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Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in
carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding
RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone
modifiers and are involved in a variety of cancers. +erefore, overexpression or downregulation of microRNAs can alter cell fate
and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in
various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases,
kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations
underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection
approaches that allow better management of patients or monitoring of treatment response.
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1. Introduction

Epigenetics is defined as stable and heritable alterations in
gene expression and cellular function without changes to the
original DNA sequence and can still be passed on from
generation to generation [1]. +is term was first used to
describe gene-environment interactions that lead to mani-
festations of various phenotypes during development. Epi-
genetic changes are perceived to be key contributors to cell
differentiation and acquisition of different cell fates with the
background of the same genome. DNAmethylation, histone
modification, and RNA modifications are crucial compo-
nents of epigenetics [2–4].

DNA methylation is defined as the addition of methyl
groups (CH3) on cytosine residues of CpG islands, especially
those located in the gene promoter region [2, 5]. For in-
stance, the promoter regions of microRNA (miR) 101-2,
miR-126, miR-148a, miR-152, and miR-185-5p are hypo-
methylated in prostate cancer [6], and the promoter region
of miR-200b is hypermethylated in the metastatic phase of
the same disease, leading to increased and decreased gene
expression [7].

Histone modification is a post-translational rearrange-
ment of histone proteins driven by methylation, acetylation,
phosphorylation, ubiquitylation, and sumoylation [8]. RNA
modification and noncoding RNA-associated gene silencing
are involved in epigenetics by DNA methylation and/or
histone modifications in two ways: (1) changing the struc-
ture of RNA and interference with RNA and proteins in-
teractions and (2) inciting subsequent events by altered
RNA-binding proteins (RBPs) [4].

+ese regulatory mechanisms can cause gene expression
to be turned on or off [8]. Several studies have suggested that
such modifications may play a role in inducing various
disorders, most notably cancer [9]. Aberrant regulation of
proteins or enzymes that regulate these modifications is a
common feature in most cancers [9]. Among the multiple
gene expression events regulated by these enzymes, the most
pivotal genes controlling the cell cycle are refined into
oncogenes or tumor suppressors [10].

MicroRNAs (miRNAs and miRs) are small noncoding
RNAs with a length of approximately 22 nucleotides [11]. In
the nucleus, they are first transcribed as 70 base-pair long
double-stranded pri-miRNAs containing stem-loop struc-
tures [11]. +en, they undergo a cascade of processes in
which they are converted to pre-miRNAs and transmitted to
the cytoplasm, where they are cleaved to form single-
stranded mature miRNAs [11]. With the cooperation of the
RNA-induced silencing complex (RISC), mature miRNAs
can seek and bind to complementary sequences in the target
mRNA [11]. Depending on the exact or imprecise miRNA-
mRNA interactions, mRNA eradication or translational
hindrance will occur [11].

Cancer development is a multistep process, and genetic
alterations in every step are manifested by significant dys-
regulation of proteins involved in cell cycle regulation,
which may have been triggered by miRNAs [11, 12].

miRNAs can accomplish this by not only directly blocking
the expression of the targeted genes but also by regulating
the expression of epigenetic modifiers as well as histone
methylases that play role in chromosomal structural changes
[12, 13]. Hence, microRNAs can also participate in regu-
lating epigenetic mechanisms in cancer, and their abnormal
expression profiles have been frequently indicated in
malignancies.

+is review will discuss histone modifications and the
microRNA-mediated regulation of the histone modification
machinery in cancer.

2. Alterations of Histone
Modification in Cancer

Histones are lysine–arginine abundant proteins involved in
chromosome condensation, consisting of four core types
(H2A, H2B, H3, and H4) located in the bead of the nu-
cleosome, along with two linker histones (H1/H5). +e
amino and carboxy termini of these proteins may undergo
modifications, such as methylation, acetylation, phosphor-
ylation, sumoylation, ubiquitination, and ADP-ribosylation,
which are pivotal for transcriptional regulation.+e addition
of acetyl group on lysine residues of the H3 and H4 classes of
histones results in a lightly packed chromosome structure
and transcription activation [14]. Lysine residues can be
mono-, di-, or trimethylated although arginine residues can
only be mono- or dimethylated. Functioning like a double-
edged sword, histone methylation may lead to the devel-
opment of either heterochromatin or euchromatin struc-
tures depending on factors such as the number of methyl
groups, type of histone, and amino acid residues [15]. +e
heterochromatin formation that is followed by H3 three
methylation at lysine 9 (i.e., H3K9me3) inclines towards
transcriptional inactivation. However, histone H3 Lys-4
methylation (i.e., H3K4me) may lead to a transcriptional
activation change [14]. Moreover, phosphorylation that
occurs on serine residues, especially on H1 and H3 histones,
can lead to gene expression induction. Ubiquitination
usually takes place on H2A and H2B proteins and is cor-
related with activation although ADP-ribosylation is asso-
ciated with chromosomal condensation [16].+e outcome of
the ubiquitin-like modifier (SUMO) has been termed his-
tone sumoylation and is related to transcription inactivation.
Table 1 summarizes the above effects of different histone
modifications and their impact on transcriptional
regulation.

Given that histone modification affects gene transcrip-
tion and appears early in tumorigenesis, considerable re-
search has been carried out on the role of these alterations in
malignancies. H4K16 hypoacetylation has been identified in
breast, colon, lung, and liver cancers as well as in medul-
loblastomas [17, 18]. +is abatement in acetylation, together
with H4K20me3 loss and co-occurrence in repetitive se-
quences with decreased DNA methylation and H4k20 tri-
methylation, has been reported in many cancers such as
breast and lung cancer [17, 18]. Besides lysine 20 and 16 H4,
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alterations of other lysine residues of this histone are
prominent in malignancies. For instance, H4k5 and H4K8
hyperacetylation along with H4K12 deacetylation has been
demonstrated in lung cancer [15]. As stated in a meta-
analysis study, elevated levels of H3K4me3 and decreased
levels of H3K4me2 are indicators of a poor outcome in
cancer patients [19]. Other lysine residues of the H3 shift
have been found to be elevated in tumorigenesis. For ex-
ample, loss of H3K4me2, H3K18ac, H3K9ac, and H3K9me3
is related to lung cancer recurrence and poor prognosis [15].
+ese modifications are located in promoters of transcribed
genes and are essential for transcriptional suppression [20].
Moreover, H3K9me3 could serve as prognostic and staging
estimation biomarkers in gastric cancer [21]. Loss of
H2Bub1 is found in the development of numerous cancers as
well as breast, lung, and colorectal cancer [22]. In addition,
extensive phosphorylation of H2Bser32 has been shown in
skin cancer cells [23].

All of these modifications are involved in malignancy
induction by revising tumor suppressors or oncogene ex-
pression. H3 and H4 hypoacetylation and hypermethylation
lead to p21WAF1 tumor suppressor inactivation [17]. Loss
of H3K9ac, H3K4me2, and H3K9me3 has been linked to an
increase in oncogene levels, such asMEIS1 andHOXA9 [21].
Increased and decreased methylation of H3K9 and H3K4,
respectively, have been associated with p16INKA and
p14ARF tumor suppressor gene reductions in some neo-
plasia [21].

Furthermore, dysregulation of histone-modifying en-
zymes in cancer and their distinct expression profile in
tumor cells compared to normal cells have been identified in
some studies [24]. For example, histone deacetylase (HDAC)
reduction may be correlated with lung cancer promotion.
However, HDAC overexpression in colon, prostate, and
gastric cancers can result in blockage of tumor suppressor
genes [15, 25]. EZH2, an H3K27 trimethylation enzyme,
raises in breast carcinoma [15]. A histone methyltransferase
upregulation along with histone demethylase down-
regulation has been found in prostate tissues. Moreover,
HDM (histone demethylase) high expression levels have
been reported in the liver, while HDM and HMTare largely
decreased in the brain. By contrast, elevated levels of HDMs
have been found in prostate and brain malignant cells [26].

