22
cell types. CIBERSORT introduced a machine learning
approach that can improve the accuracy of resolving cell
subsets in mixtures.

2.10. Prediction of Efficacy of Immunotherapy and
Chemotherapy. For predicting the sensitivity to immu-
notherapy, we implemented SubMap analysis through

comparing the similarity of expression data between two
datasets [19]. To this end, we obtained the IMvigor210
dataset consisting of urothelial carcinoma samples treated
with anti-PD-L1 [20]. )e expression data of TCGA--
PAAD and IMvigor210 datasets were compared grouped
by stable/progressive disease and complete/response
partial response. Bonferroni-corrected P< 0.05 was con-
sidered as a significant similarity. As for the sensitivity
prediction to chemotherapy, the estimated IC50 (bio-
chemical half maximal inhibitory concentration) of five
drugs including cisplatin, erlotinib, sorafenib, paclitaxel,
and crizotinib was calculated using the pRRophetic R
package [21].

2.11. Statistical Analysis. All statistical analysis was con-
ducted in the R (v3.4.2) platform. )e statistical method was
indicated in the corresponding legends. Bonferroni cor-
rection was used to correct the P value. Significance was
considered if P< 0.05. ∗∗∗∗P< 0.0001, ∗∗∗P< 0.001, ∗P< 0.05,
∗∗P< 0.01. ns, no significance.

3. Results

3.1. A Prognostic Model Based on TGF-β-Associated Genes for
PAAD. First, we searched TGF-β signaling pathway from
MSigDB and obtained 54 genes associated with TGF-β. In
the TCGA-PAAD dataset, univariate Cox regression
analysis was used to screen genes related to overall
survival, and 28 genes were identified where 27 genes
were risk factors (P< 0.05, HR > 1). )en LASSO cox
regression was applied to decrease the number of
screened genes and construct a prognostic model. With
the increasing lambda value, the coefficient of each gene
was close to zero, resulting in a decreased number of
variables (Figure 2(a)). When lambda � 0.0452, the

GSE57495
GSE21501
GSE28735
GSE62452
GSE85916
GSE71729
ICGC

TGF-β genes (MsigDB)TCGA-PAAD

Clinical feature compare ESTIMATE Score compare

CIBERSORT Score compare

Gene Set Enrichment Analysis

Model evaluation and validation

RiskType feature compare

7-gene model

Multivariate COX analysis

Univariate survival analysis

SNV compare

Clinical feature analysis

Immunotherapy analysis

TIDE analysis

Univariate and multivariable
analysis

Figure 1: )e workflow of constructing a prognostic model for pancreatic adenocarcinoma.
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optimal model with the least number of genes (variables)
was presented (Figure 2). Using multiple cox regression
analyses for the remaining 7 genes, we obtained their
coefficients, the following formula was used to define the
7-gene prognostic model:

Risk score � 0.186∗ SMAD6 + 0.174∗ SMAD3

+0.16∗WWTR1

+0.026∗TGIF1 − 1.021∗CDK9

+0.151∗NOG + 0.334∗BCAR3.

(2)
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Figure 2: Construction of a 7-gene signature in TCGA-PAAD dataset. (a) )e trajectory of each gene (variable) with the changing lambda.
Vertical axis indicates the coefficients of each gene, and horizontal axis indicates the lambda value shown as–ln(lambda). Red dotted line
represents the position of lambda� 0.0452. (b) )e confidence interval of the changing lambda. Red dot corresponds to the red dotted line.
(c) )e survival status and expression of 7 prognostic genes of 176 samples ranking by risk score. Risk score and mRNA expression were
converted to z-score. (d) Kaplan-Meier survival plot of high-risk and low-risk groups. Log-rank test was performed. HR, hazard ratio. CI,
confidence interval.
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We calculated the sample risk score in the TCGA-LAAD
dataset, and delineated the distribution of samples from low-
risk scores to high-risk scores (Figure 2(c)). For classifying
samples into high-risk and low-risk groups, the survminer R
package was used to select the optimal cut-off. Dead samples
were highly accumulated in the high-risk group. Excluding
CDK9, the other six genes (SMAD6, SMAD3, WWTR1,
TGIF1, NOG, and BCAR3) in the high-risk group were
higher expressed. Kaplan–Meier survival analysis man-
ifested a significant difference in survival between the two
groups, with 61 and 115 samples and classified into two risk
groups, respectively (P< 0.00001, HR� 2.72 (95% CI:
1.92–3.85), Figure 2(d)). We used ROC to evaluate the
predicting effectiveness of 5-year 3-year and 1-year, and the
result presented a high AUC of 0.74, 0.76, and 0.81, re-
spectively (Supplementary Figure S1A).

