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�e polymeric immunoglobulin receptor (PIGR), an exosome-associated glycoprotein, plays an important role in the occurrence
and development of di�erent tumors. �is study aimed to investigate whether PIGR is essential for colorectal cancer (CRC).
Comprehensive bioinformatics analysis and immunohistochemistry (IHC) revealed that expression of PIGR was signi�cantly
decreased in CRC patients. Upregulated PIGR displayed favorable prognostic values in CRC patients. Several algorithms, such as
TISIDB and TIMER, were used to evaluate the roles of PIGR expression in the regulation of immune response in CRC. Moreover,
GSEA enrichment analysis indicated the underlying role of PIGR in the regulation of fatty acid metabolism in CRC. Taken
together, our �ndings might provide a new potential prognostic and immune-associated biomarker for CRC and supply a new
destination for PIGR-related immunotherapy in clinical treatment.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide, with a high incidence andmortality rate [1, 2]. In
recent years, various types of clinical treatments have been
applied to CRC patients, including systemic chemotherapy
and radiation. However, the average 5-year survival rate of
CRC patients with positive regional lymph nodes is only
40%, while less than 5% of patients with distant metastases
survive beyond 5 years [3, 4]. �erefore, it is signi�cantly
important to explore a novel biomarker to improve the
overall survival rate of CRC patients.

�e tumor immune microenvironment (TIME) has an
important role in mediating cytotoxic drug response and
tumor progression [5]. Exploring the underlying mecha-
nisms of TIME displays an important role in the occurrence
and development of CRC [6, 7]. Immune cells combined
with signaling biomarkers could play a crucial role in the
prognostic prediction of CRC patients [8, 9]. �erefore, it is
very important to further study the tumor

microenvironment to improve the patients’ overall survival.
Exosomes, the nano-sized vesicles, have the inherent po-
tential to shuttle diverse biomolecules like proteins, lipids,
and nucleic acids to the recipient cells [10, 11]. Employing
exosomes as vehicles for the delivery of products to initiate
antitumor immune responses shows striking therapeutic
e�ects [12, 13]. �us, exosomes could be considered as
potential therapeutic targets and valuable biomarkers for the
treatment of malignancies.

�e polymeric immunoglobulin receptor (PIGR), an
exosome-associated glycoprotein, picks up its cargo on the
basolateral surface and carries it by the process of trans-
cytosis to the apical face. �e function and regulation of
PIGR may be closely related to the immune defense of
organisms [14]. Numerous studies have recently demon-
strated the important roles of aberrant PIGR in di�erent
tumors’ tumorigenesis. Qi et al. considered that the PIGR
may be a tumor suppressor in nasopharyngeal carcinoma
[15]. Increased expression of PIGR was correlated with
hepatic metastasis and poor prognosis in colon carcinoma
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patients [16]. Whereas, more studies are still required to
investigate the relationship between PIGR expression and
the prognosis of CRC patients.

In this article, we explored the underlying mechanism of
PIGR in CRC. Based on bioinformatics analysis and im-
munohistochemical technology, it was found that the
exosome-related gene PIGR was significantly downregulated
in CRC tissues. Survival analysis showed that high expres-
sion of PIGR was associated with a good prognosis in CRC
patients. Furthermore, we analyzed the relationship between
PIGR and tumor-infiltrating immune cells (TIICs) in CRC.
'ese findings indicate that PIGR could be a novel prog-
nostic and immune-related biomarker in CRC patients.

2. Materials and Methods

2.1. Data Acquisition. 'ree CRC datasets, GSE20842 [17],
GSE23878 [18] and GSE25070 [19], were downloaded from
gene expression omnibus (GEO) database [20] (Table 1).
'en, we explored the codifferently expressed genes (co-
DEGs) between CRC tissues and normal colorectal tissues.
'e screening criteria was shown as follows: |log FC| ≥1.5
and p value <0.05. Next, we used Venn plots to explore the
overlapping molecules between the exosome-associated
dataset and three GEO datasets. Moreover, we employed
the Cancer Genome Atlas (TCGA) database [21] to evaluate
the effects of co-DEGs on the clinical characteristics of CRC
patients.