3. Regulation of miRNA Expression by
Histone Modifiers

miRNAs are involved in the regulation of biological pro-
cesses such as development, growth, differentiation, pro-
liferation, and apoptosis [27]. Alterations in miRNA
function have been reported in all diseases and conditions,
markedly in cancer [27]. Furthermore, miRNA expression
profiling can provide prognostic and treatment monitoring
biomarkers, as well as indicators of recurrence [27].+ey can
target cellular checkpoint genes and genes involved in mi-
tosis division and apoptosis. For this reason, they are typ-
ically divided into two classes, onco MIRs and tumor
suppressor MIRs [28].

3.1. OncoMIRs. Onco MiRs (oncomir) switch tumor-linked
operations, such as unlimited cell growth, transformation,
and metastasis. miR-21 is an oncomir known to be elevated
in many cancers and drives cell proliferation. A sort of H3K4
demethylase, known as RBP2, can decrease miR-21 levels
followed by decreased H3K4 trimethylation of its promoter
and could act as a novel treatment in chronic myeloid
leukemia cells [29]. Overexpression of miR-224 oncomir is
regulated by H3K9 and H3K14 acetylation in hepatocellular
carcinoma [30]. +e miR-155 promoter will alter hetero-
chromatin as a result of H2A and H3 deacetylation carried
out by BRCA1 and HDAC2, resulting in increased cell
growth and proliferation [31].

3.2. Tumor Suppressor miRs. miR-29 is known as a tumor
suppressor gene because of its function in preventing cell
growth and proliferation. H3K27 trimethylation is accom-
plished by recruiting YY1 and Ezh2.+is change is related to
the miR-29 promoter and could repress its expression in
skeletal muscle cells. Aberrant downregulation of miR-29 by
raised H3K27me3 is found in rhabdomyosarcoma [32].
Furthermore, induction of H3K27me3 and histone acety-
lation results in reduced levels of miR-31 [20]. miR-34a, a
tumor suppressor gene governing apoptosis and cell cycle
obstruction, can be arrested due to H3K27 trimethylation of
its promoter by EZH2 in pancreatic ductal adenocarcinoma
[33]. miR-125b has a tumor suppressor function in breast
cancer, and its expression can be silenced through H3K9 and
H3K27 trimethylation in breast cancer cell lines since miR-
125b-1 promoter is located in a CpG island [34]. miR-30
family members classified as tumor suppressors are
downregulated in a variety of malignancies. In esophageal
squamous cell carcinoma cells, miR-30c expression is
inactivated as a result of H2B and H4 histone deacetylation
at the promoter region of miR-30c [35]. Downregulation of
miR-15a, miR-16, and miR-29b in chronic lymphocytic
leukemia is mediated by HDACs [36]. Other examples of
these miRNAs are given in Table 2.

4. Epi-miRNAs and Histone Modification
Machinery in Cancer

+e epigenetic profile in numerous cancers is altered by the
action of miRNAs [49, 50]. +ese small noncoding RNAs
can target different enzymes involved in histone modifica-
tions. In the following sections, we discuss these miRNAs in
more detail according to their enzyme targets.

4.1. miRNA-Mediated Regulation of Histone
Acetyltransferases. +ere are numerous studies demon-
strating miRNA-mediated regulation of different histone
acetyltransferases including EP300, PCAF, TIP60, and
hCLOCK (Table 3). +e polycistronic miR-106b-25 cluster,
which consists of miR-106b, miR-93, and miR-25, is asso-
ciated with proto-oncogenic functions and uncontrolled
growth. As Zhou et al. suggested in their research, this
oncoMIR cluster can target EP300, a histone acetyl-
transferase that modifies chromatin remodeling, cellular
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growth, and differentiation processes. Upregulation of the
miR-106b-25 cluster in breast cancer leads to metastatic
alterations by EP300 blockage [51]. PCAF or p300/CBP-
associated factor is another histone acetyltransferase upre-
gulated in prostate cancer cells, and its expression level is
decreased through miR-17-5p binding [52]. miR-22, ele-
vated in most cancers, can target and repress a lysine ace-
tyltransferase named TIP60 [53]. Accordingly, miR-22
suppression may influence treatment in breast cancer cell
lines by reducing metastasis [53]. hCLOCK, a target of miR-

124, is significantly decreased in response to the elevated
levels of miR-124 in a human colorectal cancer cell line
known as LOVO cells [54].

4.2. miRNA-Mediated Regulation of Histone Deacetylases.
HDACs are classified into four classes including classes I–IV
[55]. +ere has been accumulating evidence of miRNA-me-
diated regulation of these enzymes (Table 4), and the following
section describes these according to their classifications.

Table 2: Regulation of miRNA expression by histone modifiers.

miRNAs Cancer type Decrease/
increase Type of histone modification Reference

miR-127 Primary human tumors Decrease Increased histone H3 acetylation and H3-K4
methylation [37]

miRNA-1260b Prostate cancer cells Increase Increased H3K9-me2, H3K9me3 and H3K27me3 [38]

miR-124a Acute lymphoblastic
leukemia Decrease Decreased levels of 3mk4H3 and AcH3 and increased

levels of 2mK9H3, 3mK9H3, and 3mK27H3 [39]

let-7e, miR-1246, miR-1826,
and miR-361-5p Breast cancer Decrease Decreased H3K4me3 [40]

miR-615 Prostate cancer Increase Increased H3K9 acetylation [41]
miR-29 B-cell lymphomas Decrease Increased histone deacetylation and trimethylation [42]
miR-15a, miR-16, and miR-
29b

Chronic lymphocytic
leukemia Decrease Increased histone deacetylation [36]

miR-15a and miR-16 Non-Hodgkin B-cell
lymphomas Decrease Increased histone deacetylation (HDAC3) [43]

miR-31 Breast cancer Decrease Increased methylation [44]
miR-31 Adult T-cell leukemia Decrease Increased H3K9 and H3K27 methylation [45]

miR-23a Human leukemic
Jurkat cells Decrease Increased deacetylation (HDAC4) [46]

miR-139-5p, miR-125b, miR-
101, let-7c, and miR-200b

Hepatocellular
carcinoma Decrease Increased histone H3 lysine 27 (H3K27)

trimethylating (EZH2) [47]

miR-449 Hepatocellular
carcinoma Decrease Increased histone deacetylation (HDAC1–3) [48]

miR-224 Hepatocellular
carcinoma Increase Increased histone acetyltation (Ep300) [30]

miR-155 Breast cancer Increase Decreased H2A and H3 deacetylation (HDAC) [31]

Table 3: miRNA-mediated regulation of histone acetyltransferases.

Target gene miRNAs Cancer tissue or cell line Reference
EP300 miR-106b, miR-93, and miR-25 Breast cancer [51]
PCAF miR-17-5p Prostate cancer [52]
TIP60 miR-22 Breast cancer cell lines [53]
hCLOCK miR-124 Colorectal cancer cell line [54]

Table 1: Modified residues of histones, different histone modifications, and their impact on transcriptional regulation.

Modified residues of histones Histone modification Transcription regulation
Lysine Acetylation Activation
Lysine me1, me2, and me3 Methylation (lysine) Repression/activation
Arginine me1, arginine me2a, and arginine me2s Methylation (arginine) Repression/activation
Serine, threonine, and tyrosine Phosphorylation Activation
Lysine Ubiquitination Activation
Glutamic ADP-ribosylation Repression
Lysine Sumoylation Repression
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4.2.1. Class I Rpd3-Like Proteins (HDAC1, HDAC2, HDAC3,
and HDAC8). +e upregulation of HDAC1 results in un-
controlled growth and cisplatin-resistant in ovarian cancer
cells. miR-34a suppresses this process by targeting HDAC1
[56]. Moreover, an HDAC1 decrease through the action of
miR-34a can overcome treatment resistance in breast cancer
[67]. miR-145 is a tumor suppressor, and its inactivation can
increase HDAC2 levels and lead to the development of
hepatocellular carcinoma [57]. Kim et al. demonstrated that
miR-326 inhibition may give rise to HDAC3 upregulation
followed by a response to anticancer drugs in hepatoma and
melanoma-related cell lines [58]. As demonstrated by Wang
et al., the expression of miR-216b, which controls HDAC8, is
downregulated in gastric adenocarcinoma [68].