)en seven independent datasets (GSE57495, GSE21501,
GSE28735, GSE62452, GSE85916, GSE71729, and ICGC)
were used to validate the prognostic model. By using the
same analysis, we calculated the risk score of each sample
according to the expression of seven prognostic genes.
Kaplan-Meier survival plots of seven datasets were de-
scribed, and these samples were significantly classified into
two groups (P< 0.05, Figures 3(a)–3(g)). ROC analysis
exhibited favorable AUC of 1-year, 3-year, and 5-year in
these datasets except for GSE21501 having relatively low
AUC (Supplementary Figures S1B–S1H). Univariate Cox
regression analysis revealed a high HR in the high-risk group
(P< 1e − 5, all HR� 2.14 (95%CI: 1.81–2.53), Figure 3(h)),
indicating that this prognostic model was effective to predict
prognosis and TGF-β signaling pathway was a risk factor to
PAAD patients.

3.2. Mutation Characteristics of High- and Low-Risk Groups.
Mutation data in the TCGA-PAAD dataset was used to
analyze TMB and mutation patterns through mutect2
software. No significant difference in TMB was observed in
high- and low-risk groups (P � 0.29, Figure 4(a)), but the
number of mutations exhibited differentially between the
two groups (P � 0.0082, Figure 4(b)). Furthermore, genes
with a mutated frequency >3% were screened and a Chi-
square test was performed to screen significantly mutated
genes (P< 0.05). Finally, five genes (KRAS, TP53, CDKN2A,
RNF213, and PCDH9) were identified, and their mutation
patterns in high- and low-risk groups were both presented
(Figure 4(c)). KRAS and TP53 contributed the majority of
mutations with a mutated frequency of 72% and 60% re-
spectively, and they were commonly reported in various
cancers. Missense mutation type consisted of almost mu-
tations in KRAS, while TP53 presented abundant mutation
types such as nonsense mutation and frame-shift insertions
or deletions.

3.3. Risk Score Is Associated with Clinical Features. )e re-
lationship between risk score and clinical features including
gender, age, N stage, stages I to IV, T stage, grade, and M
stage was assessed. )ere was no significant distribution
difference in risk scores in different stages, genders, and ages

(P> 0.05), except for grades G1 to G4 (P< 0.05, Supple-
mentary Figure S2). However, we found that the 7-gene
signature could effectively divide samples with different
clinical features into high- and low-risk groups (P< 0.01,
Supplementary Figure S3), suggesting that the prognostic
model was valid in predicting overall survival in different
clinical features. To demonstrate the advantage of the
prognostic model, we compared it with other clinical fea-
tures using both univariate and multiple Cox regression
analysis. T stage and risk type, N stage as risk factors were all
significantly associated with prognosis, as shown by Uni-
variate Cox regression analysis (P< 0.05, Figure 5(a)), but
risk type had the highest HR (3.38, 95%CI: 2.22–5.14).
Multiple Cox regression analysis also revealed that risk type
was the most associated with prognosis (P< 1e − 5,
HR� 3.76, 95%CI: 1.94–7.3, Figure 5(b)).From these results,
the 7-gene signature has been proven to be sufficient and
robust to be applied as a prognostic predictor for patients
with PAAD.