2.2. Bioinformatics Platforms. 'e profiles of co-DEGs were
analyzed by comprehensive bioinformatic technologies
(Table 2). 'e Kaplan–Meier plotter [22] was used to
evaluate the prognostic values of the overlapping molecules,
including overall survival (OS) and recurrence-free survival
(RFS). In addition, several databases, such as TNMplot [23],
GEPIA2.0 24 and TCGA-CRC, were used to confirm the
downregulated expression level of PIGR. Subsequently, we
used the Linked-Omics platform [25] to evaluate the in-
teraction between PIGR and its coexpressed genes. Mean-
while, the Linked-Omics platform was used to analyze the
gene enrichment. We employed the TISIDB [26], TIMER
[27] and single-sample GSEA (ssGSEA) to evaluate the roles
of PIGR expression in the regulation of immune response in
CRC. We also evaluated the probable relationships between
PIGR expression and several immune checkpoints, such as
indoleamine 2,3-dioxygenase 1 (IDO1), CD274, pro-
grammed cell death 1 (PDCD1), cytotoxic T-lymphocyte
associated protein 4 (CTLA4), and lymphocyte activating 3
(LAG3).

2.3. Immunohistochemistry (IHC). Tissue sections were
deparaffinized in xylene and rehydrated with ethanol, and
then preincubated with 10% normal goat serum in phar-
maceutical benefits scheme (PBS) (pH 7.5). 'en, the tissue
slides were incubated with the primary antibody overnight at
4°C and then stained with a biotinylated secondary antibody
(SAB4600042, Sigma-Aldrich) for 1 h at room temperature.
'e peroxidase reaction was visualized with a 3, 3-

diaminobenzidine chromogenic kit (ZLI-9019, ORI-
GENE). After that, the tissues were photographed under
a conventional microscope (DMI3000 B, Leica). 'e
formalin-fixed, paraffin-embedded specimens of CRC and
adjacent tissues were obtained from the Department of
Pathology, Xiangya Hospital, Central South University. 'e
ethics for this study (202205114) was approved by the Ethical
Committee of Xiangya Hospital, Central South University.

2.4. Statistical Analysis. In this report, the statistical dif-
ference was investigated by t-test assay. And the data were
mainly depicted as the mean± standard deviation (SD). P

values <0.05 was considered to demonstrate statistically
significant differences.

3. Results

3.1. Identification of the Co-DEGs in Colorectal Cancer.
We explored the co-DEGs between CRC tissues and normal
colorectal tissues from three GEO-CRC datasets. And we
found 1262 upregulated genes and 883 downregulated genes
in GSE20842, 258 upregulated genes and 1011 down-
regulated genes in GSE23878, and 86 upregulated genes and
222 downregulated genes in GSE25070 (Supplementary
Table S1). A Venn analysis (http://bioinformatics.psb.ugent.
be/webtools/Venn/) was used to explore the potential
differently-expressed exosome-related genes in CRC. Ac-
cordingly, one downregulated exosome-related gene, PIGR,
was identified in CRC tissues (Figure 1(a)). 'en, the
Kaplan–Meier plotter database was used to analyze the ef-
fects of PIGR expression on the prognosis in CRC patients.
As shown in Figures 1(b) and 1(c), high expression level of
PIGR was related with good OS (HR� 0.39, 95%
CI� 0.17–0.88, p � 0.018) and RFS (HR� 0, 95% CI� 0-Inf,
p � 0.013) in CRC patients.'ese results collectively suggest
that PIGR overexpression could be significantly associated
with a favorable prognosis in CRC patients.

3.2. Downregulated Expression of PIGR in Colorectal Cancer.
By comprehensively analyzing the expression levels of PIGR
in the three GEO-CRC datasets, we found that PIGR was
lowly expressed in CRC tissues (p< 0.0001) (Figures 2(a)–
2(c)). Besides, the data results from TCGA-CRC further
verified that the expression level of PIGR was significantly
different between the normal group and the CRC group
(p< 0.0001) (Figure 2(d)). What’s more, the TNMplot da-
tabase indicated that PIGR mRNA expression was both
lower in CRC tissues from gene chip data (p � 3.06e − 17)
and RNA-seq data (p � 5.68e − 07) (Figures 2(e) and 2(f )).
In addition, the IHC results confirmed that PIGR was
downregulated in CRC tissues. Together, these results
proved the lower expression of PIGR at mRNA and protein
levels in CRC.

3.3. %e Coexpression Network of PIGR in Colorectal Cancer.
We explored the coexpression network and biological
functions of PIGR in the TCGA-Colorectal adenocarcinoma
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(COADREAD) cohort. In Figure 3(a) and Supplementary
Table S2, we presented the PIGR coexpressed genes.
Meanwhile, Figures 3(b) and 3(c) and Supplementary

Tables S3 and S4 have demonstrated these candidate genes
that are positively and negatively correlated with PIGR in
CRC patients. Notably, the top 20 positively-related genes

Table 1: 'e upregulated genes and downregulated genes in the three GEO datasets.