4.2.2. Class II Hda1-Like Proteins (HDAC4, HDAC5,
HDAC6, HDAC7, and HDAC9). Alterations in HDAC4
expression occur via several miRNAs and vary based on
cancer type. Amodio et al. found that miR-29b/HDAC4
serves as an epigenetic loop in multiple myeloma and the
induction of miR-29b expression could repress HDAC4 and
result in cell survival and reduced malignancy in myeloma
[59]. However, Ahmad et al. reported that induction in miR-
10b levels leads to the tamoxifen-resistance phenotype due
to loss of HDAC4 expression in ER-positive breast cancer
cells [60]. Moreover, in another study carried out on ful-
vestrant-resistant breast cancer cells, it was found that miR-
22 overexpression inhibits HDAC4 and promotes cell
proliferation [61]. One observation has already drawn at-
tention to the paradox in HDAC4 function in breast tu-
morigenesis since its suppression through miR-125a-5p

inhibits tumor progression [62]. +e downregulation of this
miRNA, which targets HDAC5 in breast cancer cells, is
related to the blockade of cancer progression [63]. Liu et al.
found that the expression level of HDAC5 was reduced by
binding of miR-589-5p to the 3’ untranslated region (UTR)
of HDAC5 in non-small-cell lung cancer (NSCLC) cells [64].
HDAC6 is downregulated via miR-221, which is upregulated
in liver cancer cells [65]. Diminished levels of miR-489
induce metastatic processes of gastric cancer cells and block
HDAC7 expression [66]. +e levels of miR-34a may reflect
the tumor-suppressive effect, and its transcription is abol-
ished in cancer stem cells [67]. miR-34a targets HDAC7 and
thereby contributes to the regulation of therapy resistance in
breast cancer [67]. It has been shown that HDAC7-mediated
deacetylation of a specific lysine residue of a heat shock
protein, namely HSP70 K246, contributes to the augmen-
tation of treatment resistance, in which miR-34a may exert a
suppressive role through its downstream effectors HDAC7
[67]. miR-377 depression is found in oral squamous cell
carcinoma, influencing the expression of HDAC9 and tumor
invasion [69].

4.2.3. Class III Sir2-Like Proteins (SIRT1, SIRT2, SIRT3,
SIRT5, SIRT6, and SIRT7). SIRT is a family of histone
deacetylase compromised seven proteins and divided into
four classes. Class I includes SIRT1, SIRT2, and SIRT3. Class
II consists of SIRT4. SIRT5 belongs to class III, and SIRT6
and SIRT7 are class IV members [80]. Being elevated in
breast cancer, SIRT1 plays a significant role in this disorder
[62]. Several miRNAs interact with SIRT1. miR-34a, a direct
regulator of SIRT1, is decreased in breast cancer [62]. As

Table 4: miRNA-mediated regulation of histone deacetylases.

Classification Target gene miRNAs Cancer tissue or cancer cell line Reference

Class I Rpd3-like proteins
HDAC1 miR-34a Ovarian cancer [56]
HDAC2 miR-145 Liver cancer [57]
HDAC3 miR-326 Hepatoma and melanoma-related cell lines [58]

Class II Hda1-like proteins

HDAC4 miR-29b Multiple myeloma [59]
HDAC4 miR-10b Breast cancer cells [60]
HDAC4 miR-22 Breast cancer cells [61]
HDAC4 miR-125a-5p Breast cancer [62]
HDAC5 miR-125a-5p Breast cancer [63]
HDAC5 miR-589-5p Non-small-cell lung cancer cells [64]
HDAC6 miR-221 and miR-221 Liver cancer cells [65]
HDAC7 miR-489 Gastric cancer cells [66]
HDAC7 miR-34a Breast cancer [67]
HDAC8 miR-216b Gastric adenocarcinoma [68]
HDAC9 miR-377 Oral squamous cell carcinoma [69]

Class III Sir2-like proteins

SIRT1 miR-34a Breast cancer [70]
SIRT1 miR-34a Breast cancer stem cell [71]
SIRT1 miR-200a Breast cancer [72]
SIRT1 miR-590-3p Breast cancer cells [73]
SIRT1 miR-22 Breast cancer tissues [74]
SIRT2 miR-150 Non-small-cell lung cancer (NSCLC) cells [75]
SIRT3 miR-708-5p and miR-708-5p Pancreatic ductal adenocarcinoma [76]
SIRT5 miR-299-3p Hepatocellular carcinoma (HCC) cells [77]
SIRT6 miR-186 Lung cancer [78]
SIRT7 miR-3666 NSCLC [79]
SIRT7 miR-3666 Breast cancer cell [64]
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suggested by Li et al., induction of miR-34a along with 5-FU
therapy has significant antitumor effects in breast malig-
nancies [70]. In addition, Eades et al. demonstrated a di-
minished level of miR-34a and an increased level of SIRT1 in
CD44+/CD24− breast cancer stem cells [71]. Moreover,
SIRT1 forms a negative feedback loop with miR-200a, with
overexpression of SIRT1 being related to decreased levels of
miR-200a in patients suffering from breast cancer [72].
Reduced levels of miR-590-3p are associated with upregu-
lation of SIRT1 followed by hyperacetylation of p53 and
increased levels of BAX and p21, leading to malignant
characteristics in breast cancer cells [73]. It has been shown
that downregulation of miR-22 is accompanied by over-
expression of SIRT1 in breast cancer tissues [74]. Down-
regulation of SIRT2 as a result of miR-150 augmentation has
been observed in NSCLC cells, potentially serving as a
survival element through blocking the AKT signaling
pathway in this cell line [75]. SIRT3 is fine-tuned by miR-
708-5p that is upregulated in pancreatic ductal adenocar-
cinoma [76]. Dang et al. confirmed that miR-299-3p,
downregulated in hepatocellular carcinoma cells [77], exerts
tumor-suppressive roles by modifying growth and metas-
tasis through SIRT5 inactivation [77]. SIRT6 is a direct target
of miR-186, and Ruan and colleagues demonstrated that
miR-186 upregulation could serve as a treatment target in
lung cancer [78]. miR-3666 inhibits breast cancer cell
proliferation by targeting SIRT7. Also, overexpression of
SIRT7 in response to downregulation of miR-3666 has been
observed in NSCLC and breast cancer cells [79, 81].

4.3. miRNA-Mediated Regulation of Histone
Methyltransferases. +ere are two major types of histone
methyltranferases termed histone lysine N-methyl-
transferases and histone arginine N-methyltransferases. +e
following sections discuss the miRNA-mediated regulation
of both types.

4.3.1. miRNA-Mediated Regulation of Histone Lysine
Methyltransferases. Lysine methyletransferases (KMTs)
are divided into groups based on the site of methyl group
addition [82]. In this section, we discuss miRNA-medi-
ated regulation of histone lysine methyltransferases
considering their classification. +e data summary is given
in Table 5.

(1) Suv39H1, Suv39H2, SETDB1, and G9A/EHMT2 (H3K9).
miR-125a-5p, a recognized prognostic factor in gastric
cancer, regulates SUV39H1 (KMT1A) and prevents angio-
genesis [83]. +e downregulation of this miRNA has been
correlated to SUV39H1 upregulation in hepatocellular
carcinoma cells [84]. In addition, miR-122 is another reg-
ulator of SUV39H1 in hepatocellular carcinoma cells [85].
miR-675 along with PKM2 leads to decreased levels of
SUV39H2 and cancer progression in liver stem cells via
c-myc upregulation [86]. Low levels of miR-212 have been
linked to lung cancer and can target G9a/KMT1C [87]. Wu
et al. identified SETDB1 upregulation as a target of miR-381-
3p in breast malignancies [88].