3.4. Functional Pathways Related to Risk Score. To analyze
the enrichment of pathways in high- and low-risk groups, we
selected a gene set of h.all.v7.4.symbols.gmt involved in
hallmark pathways. By using the expression profiles of the
TCGA dataset as an input in GSEA, the enrichment score of
each sample was generated and ranked by the risk score.
Four oncogenic pathways including TGF-β signaling,
hypoxia, glycolysis, and notch signaling pathways were
significantly enriched, with high enrichment in high-risk
group (P< 0.05, Figure 5(c)). In addition, we selected 177
genes significantly associated with risk score (|R|> 0.6,
P< 0.05), and most genes were positively associated with
risk score (Supplementary Figure S4A). )en, we employed
the WebGestaltR package to annotate these genes in GO
terms and KEGG pathways. As a result, in GO terms, 16
molecular function terms, 33 cellular component terms, and
126 biological process terms were annotated (FDR < 0.05,
Supplementary Figures S4B–S4D). 34 KEGG pathways with
some related to cancer were significantly enriched in these
genes including focal adhesion, ECM-receptor interaction,
small cell lung cancer, PI3K-Akt signaling pathway, and
proteoglycans in cancer (FDR < 0.05, Supplementary
Figure S4E). )e above results suggested that TGF-β-asso-
ciated genes were strongly involved in cancer development.

3.5. Ae Relation between Risk Score and Immune Response.
To understand the associated risk score with immune in-
filtration, we applied ESTIMATE and CIBERSORTmethods
to evaluate the immune infiltration in high- and low-risk
groups. Using ESTIMATE measurement, we calculate
stromal score, immune score, and ESTIMATE score. We
observed that the low-risk group had higher scores on three
terms, and no significant difference was found between the
two groups (P> 0.05, Supplementary Figure S5). CIBER-
SORTanalysis on 22 immune cells revealed that the low-risk
group showed a higher enrichment of CD8 T cells, but
a lower proportion of M0 macrophages, and M1 macro-
phages than the high-risk group (P< 0.05, Supplementary
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Figure S5D). Furthermore, we obtained 7 immune-related
metagenes from previous research including IgG, interferon,
MHC-II, LCK, STAT1, MHC-I, and HCK [22]. )e en-
richment score of 7 metagenes in each sample was calculated
by GSVA. )e expression heatmap of each sample in the
TCGA-LAAD dataset was presented by risk score from low
to high (Figure 6(a)). A low expression level of 7 metagenes
was obviously shown in an extremely low-risk score. To
further know the correlation between risk score and 7
metagenes, we performed the Pearson correlation analysis
and found that most metagenes were positively correlated
with risk score excluding IgG (Figure 6(b)). Interferon and
STAT1 had relatively high correlation coefficients with 0.43
and 0.36, respectively, indicating that gene sets in the two
metagenes had a close interaction with risk score or TGF-
β-associated genes.

3.6. Predicting Immune Escape ofHigh- and Low-RiskGroups.
We obtained the scores of four immune signatures (TGF-β
response, proliferation, macrophage regulation, and wound
healing) from a previous study using the same TCGA-PAAD
dataset [5], and compared their scores in high- and low-risk
groups. Higher scores on TGF-β response, proliferation, and

wound healing were found in the high-risk group while the
low-risk group showed higher scores on macrophage reg-
ulation (P< 0.05, Figures 7(a)–7(d)), which was consistent
with the result in the previous section that TGF-β signaling
pathway was more enriched in high-risk group (Figure 5(c)).
)e result also indicated that the high-risk group not only
had an active inflammatory response but a high proliferation
score was presented simultaneously that may override its
immune response.

To predict the immune escape if accepting immuno-
therapy, we used TIDE measurement to evaluate the pos-
sibility that patients could benefit from the immunotherapy.
)e result showed that the low-risk group had a higher
proportion (43%) of patients who can benefit much from the
immunotherapy than the high-risk group (33%)
(Figure 7(e)). A high TIDE score was presented in the high-
risk group, suggesting that less benefit from immunotherapy
could be obtained (P � 0.0085, Figure 7(f)). In addition, the
low-risk group exhibited higher Tcell dysfunction and lower
T cell exclusion than the high-risk group (P< 0.0001,
Figures 7(g) and 7(h)).