GEO datasets Platform
Sample size

DEGs References
Cancer Normal

GSE20842 GPL4133 65 65 1263 upregulated genes and 884 downregulated genes [17]
GSE23878 GPL570 35 24 258 upregulated genes and1012 downregulated genes [18]
GSE25070 GPL6883 26 26 87 upregulated genes and 223 downregulated genes [19]

Table 2: Bioinformatics platforms that are employed to analyze the role of PIGR in colorectal cancer.

Database URL References
GEO https://www.ncbi.nlm.nih.gov/gds/?term� [20]
TCGA https://portal.gdc.cancer.gov/ [21]
Kaplan–Meier plotter https://kmplot.com/analysis/ [22]
TNMplot https://www.tnmplot.com [23]
GEPIA2.0 https://gepia.cancer-pku.cn/ [24]
Linked-Omics https://www.linkedomics.org/admin.php [25]
TISIDB https://cis.hku.hk/TISIDB/ [26]
TIMER https://cistrome.shinyapps.io/timer/ [27]
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Figure 1: Identification of downregulated exosome-related PIGR in CRC. (a) 'e Venn plot showed one downregulated exosome-
correlated gene (PIGR) in CRC progression. (b-c) 'e prognostic values of PIGR in CRC patients. Abbreviations: OS, overall survival; RFS,
recurrence-free survival.
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were highly likely to be low-risk factors for CRC patients
(Figure 3(d)). Furthermore, 1 of top 20 negatively-related
genes might be the high-risk factor in CRC (Figure 3(e)). In
addition, the Gene Ontology showed that the genes coex-
pressed with PIGR were mainly involved in multiple bi-
ological process categories, such as biological regulation,
metabolic processes, and response to stimulus. In the cat-
egory of cellular component, these genes mainly took part in
the membrane, nucleus and membrane-enclosed lumen.
'en, in the molecular function categories, these coex-
pressed genes are involved in the protein binding, ion

binding, and nucleic acid binding (Figure 3(f)). Moreover,
the KEGG analysis indicated that the most likely enriched
pathways were carbon metabolism, fructose and mannose
metabolism, hippo signaling pathway, and Notch signaling
pathway (Figure 3(g)).

Next, we performed GSEA enrichment analysis of PIGR-
related genes in CRC. As shown in Figures 4(a)–4(g), ab-
errantly expressed PIGR might involve in the regulation of
fatty acid metabolism-related signaling pathways, such as
mitochondrial fatty acid beta oxidation, mitochondrial fatty
acid beta oxidation, fatty acid metabolism, nonalcoholic
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Figure 2: PIGR was downregulated in CRC patients. (a-c) 'e expression level of PIGR was lower in the three GEO-CRC datasets. (d) 'e
expression level of PIGR was lower in the TCGA-CRC. (e-f ) TNMplot database depicting the downregulated PIGR expression in CRC
tissues from gene chip data and RNA-seq data. (g) Representative IHC results showing the downregulated PIGR expression in CRC tissues.
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fatty acids. All the statistical significance wasp< 0.05.
Overall, our results suggest that PIGRmay be involved in the
cellular metabolism in CRC.

3.4. %e Link between PIGR with Immune Regulation. We
used ssGSEA to analyze the effects of PIGR on immune
regulation in the TCGA-COADREAD cohort. 'e expres-
sion of PIGR was significantly positively correlated with T
helper type 17 ('17) cells, B cells, and so on (Figure 5(a)).
'e results obtained from TISIDB database also confirmed
the similar findings (Figure 5(b)). 'e scatter plot from

TIMER database further demonstrated that the expression
level of PIGR was strongly positively correlated with B cell in
colon adenocarcinoma (COAD) and rectum adenocarci-
noma (READ) patients (Figure 5(c)).

Next, we explored the relationship between PIGR ex-
pression and several immune checkpoints and found that
the expression level of PIGR was positively correlated with
IDO1 (Spearman r� 0.186, p< 0.001), CD274 (Spearman
r� 0.147, p< 0.001), PDCD1 (Spearman r� 0.186,
p< 0.001), CTLA4 (Spearman r� 0.103, p � 0.009), and
LAG3 (Spearman r� 0.232, p< 0.001) (Figures 6(a)–6(c)).
'e patients with high level of PIGR displayed overexpressed
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IDO1, CD274, PDCD1, CTLA4, and LAG3 (Figure 6(f)).
Additionally, the results from the TISIDB platform showed
the relationship between PIGR levels and other immune-
associated signatures, including immuno inhibitors and
cytokine receptors. Figure 7(a) conveyed the correlation
between the immuno inhibitors and the expression of PIGR
in CRC patients. �e top three immuno inhibitors closely
related to PIGR were galectin 9 (LGALS9), LAG3, and
CD244 (Figure 7(b)). In addition, the correlation between
PIGR and cytokine receptors has been displayed in
Figure 7(c). And the top three receptors positively associated
with PIGR expression were C-X-Cmotif chemokine ligand 3
(CXCL3), C-X-Cmotif chemokine ligand 17 (CXCL17), and

C–C motif chemokine ligand 28 (CCL28) (Figure 7(d)).
Taken together, these �ndings suggest that aberrantly
expressed PIGR is involved in the immune regulation of
CRC patients.