(2) KMT2A (MLL1). KMT2A is a direct target of hsa-miR-
22-3p, and hsa-miR-22-3p upregulation has been found in
the metastatic form of prostatic cancer [89].

(3) NSD1 and ASH1L (H3K36). miR-142 could inhibit
ASH1L (KMT2H), and its downregulation leads to increased
levels of ASH1L in leukemia [90]. Moreover, Colamaio et al.
described the same finding in thyroid tumors [91]. KMT3B
(NSD1) is one of the miR-181a targets, and the oncogenic
role of hsa-miR-181a suggests it could be a prognostic
biomarker in endometrial cancer [92].

(4) SMYD3 (H4K5). miR-124 acts as a SMYD3 (KMT3E)
expression modifier, and its decreased levels that result in
cellular invasive criteria have been shown in intrahepatic
cholangiocarcinoma cells [93]. miR-346 downregulation
induces SMYD3 upregulation in hepatocellular carcinoma
and could be a poor prognostic factor [94].

(5) hDOT1L (H3K79). DOT1L (KMT4) is blocked by miR-
133b. miR-133b is a tumor suppressor, and low levels cause
chemoresistance in colorectal cancers [95].

(6) SET8 (H4K20). SET8 is a histone methyltransferase that
adds one methyl group on lysine 20 of H4. Its expression can
be switched by miR-502, and it has oncogenic effects and
contributes to cell growth and migration. +is oncogene
expression can be increased due to reduced levels of miR-502
in many malignancies including breast cancer, ovarian
cancer, small-cell lung cancer, colorectal cancer, non-
Hodgkin’s lymphoma, esophageal squamous cell carcinoma,
clear cell renal cell carcinoma, and hepatocellular carcinoma
[96, 98, 102, 103]. For these reasons, it has been considered
as a potential target for cancer therapy. Also, a single nu-
cleotide polymorphism (SNP; rs16917496) located at the
binding sequences of miR-502 may affect SET8 expression
and has been associated with the risk of these malignancies
[97, 99–101, 104, 124]. Moreover, this histone methyl-
transferase could be regulated with miR-7, and its sup-
pression prevents cell invasion in breast cancer [105].

(7) EZH1 and EZH2 (H3K27). Elevation of KMT6B (EZH1)
caused by miR-17-5p downregulation is related to erlotinib
resistance in NSCLC [106]. miR-765 is another regulating
element of EZH1, and its downregulation is associated with
aggravation of breast cancer [107]. Additionally, a study by
Hu J. et al. showed that miR-93 is a key regulator of EZH1 as
well as JAK1, STAT3, AKT3, SOX4, and HMGA2 in breast
cancer stem cells [108]. In a study of prostate cancer stem
cells, Lai et al. reported miR-574-5p depletion along with
EZH1 and REL increased levels [109].

Multiple microRNAs can alter EZH2 expression. Effects
of miR-101 on EZH2 have been observed in various cancers
[125], and downregulation of this microRNA and elevation
of EZH2 have been found in NSCLC tumor tissues, prostate
cancer, and renal cancer [110–112]. According to a study by
Konno et al., the microRNA-101-EZH2/MCL-1/FOS axis
may be a target for endometrial cancer treatment [113]. miR-
26a as an apoptosis inducer is another regulator of EZH2,
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and its diminished levels of this miRNA have been found in
lung cancer, rhabdomyosarcoma, and prostate cancer
[114, 116, 117]. It plays a role in Burkitt lymphoma and
prostate cancer prevention by targeting c-myc, a tran-
scription factor of EZH2 [115, 117], and is involved in
nasopharyngeal carcinoma inhibition by mitigating cyclin
D3, E2, CDK4, and CDK6 along with overexpression of the
CDK inhibitors p14ARF and p21CIP1 [118]. miR-137
downregulation is related to EZH2 upregulation in hepa-
tocellular cell carcinoma and miR-137 inhibits hepatocel-
lular cell carcinoma progression by EZH2 suppression [119].
In addition, miR-124 manifests the same action on EZH2 in
cancer cell lines [120]. Liu and co-workers demonstrated
miR-138 deficiency can give rise to cellular metastasis via
targeting VIM, ZEB2, and EZH2 in squamous cell carci-
noma cell lines [121]. A study by Koumangoye et al. im-
plicated EZH2 and HDAC3 as indirect targets of miR-31 in
esophageal cancer cells as their upregulation was associated

with raised levels of miR-31 by directly regulating SOX4,
which then acts on EZH2 and HDAC3 [125]. miR-98 is a key
regulator of EZH2 and, according to the investigation of Liu
et al., treatment of ovarian cancer stem cells with an ex-
pression plasmid containing EZH2-targeted miR-98 blocked
cell growth, and ameliorated cell cycle status via increasing
p21CIPI/WAF1 and E2F1 tumor suppressors and down-
regulating c-Myc and CDK2/cyclin E complex proto-on-
cogenes [126].

4.3.2. miRNA-Mediated Regulation of Histone Arginine
Methyltransferases. Protein arginine methyltransferases
(PRMTs) are involved in histone post-translational meth-
ylation [126], and multiple investigations have found
miRNA-mediated regulation of these enzymes in various
cancers (Table 6). For example, an investigation by Li et al.
found that diminished miR-503 levels were associated with

Table 5: miRNA-mediated regulation of histone lysine methyltransferases.

Site of methyl group addition Target gene miRNAs Cancer tissue or cancer cell line Reference

H3K9

SUV39H1 (KMT1A) miR-125a-5p Gastric cancer [83]
SUV39H1 (KMT1A) miR-125b Hepatocellular carcinoma cells [84]
SUV39H1 (KMT1A) miR-122 Hepatocellular carcinoma cells [85]
SUV39H2 (KMT1B) miR-675 Liver stem cells [86]

G9a (KMT1C) miR-212 Lung cancer (NSCLC) [87]
SETDB1 (KMT1E) miR-381-3p Breast cancer [88]

H3K4 (MLL1) Mll1 (KMT2A) miR-22-3p Prostatic cancer [89]

H3K36
ASH1L (KMT2H) miR-142 Leukemia [90]
ASH1L (KMT2H) miR-142 +yroid tumors [91]
KMT3B (NSD1) miR-181a Endometrial cancer [92]

H4K5 SMYD3 (KMT3E) miR-124 Cholangiocarcinoma [93]
SMYD3 (KMT3E) miR-346 Hepatocellular carcinoma [94]

H3K79 DOT1L (KMT4) miR-133b Colorectal cancer [95]

H4K20

SET8 (KMT5A) miR-502 Breast cancer [96]
SET8 (KMT5A) miR-502 Ovarian cancer [97]
SET8 (KMT5A) miR-502 Non-small-cell lung cancer [98, 99]
SET8 (KMT5A) miR-502 Colorectal cancer [100]
SET8 (KMT5A) miR-502 Non-Hodgkin’s lymphoma [101]
SET8 (KMT5A) miR-502 Esophageal squamous cell carcinoma [102]
SET8 (KMT5A) miR-502 Clear cell renal cell carcinoma [103]
SET8 (KMT5A) miR-502 Hepatocellular carcinoma [104]
SET8 (KMT5A) miR-7 Breast cancer [105]