Differential response of high- and low-risk groups to
immunotherapy and chemotherapy.

Names

Age

Gender

T.Stage

N.Stage

M.Stage

Stage

Grade

RiskType

0.198

0.343

0.028

0.005

0.970

0.701

0.058

<1e-5

1.31(0.87,1.98)

0.82(0.54,1.24)

2.04(1.08,3.85)

2.1(1.25,3.54)

1.03(0.25,4.3)

0.8(0.25,2.53)

1.52(0.99,2.35)

3.38(2.22,5.14)
0.25 0.35 0.50 0.71 1.0 1.41

HR

p.value Hazard Ratio(95% CI)

(a)

Names
Age

Gender

T.Stage

N.Stage

M.Stage

Stage

Grade

RiskType

0.499

0.595

0.905

0.235

0.997

0.997

0.023

<1e-5

1.26(0.65,2.43)

1.21(0.61,2.4)

0.93(0.3,2.91)

1.74(0.7,4.35)

2896124.72(0,Inf)

0(0,Inf)

2.19(1.11,4.32)

3.76(1.94,7.3)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

HR

p.value Hazard Ratio(95% CI)

(b)

0.0

0.2

0.4

0.6

En
ric

hm
en

t s
co

re
Enrichment plot HALLMARK terms

High Low

-0.25

0.00

0.25

0.50

0 5000 10000 15000 20000
Rank in ordered dataset

Ra
nk

NOTCH_SIGNALING
ES=0.62,NES=1.7,P=0.014,FDR=0.069
TGF_BETA_SIGNALING
ES=0.58,NES=1.7,P=0.0079,FDR=0.078
GLYCOLYSIS
ES=0.53,NES=1.9,P=0,FDR=0.11
HYPOXIA
ES=0.5,NES=1.7,P=0.02,FDR=0.076

(c)

Figure 5: Univariate (a) and multivariate (b) cox regression analysis of the 7-gene signature and other clinical features. HR, hazard ratio. CI,
confidence interval. (c) Gene set enrichment analysis of hallmark pathways of each sample ranking by risk score in TCGA-PAAD dataset.
ES, enrichment score. NES, normalized enrichment score. FDR, false discovery rate.

8 Journal of Oncology



Grade
Stage
M.Stage
N.Stage
T.Stage
RiskType
RiskScore

RiskScore
−1

−4

RiskType
High
Low

T.Stage
T1
T2
T3
T4

N.Stage
N0
N1

M.Stage
M0
M1

Stage
I
II
III
IV

Grade
G1
G2
G3
G4

Type
HCK
IgG
Interferon
LCK
MHC−I
MHC−II
STAT1

−1

−0.5

0

0.5

1

(a)

1 0.27

1

0.49

0.13

1

0.86

0.56

0.4

1

0.25

0.18

0.51

0.2

1

0.92

0.38

0.52

0.9

0.32

1

0.67

0.24

0.69

0.65

0.48

0.72

1

0.18

−0.06

0.43

0.11

0.28

0.23

0.36

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

HCK

IgG

Interf

LCK

MHC−I

MHC−II

STAT1

riskScore

HCK

IgG

Interferon

LCK

MHC−I

MHC−II

STAT1

riskScore

(b)