4. Discussion

Numerous studies have indicated the important role of
exosomes in the occurrence and development of human
cancers [28]. In this article, we elucidated the downregulated
exosome-associated gene, PIGR, in the prognosis and im-
mune regulation of CRC patients. Using the Kaplan–Meier
plotter database, we found that high expression of PIGR was
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associated with a better prognosis in CRC patients. Gene
enrichment analysis indicated that the coexpressed genes of
PIGR were involved in the regulation of the immune mi-
croenvironment and fatty acid metabolism in CRC.

Exosomes are small extracellular vesicles secreted by
almost all types of cells, including tumor cells. As important
mediators of intercellular communication, exosomes pro-
vide an alternative cargo-handling mechanism to maintain
homeostasis and cell survival [29]. Exosomes enhanced or
inhibited certain important mediators and changed the
tumor microenvironment, thereby altering the occurrence
and development of different types of tumors [30–32]. Some
differentially expressed RNAs and proteins in exosomes
have been identified as potential biomarkers linked to CRC
initiation and progression. Wang et al. considered that CRC
cell-derived exosomal miR-146a-5p and miR-155-5p could
activate the JAK2-STAT3/NF-κB signaling pathways,
thereby enhancing the invasive ability of CRC cells [33].
Studies have found that in human CRC cells, exosomal Nrf2
plays a pivotal role in oxaliplatin resistance [34]. 'us,
further studies into the underlying mechanisms of exosomes
might be beneficial for the treatment management of CRC
patients. Accordingly, our study aimed to explore the
prognostic values of PIGR in CRC patients, and we

concluded that a high expression level of PIGR was asso-
ciated with a good prognosis.

Nowadays, the roles of aberrant PIGR in tumors remain
controversial, which might be due to the tumor heteroge-
neity or the different underlying mechanisms. In hepato-
cellular carcinoma, PIGR-loaded extracellular vesicles could
activate Akt/GSK3β/β-catenin signaling cascades, driving
cancer stemness, tumorigenesis, and metastasis [35].
Ohkuma et al. have assessed the prognostic value of PIGR in
pancreatic cancer patients after surgical resection and de-
termined that the overexpression of PIGR was correlated
with poor prognosis in pancreatic cancer [36]. 'rough
transcriptomic sequencing analysis, Bao et al. demonstrated
that PIGR was downregulated in breast cancer. PIGR
overexpression could suppress cell proliferation and adhe-
sion in breast cancer cells [37]. In this paper, the bio-
informatics and IHC results revealed the downregulated
exosome-related PIGR in CRC tissues.

Immunotherapy is a novel anticancer method in the
clinic. 'e combination of traditional treatment methods
with immune checkpoint inhibitors could provide prom-
ising treatment strategies for cancer patients, including CRC
[38]. Numerous studies have shown that immunotherapy
can inhibit the growth of colorectal cancer cells and prolong
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Figure 7: 'e roles of PIGR in the regulation of immunoinhibitors and cytokine receptors in CRC patients. (a) 'e diagraph showing the
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the survival period of patients [39–41]. In this paper, the
correlation between PIGR and immune-associated signa-
tures was explored by comprehensive bioinformatic tech-
nologies. PIGR was positive with tumor-infiltrating of
B cells, '17 cells, T cells, and '2 cells. Meanwhile, PIGR
had a negative correlation with tumor-infiltrating NK cells
and Tcm cells. Studies have demonstrated that immune
checkpoint inhibitors have been regarded as potential
strategies for enhancing immune responses in patients with
CRC [42]. We found that the expression of PIGR had
a positive relationship with several immune checkpoints,
including IDO1, CD274, PDCD1, CTLA4, and LAG3. 'ese
above results implied that PIGR was strongly associated with
immune responses and immune regulation, implying that
PIGR could be a novel prognostic and immune-related
biomarker of CRC patients.

5. Conclusion

Overall, this paper reported that the downregulated
exosome-associated gene PIGR was significantly associated
with a good prognosis in CRC patients. Aberrant PIGR
expression might participate in the regulation of immune
response and fatty acid metabolism. 'erefore, we identified
PIGR as a novel, valuable prognostic and immune-related
biomarker for patients with CRC.
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