H3K27

KMT6B (EZH1) miR-17-5p NSCLC [106]
KMT6B (EZH1) miR-765 Breast cancer [107]
KMT6B (EZH1) miR-93 Breast cancer stem cells [108]
KMT6B (EZH1) miR-574-5p Prostate cancer stem cells [109]
KMT6 (EZH2) miR-101 NSCLC [110]
KMT6 (EZH2) miR-101 Prostate cancer [111]
KMT6 (EZH2) miR-101 renal cancer [112]
KMT6 (EZH2) miR-101 Endometrial cancer [113]
KMT6 (EZH2) miR-26a Lung cancer [114]
KMT6 (EZH2) miR-26a Burkitt lymphoma [115]
KMT6 (EZH2) miR-26a Rhabdomyosarcoma [116]
KMT6 (EZH2) miR-26a Prostate cancer [117]
KMT6 (EZH2) miR-26a Nasopharyngeal carcinoma [118]
KMT6 (EZH2) miR-137 Liver cancer [119]
KMT6 (EZH2) miR-124 Hepatocellular cell carcinoma [120]
KMT6 (EZH2) miR-138 Squamous cell carcinoma cell lines [121]

KMT6 (EZH2) and HDAC3 miR-31 Esophageal cancer [125]
KMT6 (EZH2) miR-98 Ovarian cancer stem cells [126]
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PRMT1 elevation in hepatocellular carcinoma [127].
CARM1 elevation improves cell growth in colorectal ma-
lignancies. miR-195 is an antitumor element and increases
radiosensitivity in colorectal cancer cells as a result of
PRMT4/CARM1 targeting [128, 129]. miR-424-5p is an-
other regulator of CARM1. Wang and his colleagues indi-
cated its low levels in NSCLC tissues. Also, they stated that
high levels of miR-424-5p could suppress CARM1 followed
by decreasing tumor development [130]. Upregulation of
PRMT5 is related to the impaired expression of miR-92b and
miR-96 in lymphoid cancer cell lines and leads to ST7 in-
activation by H3R8 and H4R3 methylation [131]. miR-1266
overexpression appears to decrease PRMT5 levels and
modify cellular growth and proliferation, thus suggesting its
use as a novel therapeutic target in prostate cancer [132].
PRMT9 expression is shifted by direct binding of miR-543 to
its 3ʹ-UTR and increased levels of this miRNA have been
associated with downregulation of PRMT9 and osteosar-
coma cell growth [133].

4.4. miRNA-Mediated Regulation of Histone Demethylases.
+ere are multiple histone demethylase enzymes divided
into lysine and arginine methyltransferase groups. Histone
lysine demethylases are classified into KDM1-8 families
[134]. miRNA-mediated regulation of histone demethylases
in cancer is described in the following sections and sum-
maries shown in Table 7.

4.4.1. KDM1 (LSD1). LSD1 is a histone demethylase, con-
trolled by miR-137 in a negative feedback loop in endo-
metrial cancer [135]. miR-302 has been shown to be
downregulated in hepatocellular carcinoma cells, and this
miRNA could decrease LSD1 (AOF2) levels resulting in drug
sensitivity improvement and c-myc suppression [136]. By
contrast, Bourguignon et al. reported miR-302a and miR-
302b upregulation and AOF2 suppression in mouse tumors
and human head and neck squamous cell carcinomas [137].
Likewise, miR-302a overexpression along with AOF2,
BCRP, and permeability glycoprotein 1 decrease has been
found in prostate cancer [138].

4.4.2. KDM2 (FBXL10 and KDM2B). FBXL10 is a direct
target of miR-146b, and downregulation of this miRNA in
later stages of epithelial ovarian cancer has been linked to
FBXL10 increase that, in turn, induces metastasis. However,
in the early stage of the disease, miR-146b reduction results
in overexpression of cyclin D1 and cell proliferation [139].
Hong and co-authors reported miR-448 overexpression in

gastric cancer.+is miRNA binds to KDM2B and suppresses
its expression that results in myc induction [140]. KDM2B is
upregulated in cervical cancer cell lines and downregulates
miR-146a-5p expression that, in turn, increases c-myc levels
[141].

4.4.3. KDM3 (JMJD1A). JMJD1A is a direct target of miR-
627, and its low expression is related to growth and dif-
ferentiation inhibition [142]. LMP1 and LMP2A induce
miR-155 upregulation followed by JMJD1A suppression in
nasopharyngeal carcinoma cases with poor prognosis [143].
+ere is a loop between JMJD1A, EZH2, and let-7c in
NSCLC cells, and inhibition of JMJD1A can downregulate
EZH2. EZH2 depletion causes the let-7c increase. However,
let-7c binds to the 3’-UTR of JMJD1A and EZH2 and shifts
their expression in a feedback loop, predisposing them to
cancer phenotype amelioration [144]. EWS/Fli1 oncoprotein
participates in miR-22 suppression that can regulate
KDM3A (JMJD1A/JHDM2A) expression. Downregulation
of KDM3A results in tumorigenic profile reduction in Ewing
sarcoma [145].

4.4.4. KDM4 (JMJD2B and JMJD2C). JMJD2B can be reg-
ulated by miR-491-5p, and its overexpression via miR-491-
5p downregulation has been observed in ERα-positive breast
cancers and cell lines. miR-491-5p upregulation results in
cell cycle arrest and attenuates growth through inhibition of
JMJD2B in the same cancer [146]. miR-491-5p carries out
the same function in gastric cancer by binding to the 3’UTR
of JMJD2B. +is miRNA is a tumor suppressor, and its
downregulation has been used as a biomarker in this disease
[147]. Yong et al. illustrated that circZMYM2 inhibits miR-
335-5p expression in prostate cancer cells and tissues and
induces prostate cancer development. Overexpression of
miR-335-5p as a treatment can block JMJD2C expression
and reduce prostate cancer progression [148].

4.4.5. KDM5 (JARID1B and RBP2). Studies have shown that
JARID1B levels are ameliorated by miR-137 [152]. +us,
increased levels of JARID1B and reduced levels of miR-137
have been found in acute lymphoblastic leukemia cell lines,
and increased miR-137 can prevent uncontrolled cell pro-
liferation [152]. miR-363-3p is expressed as a result of HIF-
2a induction, followed by p21 suppression and resulting in
JARID1B elevation in melanoma [151]. JARID1B/KDM5B is
also known to be regulated by miR-138, miR-381-3p, and
miR-486-5p as observed in breast cancer [153]. Reference
[154] RBP2 is a direct target of miR-212, and its

Table 6: miRNA-mediated regulation of histone arginine methyltransferases.

Target gene miRNAs Cancer tissue or cancer cell line Reference
PRMT1 miR-503 Hepatocellular carcinoma [127]
PRMT4 (CARM1) miR-195 Colorectal cancer cells [128, 129]
PRMT4 (CARM1) miR-424-5p NSCLC [130]
PRMT5 miR-92b and miR-96 Lymphoid cancer cell lines [131]
PRMT5 miR-1266 Prostate cancer cell lines [132]
PRMT9 miR-543 Osteosarcoma [133]
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overexpression in response to downregulation of miR-212
has been found in gastric carcinogenesis and hepatocellular
carcinoma [149, 150]. miR-212 acts as a tumor suppressor,
and its aberrant expression participates in the augmentation
of a cell proliferation phenotype through induction of im-
paired RBP2 expression and downregulation of P21CIP1/
P27kip1 [149, 150].

4.4.6. KDM7 (PHF2). miR-221 can target PHF2, and its
upregulation along with PHF2 decrease has been shown in
hepatocellular carcinoma cells [155].

4.4.7. JMJD6 (Arginine Demethylase). JMJD6 is a miR-770
direct target, and its overexpression due to miR-770
downregulation followed by WNT/β-catenin pathway ac-
tivation has been found in NSCLC [156]. Furthermore, miR-
146a and miR-193a target JMJD6 overexpression has been
described in melanoma progression [157].

4.5. miRNA-Mediated Regulation of Histone Kinases.
+ere are several clusters of kinases classified by kinase
domain sequences similarity, biological function, and other
criteria [158]. miRNA-mediated regulation of histone ki-
nases is described below and summarized in Table 8.