Figure 6: )e relation between inflammatory-related metagenes and risk score in TCGA-PAAD dataset. (a) Heatmap of the metagene
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Finally, we assessed the sensitivity of subtypes to im-
munotherapy and chemotherapy. We used an IMvigor210
dataset including the treatment data of anti-PD-L1 therapy
for metastatic urothelial carcinoma and employed SubMap
analysis to compare the similarity of expression data be-
tween IMvigor210 and TCGA-PAAD datasets. )e result
showed that the low-risk group was more similar to CR/PR
patients in IMvigor210 than the high-risk group, suggesting
a higher sensitivity to anti-PD-L1 therapy (P� 0.017, Fig-
ure 8(a)). )e observation was consistent with the result of
the TIDE prediction (Figure 7(f )). Furthermore, we eval-
uated the estimated IC50 of five chemotherapeutic drugs
(cisplatin, erlotinib, sorafenib, paclitaxel, and crizotinib) in
low-risk and high-risk groups. We found that the high-risk
group had significantly lower estimated IC50 of all five drugs
(P< 0.01, Figures 8(b)–8(f), indicating that the high-risk
group was more sensitive to chemotherapy. Overall, the low-
risk group had a superior manifestation in both immuno-
therapy and chemotherapy.

4. Discussion

A TGF-β signaling pathway is highly active in PAAD and
can function dual roles in suppressing and promoting cancer
development. )is study focused on the TGF-β signaling
pathway and constructed a 7-gene prognostic model as
a signature based on TGF-β-associated genes. )is prog-
nostic signature manifested robust performance that can
clearly stratify samples into high-risk and low-risk groups in
the training group (TCGA-PAAD) and validation group
(GSE cohorts and ICGC dataset). Significantly differential

prognosis was observed in high-risk and low-risk groups
with poor OS in the high-risk group. )e risk score is an
independent risk factor and presents high HR compared to
other risk factors in both univariate and multivariate Cox
regression analysis.

Among 7 prognostic genes in the model, SMAD3 and
SMAD6 are involved in the Smad pathway that format Smad
complex and interact with transcriptional factors, and thus,
regulate the expression of TGF-β targeted genes [23].
SMAD3 promotes cancer progression by inhibiting natural
killer (NK) cells, and SMAD3-silenced NK cells can enhance
cancer immunotherapy [24, 25]. CDK9 belongs to a family
of CDK enzymes responsible for cell proliferation and de-
velopment, which has been reported to be associated with
cancer progression in many cancer types [26]. It is con-
sidered as a therapeutic target in colorectal cancer [27],
prostate cancer [28], and also in pancreatic cancer [29].
WWTR1 and TGIF1 were also reported to be involved in
cancer development in various cancer types [30, 31].

We analyzed hallmark and KEGG pathways in high-risk
and low-risk groups and observed that oncogenic pathways
were highly enriched in high-risk groups. Besides the TGF-β
signaling pathway, Notch signaling, glycolysis, and hypoxia
pathways showed high enrichment scores in a high-risk
group. Activation of the Notch signaling pathway persists
from the early to late stages of PAAD pathogenesis and
tumorigenesis [32]. It was found that Notch signaling is
necessary for epithelial cytostatic response to TGF-β, in-
dicating a cross-link between Notch and TGF-β signaling
pathways [33]. )e glycolysis pathway is active in many
cancer types, with increased lactate production and
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Figure 7: TIDE prediction of the efficiency to immunotherapy in TCGA-PAAD dataset. (a–d))e score of TGF-β response (a) proliferation
(b) macrophage regulation (c) and wound healing (d) in two groups. Student t test was performed. (e) )e percentage of positive and
negative response to immunotherapy predicated by TIDE in high-risk and low-risk groups. False indicates negative response and true
indicates positive response. ANOVA test was performed. (f–h) TIDE score (f ), T cell dysfunction score (g) and Tcell exclusion (h) score in
high-risk and low-risk groups. Student t test was performed. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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glycolytic enzyme overexpression, especially in PAAD [34].
Hypoxia is one of the hallmarks of solid tumors, and it is
considered as a therapeutic target in many cancer types such
as lung cancer [35]. In pancreatic cancer, hypoxia is an
important driving factor in angiogenesis [36] and can re-
model the tumor microenvironment under reactive oxygen
species (ROS) driven by hypoxia [37].