4.5.1. AGC (RPS6KA4/MSK2, PRKCD, PRKCB, RSK2, and
PRKDC). Reduction of miR-517a is found in bladder cancer
cell lines. It has a tumor-suppressive effect and can target
RPS6KA4/MSK2 [159]. +e PRKCD kinase can be regulated

by many kinds of miRNAs. miR-181a acts as an oncogene,
and its upregulation decreases the chemosensitivity of
cervical squamous cell carcinoma via PRKCD inhibition
[160, 161]. In ovarian cancer tissues, miR-181c was found to
be decreased and caused a PRKCD increase via binding to its
3’UTR [162]. As reported by Yao et al., PRKCD knockdown
in A2780 cells resulted in cell cycle arrest in the G1 phase and
metastasis inhibition [162]. However, in another study
carried out by Zhao et al., miR-224 functioned as an on-
cogene targeting PRKCD and enhanced chemoresistance in
ovarian papillary serous carcinoma [163]. +e down-
regulation of miR-197-3p along with PRKCB overexpression
in gastric cancer has been reported [164]. Low levels of miR-
634 increase RSK2 in relation to cisplatin resistance in
ovarian cancer [165]. miR-488-3p represses PRKDC and
increases malignant melanoma cell sensitivity to cisplatin
[166].

4.5.2. Nonreceptor Tyrosine Kinase (JAK2). JAK2 is one of
the most important kinases involved in histone regulation
and the key member of the JAK2/STAT3 signaling pathway
recruited in inflammation and apoptosis [218]. +e level of
JAK2 is regulated by a variety of miRNAs. +e miR-543
expression serves as a tumor suppressor and prevents cell
proliferation by targeting JAK2 and STAT3 in hepatocellular
carcinoma [167]. Low levels of miR-216a and high levels of
JAK2 in pancreatic cancer were reported in two distinct
studies [168, 169]. JAK2, BCl-2, and surviving are direct
targets of miR-204 in breast cancer, and the opposite ex-
pression pattern of miR-204-JAK2 has been reported in

Table 7: miRNA-mediated regulation of histone demethylases.

Demethylase
groups Target gene miRNAs Cancer tissue or cancer cell line Reference

KDM1

AOF2 (LSD1) miR-137 Endometrial cancer [135]
AOF2 (LSD1) miR-302 Hepatocellular carcinoma cells [136]

AOF2 (LSD1) miR-302a and miR-302b Human head and neck squamous cell
carcinomas [137]

AOF2 (LSD1) miR-302 Prostate cancer [138]

KDM2
FBXL10 (KDM2B) miR-146b Ovarian cancer [139]
FBXL10 (KDM2B) miR-448 Gastric cancer [140]
FBXL10 (KDM2B) miR-146a-5p Cervical cancer cell lines [141]

KDM3

JMJD1A miR-627 Colorectal tumors [142]
JMJD1A miR-155 Nasopharyngeal carcinoma [143]
JMJD1A let-7c NSCLC [144]

KDM3A (JMJD1A/
JHDM2A) miR-22 Ewing sarcoma [145]

KDM4
JMJD2B (KDM4B) miR-491-5p Breast cancer [146]
JMJD2B (KDM4B) miR-491-5p Gastric cancer [147]

JMJD2C miR-335-5p Prostate cancer [148]

KDM5

JARID1A (RBP2) miR-212 Hepatocellular carcinoma [149]
JARID1A (RBP2) miR-212 Gastric cancer [150]

JARID1B (KDM5B) miR-363-3p Melanoma [151]
JARID1B (KDM5B) miR-137 Acute lymphoblastic leukemia cell lines [152]

JARID1B (KDM5B) miR-138, miR-381-3p, and miR-
486-5p Breast cancer [153, 154]

KDM7 PHF2 miR-221 Hepatocellular carcinoma [155]
Arginine
demethylase

JMJD6 miR-770 Non-small-cell lung cancer [156]
JMJD6 miR-146a and miR-193a Melanoma [157]
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Table 8: miRNA-mediated regulation of histone kinases.

Kinase groups Target gene miRNAs Cancer tissue or cancer cell line Reference

AGC

RPS6KA4 (MSK2) miR-517a Bladder cancer cell lines [159]
PRKCD miR-181a Cervical squamous cells [160, 161]
PRKCD miR-181c Ovarian cancer tissues [162]
PRKCD miR-224 Ovarian papillary serous carcinoma [163]
PRKCB miR-197-3p Gastric cancer [164]
RSK2 miR-634 Ovarian cancer [165]

PRKDC miR-488-3p Malignant melanoma [166]

Nonreceptor tyrosine kinase families

JAK2 mR-543 Hepatocellular carcinoma [167]
JAK2 miR-216a Pancreatic cancer [168, 169]
JAK2 miR-204 Breast cancer [170]
JAK2 miR-204 Non-small lung cancer cell lines [171]
JAK2 miR-375 Gastric cancer [172, 173]
JAK2 miR-135a Hodgkin lymphoma [174]
JAK2 miR-135a Renal cancer [175]
JAK2 miR-135a Gastric carcinoma [176]

CMGC

CDK3 miR-873 Breast cancer [177]
CDK3 miR-4469 Primary breast tumors [178]

MAP3K8 miR-589-5p Hepatocellular carcinoma [179]
MAP3K8 miR-144-3p Renal cell carcinoma [180]
MAP3K8 miR-509-3p Renal cell carcinoma [181]
GSK3B miR-769 Melanoma [182]

Tyrosine kinase-like (TKL) LIMK2 miR-135a Bladder cancer [183]

Other kinases family

NEK6 miR-23 Hepatocellular carcinoma [184]
NEK6 miR-26 Marek’s disease lymphoma [185]
NEK6 miR-506-3p Retinoblastoma [186]
AURKA miR-124-3p Bladder cancer [187]
AURKA miR-124-3p Glioblastoma [188]
AURKA miR-32 Non-small-cell lung cancer [189]
AURKA miR-137 Multiple myeloma [190]
AURKA let-7 Hepatocellular cancer [191]
AURKA miR-490 Hepatocellular carcinoma [192]
AURKA miR-4715-3p Gastrointestinal cancers [193]
BUB1 miR-490-5p Hepatocellular carcinoma [194]
BUB1 miR-145-3p Prostate cancer [195]

CAMK

CHEK2 (Chk2) miR-191 Osteosarcoma [196]
CHEK2 (Chk2) miR-182-5p Breast cancer [197]
CHEK1 (Chk1) miR-195 Non-small-cell lung cancer [198]
CHEK1 (Chk1) miR-195 Colon cancer [199]
CHEK1 (Chk1) miR-497 Hepatocellular carcinoma [200]
CHEK1 (Chk1) miR-145 Bladder cancer [201]
CHEK1 (Chk1) miR-424 Cervical cancer [202]
CHEK1 (Chk1) miR-15 Breast cancer cells [203]
CHEK1 (Chk1) miR-26a Prostate cancer [204]

DAPK3 miR-1307 Ovarian cancer cell lines [205]
AMPK miR-451 Colorectal cancer [206]
AMPK miR-25-5p Colorectal cancer [207]
AMPK miR-101 Breast cancer [208]
AMPK miR-34 Prostate cancer [209]

STE

STK4 miR-18a Prostate cancer [210]
PAK2 miR-4779 Colon cancer [211]
PAK2 miR-216a-5p Breast cancer [212]
PAK2 miR-137 Melanoma [213]
PAK2 miR-75p Non-small-cell lung cancer [214]
PAK2 miR-134 Human ovarian cancer cells [215]
PAK2 miR-922 Oral squamous cell carcinoma [216]
PAK2 miR-26a Hepatocellular carcinoma [217]
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NSCLC [170, 171]. Furthermore, miR-204 can be used as a
prognostic marker in these cancers [170, 171]. Several
studies reported the downregulation of miR-375 in gastric
cancer and its function in inhibiting tumor development by
suppressing JAK2 [172, 173]. miR-135a is another regulator
of JAK2 in different cancers such as lymphoma and renal
and gastric carcinoma and can influence apoptotic genes as
well as Bcl-x and Bcl-2 [174–176].