ECM-receptor interaction and PI3K-Akt signaling
pathways within KEGG pathways were also enriched in the
high-risk group. )e extracellular matrix (ECM) is the fun-
damental component in the tumor stromal and supports
a solid interaction for cancer migration and metastasis.
Preclinical studies have proved promising outcomes in de-
veloping drugs targeting ECM in PAAD [38]. A combination
of ECM targeted therapy and other therapies such as che-
motherapy is a common strategy for treating PAAD in clinical
trials [38]. PI3K-Akt signaling is a well-known oncogenic
pathway in many cancer types, and it is a popular target for
cancer therapy. Molecular drugs targeting PI3K-Akt such as
urolithin A are developed for PAAD treatment [39]. )ese
oncogenic pathways are highly enriched in the high-risk
group with high expression of TGF-β, suggesting that they
may have direct or indirect cross-links with TGF-β signaling
in the progression of PAAD.

To evaluate whether this prognostic signature could
provide guidance to immunotherapy, we applied TIDE and
SubMap analysis for prediction. TIDE analysis revealed
a higher TIDE score or higher immune escape in the high-
risk group. Although a lower score of T cell dysfunction
meaning lower inhibition from TME on T cell function was
presented in the high-risk group, a higher score of T cell

exclusion representing lower T cell infiltration in TME was
simultaneously shown. TIDE predicted that the low-risk
group was more sensitive to immunotherapy than the
high-risk group. Furthermore, SubMap also supported this
prediction that the low-risk group manifested similar ex-
pression characteristics compared with a dataset treated with
an-PD-L1 immunotherapy, suggesting the low-risk group
had a higher response to immunotherapy.

Estimated IC50 calculation showed that the low-risk
group was more sensitive to chemotherapeutic drugs in-
cluding cisplatin, erlotinib, sorafenib, paclitaxel, and cri-
zotinib. In addition, an assessment of inflammatory
signatures concluded that interferon and STAT1 signatures
were closely correlated with risk score (correlation co-
efficient > 0.3). Evidence support that interferon can en-
hance the sensitivity to chemotherapy such as gemcitabine
and interferon therapy is expected to be a potential treat-
ment in pancreatic cancer [40, 41]. STAT1 was suggested as
a prognostic biomarker in solid tumors and pancreatic
cancer in previous studies [42, 43]. A study proposed that
STAT1 could also enhance the sensitivity to gemcitabine in
pancreatic cancer [44]. )ese findings further support the
reliability and effectiveness of our classification for PAAD
patients based on TGF-β signaling.

In summary, this study focused on genes within the
TGF-β signaling pathway and exploited a 7-gene prognostic
signature with robust performance in the independent
datasets. )e signature can effectively divide PAAD patients
into high-risk and low-risk groups with the distinct OS.
Differential sensitivity to immunotherapy and chemother-
apy was presented between the two groups.
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Figure 8: Sensitivity analysis to immunotherapy and chemotherapy in TCGA-PAAD dataset. (a) SubMap analysis between TCGA-PAAD
and IMvigor210 datasets. SD/PD indicates the group of stable disease (SD) and progressive disease (PD). CR/PR indicates the group of
complete response (CR) and partial response (PR). Chi-square test was performed. (b–f) Comparision of estimated IC50 of cisplatin
(b) erlotinib (c), sorafenib (d) paclitaxel (e) and crizotinib (f ) between high-risk and low-risk groups. Student t test was performed.
∗∗P< 0.01, ∗∗∗∗P< 0.0001.
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5. Conclusions

In conclusion, the prognostic signature further demon-
strated the important role of TGF-β signaling in PAAD
progression and its interaction with other oncogenic
pathways. Moreover, the signature can provide guidance for
applying personalized therapies to PAAD patients.

Data Availability

)e datasets analyzed in this study are available at GSE57495
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE
57495), GSE21501 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc�GSE21501), GSE28735 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE28735), GSE6
2452 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac
c�GSE62452), GSE85916 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc�GSE85916), GSE71729 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE71729).

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Supplementary Materials

Supplementary Figure S1: ROC curves of the 7-gene prognostic
signature in TCGA-PAAD, GSE57495, GSE21501, GSE28735,
GSE62452, GSE85916, GSE71729, and ICGC datasets. Supple-
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