4.5.3. Tyrosine Kinase-Like (LIMK2). LIMK2 plays an on-
cogenic role in bladder cancer and can be decreased by miR-
135a [183].

4.5.4. Other Kinases Family (NEK6, AURKA, and BUB1).
miR-23 can target NEK6, the enzyme that negatively regulates
p53. +e natural substance berberine plays a role in hepato-
cellular carcinoma treatment by activating this signal [184]. In
another study, miR-26 was documented as a modulator of
NEK6 in Marek’s disease lymphoma and suppressed cell
proliferation [185]. NEK6 is an oncogene and a direct target of
miR-506-3p in retinoblastoma [186]. miR-124-3p was found to
be decreased in bladder cancer tissues and cell lines and
glioblastoma, and its downregulation led to AURKA increase
[187, 188]. In NSCLC, miR-32 targets AURKA and causes p53
inhibition [189]. miR-137 can suppress AURKA expression
and prevent drug resistance in multiple myeloma [190]. let-7 is
another modulator of AURKA that is downregulated in he-
patocellular cancer [191]. Diminished levels of miR-490 have
been found in hepatocellular carcinoma, and AURKA as an
established target of miR-490 was elevated [192]. Gomaa and
colleagues found a relationship between miR-4715-3p down-
regulation caused by methylation and AURKA overexpression
in gastrointestinal cancers that were attenuated by 5-Aza-2’-
deoxycytidine, a demethylation element [193]. Downregulation
of miR-490-5p and miR-145-3p along with an increase in
BUB1 was found in hepatocellular carcinoma and prostate
cancer, respectively, leading to cancer cell invasion [194, 195].

(1) CAMK (DAPK3, CHEK1, CHEK2, and AMPK). DAPK3
is a p53-activating kinase and a direct target of miR-1307,
which is overexpressed in chemoresistant ovarian cancer cell
lines [205]. CHEK2 can be regulated by miR-191 in oste-
osarcoma, and miR-191 provokes cell growth [196]. miR-
182-5p overexpression promotes CHEK2 suppression and is
involved in breast cancer [197]. CHEK1 is controlled by
several miRNAs, and its alteration functions a double-edged
sword in different malignancies. Downregulation of miR-
195 in NSCLC is correlated with augmentation of CHEK1,
which is an indication of poor survival [198]. However,
downregulation of miR-195 in colon cancer cell lines can
suppress the viability of cancer 5-FU-resistant cells by in-
creasing CHEK1 and might be considered as a treatment in
colon cancer [199]. miR-497 is another regulator of CHEK1
in hepatocellular carcinoma [200]. miR-145 and miR-424
downregulation together with CHEK1 upregulation were
found in bladder cancer and cervical cancer, respectively
[201, 202]. miR-15 can increase breast cancer cells irradi-
ation by targeting CHEK1 [203]. p53 induces miR-16 and

miR-26a expression, and they inhibit CHEK1 expression
leading to enhanced apoptosis and better survival in breast
and prostate cancers [204]. miR-451 overexpression ham-
pers AMPK and promotes mTOR and FCN1 expression in
colorectal cancers leading to proliferation induction [206]. A
similar result was found with exogenous expression of miR-
25-5p [207]. miR-101 and miR-34 are other regulators of
AMPK, and an increase in their expression is associated with
proliferation arrest and initiation of apoptosis in breast and
prostate cancer, respectively [208, 209].

(2) STE (STK4 and PAK2). miR-18a elevation motivates
prostate cancer development through STK4 suppression
[210]. PAK2 is modulated by various microRNAs in dif-
ferent cancers. miR-4779, miR-216a-5p, miR-137, and miR-
7-5p are tumor suppressors that regulate PAK2 in colon
cancer, breast cancer, melanoma, and NSCLC. Down-
regulation of these miRNAs has been associated with tumor
growth and proliferation [211–214]. Moreover, Shuang et al.
showed that miR-134 suppression led to augmentation of
PAK2 followed by paclitaxel resistance in human ovarian
cancer cells [215]. In addition, CCHE1 inhibited miR-922,
which, in turn, leads to an incline in PAK2 and participates
in tumorigenesis of oral squamous cell carcinoma devel-
opment [216], and miR-26a halted cancer invasion by
restricting PAK2 in hepatocellular carcinomas [217].

(3) CMGC (MAP3K8, GSK3B, and CDK3). miR-589-5p
limits MAP3K8 expression and causes suppression of
CD90+ cancer stem cells in hepatocellular carcinoma [179].
miR-144-3p and miR-509-3p participate in the inhibition of
cancer cell proliferation by inactivating MAP3K8 in renal
cell carcinoma [180, 181]. miR-769 promotes melanoma
improvement by modulating GSK3B expression [182].
CDK3 is also modulated by numerous miRNAs. miR-873
controls CDK3 activity, and decreased levels of this miRNA
have been described in breast cancer [177]. miR-873 shifts
tamoxifen resistance by targeting CDK3 and inducing ER
phosphorylation [219]. miR-4469 is another noncoding
RNA that targets CDK3 elevation in primary breast tumors
compared to metastatic ones [178].

4.6. miRNA-Mediated Regulation of Histone Phosphatases.
+e main groups of protein phosphatases are sorted con-
sidering the structural fold of the catalytic domain [220], and
miRNA-mediated regulations of these are summarized in
Table 9.

4.6.1. PPM (PPM1D). PPM1D has been found to be
modulated by miR-499a-5p and miR-499a-5p down-
regulation followed by PPM1D upregulation in osteosar-
coma [221].

4.6.2. PPPL (PPP2CA and PPP2CB). PPP2CA is a direct
target of miR-155, and its overexpression leads to PPP2CA
low levels in colon cancer [222]. miR-650 acts as an on-
cogene, and its upregulation causes a PPP2CA decrease in
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thyroid cancer [223]. miR-130b overexpression provides
invasion through PPP2CA targeting in glioma [224].
Upregulation of miR-1246 induces inflammatory element
expression by targeting PPP2CB in breast cancer [225].
However, decreased levels of miR-129-5P have been found
in papillary thyroid carcinoma, and PPP2CB expression was
induced as its target [226].

4.6.3. HAD (EYA1 and EYA2). +e apoptosis activator miR-
101 can repress EYA1 and is diminished in breast cancer
[227]. miR-562 is another modulator of EYA1, and its
downregulation has been found in sporadic Wilms’ tumor
[228]. miR-338 and miR-30a are EYA2 regulators, and their
downregulation increases EYA2 expression in breast cancer,
and its reduction and epidermal growth factor receptor
(EGFR) downregulation have been associated with lung
metastasis [229, 230]. Furthermore, miR-30a overexpression
was found to reduce EYA2 and attenuate cell metastasis in
lung adenocarcinoma [231]. +e expression of miR-219a-5p
and miR-338-3p were shown to be diminished in osteo-
sarcoma and cervical cancer, respectively, both targeting
EYA2 [232, 233]. EYA3, a direct target of miR-708, was
upregulated in Ewing sarcoma, promoting chemoresistance
[234].

4.6.4. CC1 (DUSP1). DUSP1 is controlled by various
miRNAs. In osteosarcoma, miR-34a targets DUSP1, and its
repression is related to elevated levels of Bax and E-cadherin,
along with diminished levels of Bcl-2, cyclin E, cyclin D1,
and β-catenin [235]. Upregulation of miR-202-3p down-
regulates DUSP1 and provokes tumor development in
gastric neuroendocrine neoplasms [236]. Various studies
revealed that miR-324 and miR-101 function in DUSP1
targeting in hepatocellular carcinoma, and their upregula-
tion impedes metastasis and promotes apoptosis, suggesting
these as potential novel treatment targets [237, 238].

4.7. miRNA-Mediated Regulation of Histone Desumoylation.
SENP1 is one of the most important desumoylation proteins
modulated by various miRNAs (Table 10). SENP1 can be
inactivated by multiple miRNAs. In lung cancer samples and
cell lines, reduction of miR-138 along with SENP1 increase
has been identified. miR-138 overexpression can elevate
radiosensitivity by SENP1 blockage leading to increased
apoptosis [239]. miR-133-3p and miR-186 are the regulators
of SENP1 in colorectal and renal cell carcinoma, respec-
tively. +eir downregulation raises expression of the SENP1
oncogene in these cancers followed by accelerated prolif-
eration [240, 241]. In prostate cancer, miR-145 loses its
tumor suppressor activity, and this leads to increased
SENP1expression. In addition, CDX2 can target miR-145-5p
and decrease metastasis [242, 243].

4.8. miRNA-Mediated Regulation of Histone Ubiquitinations.
RBX1, RNF8, HUWE1, and UHRF1 are histone ubiquiti-
nating enzymes involved in different malignancies. Below,
we summarize the miRNA-mediated effects on the regula-
tion of these enzymes (Table 11). RBX1 has been shown to be
decreased by miR-378 and miR-194 in lung and gastric
cancer, and this suppresses proliferation and metastasis
[244, 245]. Cheng et al. revealed that miR-542-5p targets
HUWE1 and impedes osteosarcoma development [246].
RNF8 is another histone lysine ubiquitinase. miR-214
upregulation has been associated with RNF8 down-
regulation and provokes chromosomal instability in ovarian
cancer cells [247]. Overexpression of miR-214 and miR-622
in breast cancer prevents cell proliferation by targeting
RNF8 [248, 249]. Several miRNAs can control UHRF1
expression in different neoplasia. For example, low levels of
miR-145 andmiR-124 have been linked to increased levels of
UHRF1 in bladder cancer cell lines and accelerated cell
aggressiveness [201, 250, 251]. miR-9 and miR-202 serve as
tumor suppressors and attenuate cell migration through
UHRF1 blockage [252, 253]. Moreover, Goto et al.

Table 9: miRNA-mediated regulation of histone phosphatases.

Phosphatase groups Target gene miRNAs Cancer tissue or cell line Reference
PPM PPM1D miR-499a-5p Osteosarcoma [221]

PPL

PPP2CA miR-155 Colon cancer [222]
PPP2CA miR-650 +yroid cancer [223]
PPP2CA miR-130b Glioma [224]
PPP2CB miR-1246 Breast cancer [225]
PPP2CB miR-129-5P Papillary thyroid carcinoma [226]

HAD

EYA1 miR-101 Breast cancer [227]
EYA1 miR-562 Sporadic Wilms’ tumor [228]
EYA2 miR-338 Breast cancer [229]
EYA2 miR-30a Breast cancer [230]
EYA2 miR-30a Lung adenocarcinoma [231]
EYA2 miR-219a-5p Osteosarcoma [232]
EYA2 miR-338-3p Cervical cancer [233]
EYA3 miR-708 Ewing sarcoma [234]

CC1

DUSP1 miR-34a Osteosarcoma [235]
DUSP1 miR-202-3p Gastric neuroendocrine neoplasm [236]
DUSP1 miR-324 Hepatocellular carcinoma [237]
DUSP1 miR-101 Hepatocellular carcinoma [238]
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demonstrated the antitumor function of miR-101 in renal
cell carcinoma through the inactivation of UHRF1 [254].

4.9. miRNA-Mediated Regulation of Histone
Deubiquitination. USP3, USP7, and USP22 are three deu-
biquitination enzymes studied in cancers, and these are
controlled by various miRNAs (Table 12). USP3 that is
targeted by miR-224 is reduced in colorectal cancer and
induces its progression [255]. Conversely, USP3 over-
expression andmiR-224 underexpression lead to an increase
in the proliferation of gastric cancer cells [256]. Two separate
investigations demonstrated that USP7 serves as a tumor
suppressor, and an increase in miR-205 and miR-34a causes
an alleviation in hepatocellular carcinoma [257, 258]. miR-
30-5p may represent a novel therapeutic target in NSCLC,
colorectal cancer, and nasopharyngeal carcinoma since it

can mitigate tumorigenesis through USP22 suppression,
leading to Wnt/β-catenin signaling target genes (Axin2 and
MYC) and Sirt1/JAK/STAT3 signaling modulation
[259–261]. miR-29c enhances the chemosensitivity of
pancreatic cancer cells by inhibition of USP22 (264).
LncRNA HULC attenuates miR-6825-5p, miR-6845-5p, and
miR-6886-3p levels that target USP22 in hepatocellular
carcinoma [263]. In gastric cancer, POU2F1 can target miR-
4490 and increase USP22 levels [264]. Additionally, miR-101
overexpression leads to USP22 depletion and reduces tumor
progression in papillary thyroid carcinoma [265].

5. Conclusions and Future Prospects

With due attention to the high cancer mortality rate, early
diagnosis and initiation of appropriate therapeutics are
urgently needed. To further these objectives, it is crucial to
increase our understanding of the mechanisms and path-
ways involved in malignancy progression and improvement.
+e histone-modifying enzymes that catalyze the remod-
eling of chromatin structures play a major role in cancer
biology. In this review, we discussed miRNAs that interact
with a complex array of histone modifiers and reviewed the
effects of their aberrant expression in various cancers. +ese
alterations impact the fluctuation of multiple cancer cell
properties such as drug sensitivity, drug resistance, prolif-
eration, apoptosis, and malignancy trajectories. Hence,
recognition of these small noncoding RNAs is imperative for
the early diagnosis of cancer and may lead to the identifi-
cation of new biomarker tests to facilitate earlier diagnosis
and treatment than is currently possible for the best
outcomes.
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Table 10: miRNA-mediated regulation of histone desumoylation.

Target gene miRNAs Cancer tissue or cell line Reference
SENP1 miR-138 Lung cancer [239]
SENP1 miR-133-3p Colorectal cancer [240]
SENP1 miR-186 Renal cell carcinoma [241]
SENP1 miR-145-5p Prostate cancer [242, 243]

Table 11: miRNA-mediated regulation of histone ubiquitination.

Target
gene miRNAs Cancer tissue or cancer cell

line Reference

RBX1 miR-378 Lung cancer [244]
RBX1 miR-194 Gastric cancer [245]

HUWE1 miR-542-
5p Osteosarcoma [246]

RNF8 miR-214 Ovarian cancer [247]
RNF8 miR-214 Breast cancer [248]
RNF8 miR-622 Breast cancer [249]
UHRF1 miR-145 Bladder cancer cell lines [201, 250]
UHRF1 miR-124 Bladder cancer [251]
UHRF1 miR-9 Colorectal cancer [252]
UHRF1 miR-202 Colorectal cancer [253]
UHRF1 miR-101 Renal cell carcinoma [254]

Table 12: miRNA-mediated regulation of histone
deubiquitination.

Target
gene miRNAs Cancer tissue or cancer cell

line Reference

USP3 miR-224 Colorectal cancer [255]
USP3 miR-224 Gastric cancer [256]
USP7 miR-205 Hepatocellular carcinoma [257]
USP7 miR-34a Hepatocellular carcinoma [258]
USP22 miR-30-5p Non-small lung cancer cell [259]
USP22 miR-30-5p Colorectal cancer [260]
USP22 miR-30-5p Nasopharyngeal carcinoma [261]
USP22 miR-29c Pancreatic cancer [262]

USP22 miR-6886-
3p Hepatocellular carcinoma [263]

USP22 miR-4490 Gastric cancer [264]
USP22 miR-101 Papillary thyroid carcinoma [265]
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